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Abstract Delay times in quantum mechanics always represented an intriguing challenge for physicists. Due to the fact that quantum
mechanical experiments are, often, hard to be implemented, the possibility to connect delay times with laser lateral displacements
gives us the opportunity to prepare, in optical laboratories, experiments which are equivalent to the quantum mechanical ones in
detecting delay times. In this article, we will show in detail not only the relationship between delay times and Goos–Hänchen
shifts, but also the close connection between the impulse change in quantum mechanics and angular deviations in optics. Lateral
shifts are caused by the phase of Fresnel coefficients whereas angular deviations by the breaking of symmetry of the wave number
distributions. The classical formula for the delay time is based on the use of the stationary phase method and contains a divergence
for incidence at a critical potential energy. For Gaussian beams, the mean value calculation removes such a divergence. The closed
expression for the delay time for incidence at critical energy shows an excellent agreement with the numerical calculation. The
three-dimensional analysis of delay times allows to find the final and definitive connection between wave packets reflected by a
potential in quantum mechanics and optical beams reflected by a dielectric/air interface.

1 Introduction

As Goos-Hänchen shift, we mean the lateral displacement of an optical beam totally reflected by a dielectric/air interface with respect
to its incident point. The first experimental evidence of such a phenomenon appeared in the literature in [1]. In their experiment,
the German physicists Goos and Hänchen showed the evidence of such anomalous displacement of light by using an elongated
dielectric block which allowed multiple internal reflections to amplify the effect. A theoretical explanation was given by Artmann
one year later [2]. He proposed a mathematical description for the lateral displacement. By assuming that the plane waves which
characterize the electromagnetic field have phases which rapidly vary, Artmann observed that the optical path is then determined
only by the main term of the phase, i.e. by the stationary condition. In this framework, the shift is then caused by the additional phase
which, in the case of total reflection, appears in the Fresnel coefficients. He also noted that due to the fact that transverse electric
and magnetic waves have different expression for these coefficients, the lateral displacement depends on the beam polarization. The
Artmann prediction was soon confirmed by a new experiment of Goos and Hänchen [3].

Notwithstanding the success of the Artmann formula, his prediction contained a divergence for incidence at the critical angle.
The divergence problem was addressed by the same physicist [4] by analysing the case of a large number of internal reflections
between two parallel surfaces. The research for a new formula became particularly prolific in the 1960s [5–7] and 1970s [8], with
articles discussing the interval validity of the Artmann formula, the connection between the shift and the energy conservation for
totally reflected beams, and proposing new closed formulas. In 2016, [9], Araújo et al. obtained an analytical formula based on the
modified Bessel function which remove the divergence and show an excellent agreement with the numerical calculation and recently
also with experimental data [10]. A detailed description of the Goos-Hänchen shift and angular deviations is found in [11].

The Goos–Hänchen shift has a quantum mechanical analogue when the first medium is replaced by the vacuum and the second
one by a constant potential, and the optical field by a quantum mechanical wave packet [12]. In this case, the quantum particle moves
in the x/y plane and the discontinuity of the potential is along the x-axis, we shall come back to this discussion later in Sect. III.
This allows an immediate analogy between the Goos–Hänchen shift in quantum mechanics [13] and optics [14]. Nevertheless,
another interesting quantum phenomena such as the delay time in the reflection by a potential step and/or the tunneling time in the
transmission through a potential barrier can be connected to optical phenomena. In fact, the time-independent Schrödinger equation
for quantum particles and the Helmholtz equation for electromagnetic waves are identical in form [15]. Delay and tunneling times
have to be calculated by analysing the peak of the reflected or transmitted wave packet and, so, can be translated in spatial shifts. This
allows an immediate connection with the Goos–Hänchen optical shift. In quantum mechanics, delay times in reflection and tunneling
times in transmission lead to divergences that lead to infinite delay times in reflection from a potential barrier or to superluminal
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transmissions in the case of a potential barrier. We refer to the report cited in [15] for a complete clear revision of this intriguing
phenomena. The divergences can be solved by using numerical calculation. These divergences are mathematically equivalent to
those found, during the last years, in optics when the Goos–Hänchen shift was discussed and the Artmann divergences removed
[9]. The main objective of this paper is to apply the optical technique used in optics to see as the Taylor expansion of the reflected
wave packet distribution can be useful to remove the divergences found in quantum mechanics. If the delay time, by analysing the
displacement of the reflected peak, can be linked to the Goos–Hanchen shift of an optical beam, an immediate question arises: which
is the mechanical counterpart of angular deviations? Angular deviations in Optics [11] are caused by the symmetry breaking of the
angular distribution of the optical beam [11], so, in quantum mechanics, we expect that a similar symmetry breaking occurs in the
wave number distribution leading to a change in the group velocity of the reflected packet. In the next section, we will analyse in
detail two cases: the one of incidence with energy higher than the potential step which leads to a wave number distribution symmetry
breaking and the consequent change in the group velocity of the reflected particle and the one of incidence with lower energy
which leads to delay times but not at the speed change of the reflected packet. In our analysis, we also differentiate between peak
and mean calculation. The results obtained by the analytical study based on the Taylor expansion of the wave number distribution
of the reflected beam found an excellent agreement with numerical simulations. Finally, the adimensional analysis also allows to
extend our results to different experimental optical setups and this is important in view of possible optical simulations of quantum
mechanical problems. The didactic presentation aims to reach a wide audience and stimulate further discussions.

2 Velocity change and delay time

The dynamics of a non-relativistic particle with mass m and moving along the x-axis is described, in the presence of a potential, by
a wave function satisfying the one-dimensional Scrhödinger equation [13,16]:

i h̄ �t (x, t) = − h̄
2

2m
�xx (x, t) + V (x)�(x, t), (1)

where V (x) is null for x < 0 and has a constant value V0 for x > 0. For a particle with energy E , we choose, for the incident wave
packet (x < 0), a Gaussian distribution centred on k = √

2m E/h̄,

�INC(x, t) =
∫

dkx g(kx − k) exp

[
i

(
kx x − k

2

x

2

h̄ t

m

)]
, (2)

where

g(kx − k) = w0 exp
[
− ( kx − k )

2
w 2

0 / 4
]

/ 2
√

π.

After reaching the potential region at x = 0, the incident beam splits in two beams, the reflected and transmitted one. The reflected
beam, moving back in the region x < 0, is described by

�REF (x, t) =
∫

dkx R(kx ) g(kx − k) exp

[
−i

(
kx x + k

2

x

2

h̄ t

m

)]
, (3)

and the transmitted one moving forward in region x > 0 by

�TRA (x, t) =
∫

dkx T (kx )g(kx − k) exp

[
i

(√
k2
x − k

2

0 x − k
2

x

2

h̄ t

m

)]
, (4)

where k0 = √
2m V0/h̄,

R(kx ) =
kx −

√
k2
x − k

2

0

kx +
√
k2
x − k

2

0

, (5)

and

T (kx ) = 2 kx

kx +
√
k2
x − k

2

0

. (6)

The reflection and transmission coefficients were obtained by imposing the continuity of the fields �INC(x, t) + �REF (x, t) and
�TRA (x, t) and their derivatives at x = 0.
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The choice of the Gaussian distribution allows to give an analytical expression for the incident wave packet,

�INC(x, t) =exp [i (k x − E t/h̄)]√
1 + 2 i τ

× exp

⎡
⎢⎣−

(
x − k w

2

0 τ
)2

w
2

0 (1 + 2 i τ)

⎤
⎥⎦ , (7)

where τ = h̄ t/m w
2

0 is the adimensional time. An analytical integration for the reflected wave packet is not possible due to the
presence of R(kx ) in the integrand. Nevertheless, the Gaussian distribution, g(kx − k), quickly decreases around its peak, so, we can
obtain an analytical expression for the reflected wave packet by using the first-order Taylor expansion of the reflection coefficient,
i.e.

R(kx ) ≈ R(k)

⎡
⎣ 1 − 2√

k2 − k
2

0

(kx − k)

⎤
⎦ . (8)

By using this Taylor expansion and observing that the linear term, kx − k, in the integrand can be substituted a partial derivative in
x , we can rewrite the reflected wave packets in terms of the incident one as follows

�REF (x, τ ) = exp [− i (k x + E t/h̄)]√
1 + 2 i τ

R(k)

×
⎛
⎝1 − 2 i ∂x√

k2 − k
2

0

⎞
⎠ exp

⎡
⎢⎣−

(
x + k w

2

0 τ
)2

w
2

0 (1 + 2 i τ)

⎤
⎥⎦ . (9)

After simple algebraic manipulations, we find

�REF (x, τ ) = R(x, τ )�INC(−x, τ ), (10)

where

R(x, τ )

R(k)
=

⎡
⎣1 + 4 i

w
2

0

√
k2 − k

2

0

x + k w
2

0 τ

1 + 2 i τ

⎤
⎦ . (11)

At this point, we have to distinguish between two cases: Incidence energy above the potential energy (k > k0) and incidence energy
below (k < k0).

2.1 Beam centre for k > k0

For a non-relativistic particle with energy greater than the potential one, the square root which appear in the denominator of the
reflection factor (11) is real and, consequently, the intensity of the reflected beam is given by

∣∣�REF (x, τ ; k > k0)
∣∣2 = R

2
(k)

|�INC(− x, t)|2

1 + 4 τ 2

×

⎧⎪⎪⎨
⎪⎪⎩

1 +
⎡
⎣ 2 τ +

4
(
x + k w

2

0 τ
)

w
2

0

√
k2 − k

2

0

⎤
⎦

2
⎫⎪⎪⎬
⎪⎪⎭

. (12)

This expression can be further simplified by observing that due to the fact that |�INC(− x, t)| is centred at x = −k w
2

0 τ we can
consider the first-order expansion of the quadratic factor which appears in the reflected intensity,
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∣∣�REF (x, τ ; k > k0)
∣∣2 ≈ R

2
(k) |�INC(− x, t)|2

×
⎡
⎣1 + 16 τ

w
2

0

√
k2 − k

2

0

x + k w
2

0 τ

1 + 4 τ 2

⎤
⎦ . (13)

It is interesting to observe that this expression also represents the first-order Taylor expansion of a Gaussian function

∣∣�REF (x, τ ; k > k0)
∣∣2 = R

2
(k)√

1 + 4 τ 2

× exp

⎡
⎢⎢⎢⎣− 2

(
x + k w

2

0 τ − 4 τ/

√
k2 − k

2

0

)2

w
2

0

(
1 + 4 τ 2

)

⎤
⎥⎥⎥⎦ . (14)

The Gaussian approximation allows to immediately obtain the centre of the reflected beam,

x
centre

REF
(k > k0) = − k w

2

0 τ + 4√
k2 − k

2

0

τ . (15)

The formula shows a time-dependent shift of the centre of the reflected beam with respect to the position − k w
2

0 τ expected for a
particle incident with wave number k and reflected by a potential with wave number k0 < k. The time dependence implies a change
in the group velocity, h̄ k̃/m, of the reflected wave

k̃ = k − 4√
k2 − k

2

0 w
2

0

. (16)

The ratio k̃/k depends not only on the incidence energy and the potential height but also on the waist, w0, of the incident beam.
This interesting result means that a measure of the momentum of the reflected beam can be used to obtain information on the beam
parameter w0. The ratio between the group velocity of reflected and incident beams is, finally, given by

ṽ

v
= 1 − 4√

k2 − k
2

0 k w
2

0

.

For an incident energy E = 1 eV (this implies an electron velocity of 2 c/10
3
) and a beam waist w0 = 0.2 μm, we have k w0 = 10

3
.

Consequently, for E � V0, the difference between the incident and the reflected velocity is of the order of 10
−6

v. For an incident
energy very close to the potential one,

k w0 = k0 w0 + δ / k w0 ,

we find

ṽ

v
≈ 1 − 4√

2 δ k w0
,

which represent an amplification of 10
3

with respect to the previous case. The divergence problem found for incidence k − k0 will
be discussed later.

2.2 Beam centre for k < k0

For k < k0, the reflection coefficient, R(k), is a complex phase and we have total reflection, |R(k)| = 1. Observing that the square
root in the denominator of R(k) in Eq. (11) is now responsible for an additional imaginary units, we find, for the reflected beam, the
following intensity

∣∣�REF (x, τ ; k < k0)
∣∣2 = |�INC(− x, t)|2

1 + 4 τ 2

×

⎧⎪⎨
⎪⎩

⎡
⎣ 1 +

4
(
x + k w

2

0τ
)

w
2

0

√
k

2

0 − k2

⎤
⎦

2

+ 4 τ 2

⎫⎪⎬
⎪⎭ . (17)

123



Eur. Phys. J. Plus         (2022) 137:455 Page 5 of 13   455 

By neglecting the x + k w
2

0τ second-order term in the Taylor expansion, we obtain

∣∣�REF (x, τ ; k < k0)
∣∣2 ≈ |�INC(− x, t)|2

×
⎡
⎣1 + 8√

k
2

0 − k2

x + k w
2

0τ

w
2

0

(
1 + 4 τ 2

)
⎤
⎦ , (18)

which, after some algebraic manipulations, can be rewritten, as done in the previous subsection, in a Gaussian form,

∣∣�REF (x, t; k < k0)
∣∣2 = 1√

1 + 4 τ 2

× exp

⎡
⎢⎢⎢⎣− 2

(
x + k w

2

0τ − 2 /

√
k

2

0 − k2

)2

w
2

0

(
1 + 4 τ

2)

⎤
⎥⎥⎥⎦ . (19)

The centre of the reflected beam is now found at

x
centre

REF
(k < k0) = − k w

2

0τ + 2√
k

2

0 − k2
. (20)

Observe that, in this case, the shift is time independent. This means that the modulus of the velocity of the reflected particle is the
same of the incident one. This shift leads to the well-known phenomenon of delay time [13]. Indeed by

x
centre

REF
(k < k0) = − k w

2

0( τ − τ0 ),

we obtain

t0 = 2m

h̄ k
√
k

2

0 − k2
= h̄√

E (V0 − E)
. (21)

2.3 Mean value calculation for k = k0

The divergence at k = k0 of Eqs. (15) and (20) can be removed by a mean value calculation,∫
dx x

∣∣�REF (x, τ ; k = k0)
∣∣2

∫
dx

∣∣�REF (x, τ ; k = k0)
∣∣2

.

From x integration we get a Dirac delta function which then allows to further reduce the integration to a kx integration,〈
x

w0
+ k0 w0 τ

〉
REF

= NA + NB

Den
, (22)

where

NA = − τ w
2

0

∫
dkx ( kx − k0 )|R(kx )|2

g2(kx − k0)

NB = 2
∫ k0

−∞
dkx

g2(kx − k0)√
k

2

0 − k2
x

,

Den = w0

∫
dkx |R(kx )|2

g2(kx − k0) . (23)

In order to obtain an analytical integration of the previous terms, let us introduce the adimensional quantity

α = (kx − k0) w0

and expand the reflection coefficient, around kx ≥ k0,

R(kx ) ≈ 1 − 2

√
2 α

w0k0
. (24)
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By using the adimensional integral parameter α and the reflection coefficient expansion, we can rewrite Eq. (22) as follows
〈
x

w0
+ k0 w0 τ

〉
REF

= 1√
π k0w0

×
∫ +∞

0

dα exp

[
− α2

2

] (
4 α3/2 τ + α− 1/2 )

. (25)

Finally the mean calculation removes the divergence at

〈
x

w0
+ k0 w0 τ

〉
REF

= 2
5/4

� (5/4)√
π k0 w0

( 2 τ + 1 ) . (26)

2.4 Numerical analysis

The analytic results obtained in the previous subsections have been tested by numerical simulations. The expression found for the
shift of the reflected wave, Eqs. (15) and (20), were obtained by using a Taylor expansion of the reflection coefficient R(kx ), see
Eq. (8). This means that we expect for

V0 − E

E
< − 10

k w0
,

a time-dependent shift the given by

x
centre

REF

w0
+ k w0τ = 4√

k2 − k
2

0

τ , (27)

and for

V0 − E

E
>

10

k w0
,

a delay time in the reflection given by

x
centre

REF

w0
+ k w0τ = 2

w0

√
k

2

0 − k2
. (28)

For E = V0, we shall use the mean value result obtained in Eq. (26).
For two values of k w0, i.e. 500 and 1000, we numerically calculated the mean value and the maximum of the reflected beam.

The plots (continuous lines) appear in Fig. 1. The use of two different values for k w0 confirms our prediction about the validity
region of the analytical results (dots). In such regions, analytic and numeric results show a perfect agreement. The mean value and
maximum calculations confirm that in the analytic region, the symmetry of the incident beam is conserved after reflection and so
we can talk of centre of the beam. Such a symmetry is broken in the critical region, see the white regions in Fig. 1. To test the time
dependence of Eq. (27), the numerical plots appear in Fig. 1 for three temporal values, i.e. τ = 0.5, 1, 2. At the left side of each
panel the time dependence is clear and the plots show the change in the modulus of the mean momentum of the reflected beam
with respect to the incident one. At the right side, we find the shift caused by the delay time. In this case, the modulus of the mean
momentum of the reflected beam is the same of the incident particle and we have total reflection.

3 Three-dimensional analysis

In view of possible analogies between quantum mechanics and optics, let us consider Gaussian wave packets propagating in z
direction. The wave number distribution

G(kx , ky) = w
2

0 exp[− ( k
2

x + k
2

y ) w
2

0 / 4 ] / 4 π (29)

allows to describe the propagation of a free particle in the three-dimensional space,

�INC(x, y, z; t) = ψINC(x, y, z) exp

[
− i

E t

h̄

]
, (30)

where
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Fig. 1 Numerical simulations
(continuous lines) and analytical
predictions (dots) for the
(adimensional) shift of the centre
of the reflected beam. The analytic
results are in excellent agreement
with the numeric calculations
outside the critical region (white
color). At the left side of the
critical region, we confirm the
time dependence of the shift. This
is an evidence of the changing in
the modulus of momentum of the
particle after reflection. At the
right side, the numerical results
confirm the analytical delay time.
In this case the incident beam is
totally reflected with the same
momentum (in modulus) of the
incident one. In the critical region,
the mean value calculation (26)
appears as a dot and shows
agreement with the numerical
curves. In such a region, it is also
clear the Gaussian breaking of the
symmetry of the reflected beam
with respect to the incident one

(a) (b)

(d)(c)

ψINC(x, y, z) =
∫∫

dkxdky G(kx , ky)

× exp
[
i ( kx x + ky y + kz z )

]
(31)

with kz =
√
k2 − k2

x − k2
y and k = √

2m E / h̄. The wave packet (30) satisfies the free three-dimensional Schrödinger equation,

i h̄ ∂t �INC(x, y, z; t) = − h̄
2∇2

2m
�INC(x, y, z; t) . (32)

In the case in which

kz ≈ k − k2
x + k2

y

2 k
, (33)
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Fig. 2 Schematic representation
of reflection for an electron beam
with energy E incident on a
potential V0 in the plane (x, z).
For E > V0, we have partial
reflection and angular deviations
when the incidence angle is lower
than the critical one (in the plots
the critical angle is fixed at π/4)
and we find total reflection and the
Goos–Hänchen shift for incidence
angles greater than the critical
ones. For E < V0, independently
of the incidence angle, we always
have the phenomenon of total
reflection and of a lateral
displacement

θ

θ

δ

PARTIAL REFLECTION

θ

θ

SθTOTAL REFLECTION

θ

θ

Sθ
TOTAL REFLECTION

θ

θ

SθTOTAL REFLECTION

θ z̃

x̃
x x∗

z ∗ z

θ
z̃

x̃

x

x
∗

z∗ z

E > V0

E < V0

the integrals in Eq. (31) can be analytically solved, leading to

ψINC(x, y, z) =exp[ i k z ]
1 + 2 i ζ

× exp

[
− x2 + y2

w
2

0 ( 1 + 2 i ζ )

]
, (34)

where ζ = z/k w
2

0. We observe that, with respect to Eq.(7), the spatial variable ζ takes the place of the time variable τ .
As done in the previous section, we shall analyse the beam reflected by the potential

V (̃x, y, z̃) = { 0 if z̃ < 0 and V0 if z̃ > 0 } , (35)

See Fig. 2. The coordinate system (x, y, z) is the proper system of the incident wave, while tilde and starred systems, respectively,
refer to the potential and reflected beam systems, i.e. z̃ is the direction perpendicular to the air/potential interface and the z∗ indicates
the propagation axis of the reflected beam.
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Let θ be the angle of incidence. The relations between different coordinate systems is given by
[
x̃
z̃

]
=

(
cos θ sin θ

− sin θ cos θ

)[
x
z

]
,

[
z∗
x∗

]
=

(
sin θ − cos θ

cos θ sin θ

)[
x
z

]
. (36)

The same relations hold for wave-vector components. The reflection coefficient can be derived directly from continuity conditions
of the field and its derivative,

R(kx , ky) = kz̃ − qz̃
kz̃ + qz̃

, (37)

where

kz̃ =
√
k2 − k

2

x̃ − k2
y and qz̃ =

√
q2 − k

2

x̃ − k2
y ,

and h̄ q = √
2m (E − V0). It is interesting to observe that the condition kx̃ = qx̃ is due to the fact that the potential changes along

the z̃ direction. Such a condition implies

k sin θ = q sin ϕ , (38)

where ϕ is the angle that the transmitted beam forms with z̃. The previous equation he be seen as the electron counterpart of the
Snell law (we shall come back later on this point).

Let us now calculate the integral form of the reflected beam. By a θ rotation, the spatial phase of the incident beam can be
expressed in terms of the proper axes of the potential, i.e. kx̃ x̃ + ky y+ kz̃ z̃. The spatial phase of the reflected beam can be rewritten
as follows

kx̃ x̃ − kz̃ z̃ = [
kx̃ kz̃

] (1 0
0 −1

)[
x̃
z̃

]

= [
kx kz

] (0 1
1 0

)[
z∗
x∗

]
. (39)

Consequently, the integral form of the reflected beam is given by

ψREF (x∗, y, z∗)
exp [i kz∗]

=
∫∫

dkx dky R(kx , ky)G(kx , ky)

× exp

[
i

(
kx x∗ + ky y − k2

x∗ + k2
y

2k
z∗

)]
. (40)

In order to obtain an analytical expression for the reflected beam, we consider the first-order Taylor expansion of R(kx , ky),

R(kx , ky) ≈ R(0, 0)

(
1 + 2 sin θ

q cos ϕ
kx

)
. (41)

As done in the previous section, we can rewrite the reflected beam n terms of the incident one as follows

ψREF (x∗, y, z∗) = R(x∗, ζ )ψINC(x∗, y, z∗) , (42)

where

R(x∗, ζ ) = R(0, 0)

[
1 + 4 i x∗ sin θ

w2
0 q cos ϕ

1

1 + 2i ζ

]
.

To calculate the centre of the reflected beam, we have to analyse the term

q cos ϕ =
√
q2 − k2 sin2 θ

= k
√

(E − V0)/E − sin2 θ (43)

and distinguish between real and imaginary values. Then, the analogy between Eqs. (11) and (41) will allow to find the shifts through
a simple translation from the results obtained in the previous section.
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3.1 Incidence with E > V0

In this case, it is possible to introduce a critical angle

θC = arcsin

√
E − V0

E
. (44)

For θ < θC ,

x
centre

∗ (θ < θC ) = 4 sin θ

k
√

sin2 θC − sin2 θ

ζ (45)

= 4 sin θ

(k w0)
2
√

sin2 θC − sin2 θ

z .

This implies a deviation from the reflection law of geometric optics,

θREF = θ + 4 sin θ

(k w0)
2
√

sin2 θC − sin2 θ

. (46)

The velocity change of the reflected particle, found in the previous section, is now replaced by the angular deviation of the reflected
beam.

For θ > θC ,

x
centre

∗ (θ > θC ) = 2 sin θ

k
√

sin2 θ − sin2 θC

. (47)

This represents the Goos Hänchen shift for the electron and represents the counterpart of the delay time discussed before.
As done in the previous section, by expanding the reflection coefficient around θC ,

R(kx , ky) ≈ 1 − 2

√
2 kx
k

tan θC , (48)

we can find the mean value of the shift for critical incidence, θ = θC ,

〈
x∗
w0

〉
=

(√
tan θc

) 2
5/4

�

(
5

4

)
√

π k w0
( 2 ζ + 1 ) . (49)

In Fig. 3, we plot the angular deviations and the Goos-Hänchen shift of electron for k w0 = 500 (which determines the critical
regions), different axial distance ζ = 0.5, 1.0, 2.0 and two critical angles, i.e. arctan 1 and arctan 2. As expected the difference
between mean value and maximum calculations are seen in the critical zone. The analytical predictions (dots) show an excellent
agreement with the numerical calculations (continuous lines). For the mean value calculation at the critical angle, we find an
amplification between the plots in the panels (a) and (c) given by

√
2. The phenomena shown in Fig. 3 are very similar to the

well-known optical phenomena of laser transmitted through dielectric blocks [11].

3.2 Incidence E < V0

For incidence of a particle with energy lower than the potential one, independently of the incidence angle Eq. (43) is always imaginary.
This implies a shift given by

x
centre

∗ (E < V0) = 2 sin θ

k

√
V0 − E

E
+ sin2 θ

. (50)

Analytical predictions (dots) and numerical results (continuous lines) appear in the plots of Fig. 4, for two values of k w0, i.e. 500
and 1000, and three values of

√
V0/E , i.e. 1.10, 1.30, and 1.70. In the next section, we shall see as this shift find its natural optical

counterpart in the reflection by dielectric with imaginary refractive index.
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Fig. 3 Numerical simulations
(continuous) and analytical
predictions (dots) for an electron
wave packet incident on a
potential V0 with discontinuity
along the z-axis. The plots refer to
the mean value and maximum
calculation. The energy and beam
waist were fixed to k w0 = 500
(this characterizes the critical
region which appear in white
color), and the ratio between
incidence energy and potential to
2 and 5 (which determine the
critical angle). Three axial
distance, ζ = 0.5, 1.0, 2.0, was
examined. The numerical results
show an excellent agreement with
the analytical predictions. Outside
the critical region, the mean value
and maximum calculation
coincide and this is due to the
symmetry of the beam. The shifts
refer to x∗/w0

(a) (b)

(d)(c)

4 Optical analogy

Let us consider an optical beam reflected at a dielectric/air interface. If θ and ϕ are the incidence and refraction angles and n the
refractive index of the dielectric,

n sin θ = sin ϕ . (51)

Total reflection is seen when the incidence angle is greater than

θC = arcsin(1/n) . (52)
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Fig. 4 Numerical simulations
(continuous) and analytical
predictions (dots) for the shift of
the electron beam in the case of
E < V0. Three values of

√
V0/E

were used, i.e. 1.10, 1.30, and
1.70. In the limit E → V0, the
shift, x∗/w0, tends to 2/k w0
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From Eq. (44), we immediately see that a the quantum mechanical results can be translated in its optical counterpart by using the
following translation rule

E/(E − V0) ↔ n2 .

For E < V0 we find imaginary refractive index.
In the case of optical beams, the reflection coefficients used to obtain an analytical expression for the reflected beam are given

by

R
[σ ] (

kx , ky
) ≈ R

[σ ]
(0, 0)

(
1 + α

[σ ] kx
k

)
, (53)

where σ=TE, TM and
⎧⎪⎨
⎪⎩

α
[TE]

α
[TM]

⎫⎪⎬
⎪⎭ = 2 tan ϕ

⎧⎪⎨
⎪⎩

1

1

n2 sin2 θ − cos2 θ

⎫⎪⎬
⎪⎭ . (54)
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5 Conclusions

In this paper, by using a Taylor expansion of the reflection coefficient we obtained a closed expression for the shift of the centre of the
beam reflected by one-dimensional potential in quantum mechanics. Two kinds of displacements were found. The time-dependent
shift is a clear evidence of the change in the velocity of the reflected particle not only in the direction but also in its modulus. This
phenomenon seems to be never predicted before. The time independent shift is related to the well-known delay time.

By extending our analysis to three-dimensional problems, we find two phenomena strictly related to the previous ones: angular
deviations and Goos–Hänchen shift for the electron. By a simple translation rule, we can thus reproduce in an optical laboratory
quantum mechanical experiments, in particular indirect measurements of delay times.
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