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We discuss the use of the variational principle within quaternionic quantum mechanics.
This iz nontrivial because of the noncommutative nature of quaternions. We derive the
Dirac-Lagrangian density corresponding to the two-component Dirac equation. This
Lagrangian is complex projected as anticipated in previous articles and this feature is
necessary even for a classical real Lagrangian.

1. The Variational Principle

The standard derivation of the Euler-Lagrange field equations implicitly assumes
that the variation in the action I of a given field é¢; may be commuted to, say,
the extreme right. Thus after a functional integration by parts, and neglecting the
surface terms one obtains the field equations,

gﬂ{r} =8, aL{x) ; (1)
il x) ﬂqu,_{a'}
where £ is the Lagrangian density and r represents spacetime.

Somewhat surprisingly this form of the field equations survives in field theory,
that is after second quantization. The reason that this is not a priori obvious is
because when the fields become operators and noncommutating, the translation of
fip; is not necessarily without consequences. Indeed, we should be obliged to define
with attention the significance of the functional derivatives in Eq. (1). This fact
does not in practice produce difficulties as a consequence of:

{a) For bilinear terms (e.g. mass or kinetic energy) the variations naturally lie on
the right (for 8;) or the left (for 867 );

(b) In any case some authors implicitly assume that, when &¢; is bosonic it com-
mutes with everything;

() When ¢, is a fermion field d¢, is assumed to commute at least with any bosonic
fields and with ¢; itself. This last fact (hy no means obvious) leads to a natural
extraction of 8¢, to the right or the left.
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More specifically, within normal ordered products there always exists a natural
direction of extract given the fact that all creation operators (bosonic or fermionic)
commute [anticommute) amongst themselves,

It is however an assumption that the variation in ¢,, i.e. é¢; has the same
characteristic commutation relations of ¢;. These implicit assumptions are brought
to the fore when one considers quaternionic fields both in classical and quantum field
theory. For it is unthinkable that a quaternionic #¢; created within a Lagrangian
density can, in general, be commuted without consequence to the left or the right.
The example of the free Dirac-Lagrangian treated in this letter will demonstrate
some of the difficulties.

Before entering explicitly into the world of quaternionic fields we wish to discuss
the limitations, if any, applied to é¢; in standard (complex) quantum mechanics.
Our objective, which will have an application in this letter, is to demonstrate that
the properties of 6¢y; may be substantially different from those of ¢;. For example,
we shall observe first that even if the classical Lagrangian density is necessarily real,
&¢v; or more correctly 4C may be formally complex (or even quaternionic) since at
the end 6L = 0 in order to obtain the Euler-Lagrange equations. It is true that
in general we may limit our attention to a subset of 6¢; (6L) without losing the
Euler-Lagrange equations, so that our observation seems academic, but it is not
without consequences with quaternions as we shall see.

Consider one of the simplest of all particle Lagrangian densities, that for two
classical scalar fields (¢;-real i = 1,2) without interactions:

2

E %ﬁm.a“m = %mf + %&mﬁ"m - -"—;ia':?
= 3,080 - m?eT o, (2)
where .
o= E(fﬁ*: + i)
and

1
S oy
¢ = ﬁfau iga).
The well-known corresponding Euler-Lagrange equations are:
(3,8 +m*)p, =0, i=12, (3)

or, equivalently,
(0,0 + m*)o=0. (4)
Now to obtain “directly” the last equation one performs the very particular variation
of ¢ (o)
¢ — ¢,
¢t — ¢t + GgT,



The Quaternionic Dirac Legrangian 359

i.e. in order to obtain the corresponding Euler-Lagrangian equation one treats o
and ¢t as independent fields. In second quantization these fields indeed contain
independent creation and annihilation operators corresponding to positively and
negatively charged particles.® To satisfy Eq. (3) we must necessarily hawve,

by + b =0 (6}

and this means that the variafions in the originally real ¢, fields are complex (if
#ah is real, then ddo is pure imaginary ete.).

Of course we could obtain the equivalent result from variations separately of ¢y
and ¢o, e.g. varying ¢y (with ¢s constant)

O — @+ 8y, 7
& — o + by f
vielding, after a double integration by parts
(B.0" +m?*)(d+oT) =0 (8)

and the corresponding result for ¢, Thus while not obligatory we can in this latter
approach consider only real #;. However, there is a subtle difference in the two
approaches, which readily passes unobserved. In the case when only &, or ¢ is
varied the d¢; appears both to the left and to the right. Ouly if ¢, commutes with
¢; are the two methods equivalent.

The point of these observations is that it is possible to impose diverse conditions
on the Lagrangian density, on the fields, and on their variations. This is ignored in
standard quantum mechanics but is important for what follows.

2, The Two-Component Dirac Equation

The adoption of quaternions as the base number system in quantum mechanics
allows one to define a quaternionic Dirac equation' in which the wave function is
characterized by having only two components (consequently the Schriwinger-Pauli
equation applies 1o a one-component wave function]. This follows from the fact that
the Dirac algebra upon the reals (but not upon the complex) has a two-dimensional
irreducible representation with quaternions. The standard 4 »x 4 complex gamma
matrices are in fact reducible. This structure is consistent if the momentum operator
P is defined by

P = 0%i (9)

where a barred operator Alb acts upon a general wave function 1 hy
(A|b)y = Ay, (10]

*Actually the “electric” charge ¢ of the felds depends upon whether the global gauge group is to
b made local or not. This fact is a choice noet determined by the free Lagrangian,
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In general A will be a matrix and b a complex C(1,7) number, where i is one of the
imaginary (i, j, k) units of a quaternion:

g = ag + a1i + azj + azk, (11)

with
P=f=k=-1,
ij=—jJi=k {cyclic) ,
ag,1,23 ER.

The gquaternionic conjugation is defined by

g7 =ag— @i —azj —agk. (12)

The Dirac equation then reads in covariant form
VB i —myp =0 (13)

with a possible choice of the 4,
e 0 il 9
el g W L ek W
0 1 0 1
T2 =1 1 ﬂ ] Tz = ﬁ'— 1 0 .

This equation has four plane wave (o ™' ) solutions which correspond to those
of the standard Dirac equation if one adopts the complex scalar product (complex
geometry?)

(14)

(Wlo)e = 5(¥l6) - 5(WIoN (15)

where {1'|¢) is the quaternionic scalar product,
(wio) = [ v*odr (16)

so that the four plane wave solutions are (complex) orthogonal. Actually the need
of this scalar product is anticipated by our choice of p* which is not hermitian
on a quaternionic geometry. The complex scalar product was first introduced in
the definition of tensor products in quaternionic quantum mechanics,? and appears
essential for the “translation” of complex quantum mechanics to a gquaternionic
version.*

Our main objective in this work is to derive the Dirac-Lagrangian (density)
which yields Eq. (13), and this will be done in the next section. We conclude this
section with some notes and comments upon this use of quaternions in quantum
mechanics.



The Quaternionic Dirae Lagrangian 361

(a) The objective of reproducing almost all standard results in quantum mechanics
is achieved. This objective is less ambitious than the development of generalized
quantum dynamics by Adler and coworkers.®

{b) There are differences within the bosonic sector. For example there is a dou-
bling of solutions in the Klein-Gordon and Maxwell equations. This leads to
anomalous solutions so-called because it was at first believed that they violated
four-momentum conservation. In Ref. 6 the conservation of four-momentum for
these anomalous particles was demonstrated. Furthermore it has been shown
that, unlike the situation in complex QM, the guaternionic version of the Duffin
Kemmer (DK) equation is not equivalent to the Klein—Gordon (KG) (for spin-0)
and Proca (for spin-1) equations.

(¢) There exist however projected equations with only the standard number of solu-
tions. The quaternionic version of the DI equation is an example of this and can
be simply identified with the complex projected (“modified”) KG equation™®

1— i
2

(8,.0" + m*)p = 0.

(d) It is possible to invent new quaternionic equations equivalent to pairs of com-
plex equations in the same way as the Schridinger equation can be rewritten
as a pair of real equations. In nonrelativistic QM one can introduce {as Adler
has done”) an effective potential which leads to the elimination of the guater-
nionic part of the wave function {the intrinsically quaternionic part of the wave
function has no running wave solutions! Adler'®). Nevertheless the “effec-
tive” complex Schrédinger equation shows characteristic quaternionic effects, in
particular a T-violation arising from the underlying quaternionic dynamics.%1?
New gquaternionic equations nof translatable into corresponding complex
equations also occur whenever 1|7 and/or 1|k factors appear explicitly in the
equations.

(e} There exists a not vet completely investigated generalization of group theory
or more precisely of representation theory. In a recent work,!! one of us (SdL)
has highlighted the possibility to extend the quaternionic group theory by using
compler linear quaternions’

g+pli  (g.peH).

This represents only a first step towards a more complete treatment and a
generalization of quaternionic group theory (for example by using real linear
quaternions g + pli +r|j + sk - q.p. 7,8 € H).

Finally, we are always intrigned by the fact that had Schridinger considered
quaternionic solutions to his equation, he would have found two {(within a complex
geomelry) and probably discovered the existence of spin.
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3. The Dirac—Lagrangian

Let ns consider, as a first hypothesis, the traditional form for the Dirac-Lagrangian
density:

b= %[ﬁ"w-"{ﬂaew':} = (8P 9] — mapy (17)

as given for example by Itzykson and Zuber.'? The position of the imaginary unit is
purely conventional in (17) but with a guaternionic number field we must recognize
that the 8, operator is more precisely part of the first quantized momentum operator
d, i and that hence only the hermitian conjugate part of the kinetic term (second
half of the bracket expression in Eq. (17)) appears with the imaginary unit in the
“correct” position. Thus the correct form of the kinetic term reads:

] [FA. -
L= E[r_.'f";.-'“f']ﬂtilé — (@) ). {18)

We observe that this modification of Eq. (17) is also justified by the simple require-
ment that £ be hermitian. We could of course multiply Eq. (18) by the “hermitian”
i which inverts the order of the imaginary unit, but by integrating by parts this
may be reformulated as in Eq. (18). Note that we cannot change the sign of C
without changing the sign of the Hamiltonian H.

The requirement of hermiticity however says nothing about the Dirac mass term
in Eq. {17). It is here that appeal to the variational principle must be made. A
variation &0 in ¢ from Eq. (18) cannot be brought to the extreme right because of
the imaginary unit in the first half of the expression. The only consistent procedure
is to generalize the variational rule that says that ¢ and ¢ must be varied indepen-
dently. We thus apply independent variations to o (§1%) and o (&(¢)). Similarly
for &1 and &(i). Now to obtain the desired Dirac equation for ¥+ and its adjoint
equation for 1 we are obliged to modify the mass term into

-1

Lm =~ !:;i[lﬁ'-' — i) . (19)
The final result for £ is
_ Lenan o ngec s SR 5
.ED = E{h: ¥ E}FI U = “:d:;r'{!}":l' 'E_I] N 72_.[1!!;_, A ?!l‘li.!'-";l : [‘...-ﬂ}

Considering this last equation we observe that it is nothing other than the complex

projection of equation (17)

1=l

TR

Indeed, while £ in Eq. (17) is quaternionic and with the modification of Cp in

Eq. (18) hermitian, the form given in Eq. (20) is purely complex and hermitian.
This observation is even more subtle with classical fields for now £ defined by

Filte il (21)

L= E}{ - mt_.!'_'a::: [22:‘
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is both hermitian and real. Thus it may be objected that the complex projection in
Eq. (21) is superfluous. For £ itself this is true but for guaternionic variations in the
fields & ete. a difference exists. The variation 4L of Eq. (22) is in general quater-
nionic while, because of Eq. (21), the variation 4L p is always complex. Furthermore
Eq. (22) would not vield the correct field equation through the variational principle
unless we limit &1 to complex variations notwithstanding the quaternionic nature
of the fields. We consider this latter option unjustified and thus select for the formal
structure of £ that of Eq. (20).

We note that as described in Sec. 1, one should as a rule define the numerical
basis of the fields and separately of the variations. For classical fields we have the
case of real fields with complex variations (charged scalar fields) and in our studies
the possibility of quaternionic fields but with only complex variations (the second
option described above).

Furthermore one should specify the numerical nature of both £ and 4L, For
example with our choice given by Eq. (20) we have:

W, P, guaternionic fields;

upr, 8(wi), b, &(ig) quaternionc variations;

Lp, hermitian, complex projected Lagrangian;
0Lp, complex but generally nonhermitian variation.

4. The Invariance Groups of Cp

Having obtained £p in the previous section we may ask which if any group (global)
leaves this Lagrangian invariant. Remembering that the single particle fields are
one-component guaternionic functions, the most natural transformation is,

L (23)
P — Q+1.L'-‘+f+",fﬂ :

Now the quaternionic nature of the +* matrices limits f, and for arbitrary ¢ (since
we assume no knowledge at this stage of the field equations®) this leads to the
conclusion that f must be real and commute with each +*. On the other hand the
complex projection of £p permits g to be complex (it can then be “extracted” to
the right and then commuted through £p). Furthermore for invariance,

getfft =oPf =1. (24)

We find with our representation for +* that f is proportional to the unit matrix, and
thus being real its magnitude may be completely absorbed within g, or equivalently

Biwe recall the well-known fact that £ becomes identically null, if the field equations are applied
to ¢ and .
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f may set by definition to 1. Whence, the only invariance group is defined by

b=,

a5
g € C(1,i). (25)

For Lie groups this implies that g is a member of U(1, ¢) the compler unitary group.

Remembering that the Glashow group'® for the Weinberg-Salam theory!?
is SU(2,¢) x U{1,c) we observe that this U(1, c) group may be identified with ours
and that our field must necessarily be a singlet (scalar) under SU{2,¢). Sinee
represents a single fermion spin-3 field (the 4 are 2 x 2 quaternionic matrices) it
is not surprising, and indeed necessary that it represents a singlet under SU{2, ).

The interesting feature is what happens if we select a reducible 4 x 4 complex
sot of v* matrices. Now the number of the fermionic particles is two. For example
the leptons of the first family [electronic neutrin-r,, electron-¢) can be precisely
rewritten as follows®:

v, + je,

where 1, and e represent standard (complex) fields. Nevertheless, the existence of
a complex SU(2,¢) group acting on v from the left seems excluded. On the other
hand, as we have described in detail elsewhere'® the group SU(2,¢) is isomorphic
iat the generator alpebra level) with U(1,q), the unitary quaternionic group with
elements

e+ jh+ ke
g~e

with
a,bce R,

which is the simplest of all unitary quaternionic groups.

Now it is still not obvious that this group is an invariance group of £ where
the superscript “(2)” indicates the presence of two fermionic fields (with the same
mass) since the +* matrices are complex, not real. However, it is readily verified
that an equivalent set of 4% matrices (with the same commutation relations) is
given if the i-factors in the 4 x 4 compler ~* are substituted by 1li. Whence
the imaginary units appear to the right of ¢* and the elements given by Eq. (25)
commute with v+ and hence cancel within £p. One may also derive the similarity
transformation which performs the above change of representation and thus derive
the corresponding representation? of U(1,q) for our original (conventional) choice
of complex +*.

“An alternative but equivalent cholce (using 4 = 4 guelernionic malrices) 15 given by

e
¢
with 14 and ¢ two-component quatermionic fields.

dWe ohserve that while our U{1,q) group acts from the left on 1 and U{1,¢) acts on the right,
this has nothing te do with the helicity indices L and & of the Weinberg-Salam theory.
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We note that our U(1l, q) group consists of quaternionic “phase” factors multi-
plied by the unit 4 x 4 matrix.® We may ask if there are other 4 x 4 (essentially
real) matrices which commute with the four-dimensional Dirac gamma matrices.
However there is no other matrix that commutes with all four gamma matrices so
the maximum global invariance group is indeed U(1, ¢)|U(1, ¢) to be identified with
the (complex) Glashow group SU{2) = U[1).

5. Conclusions

We begin our conclusions from the end results of the last section. We wish to
recall that not every global invariance group is automatically gauged into the corre-
sponding local group in gange theory. For example, the so-called complex bosonic
Lagrangian may a priori (before eventual gauging) represent two neutral equal mass
particles or a complex pair of oppositely charged particle-antiparticle. Thus even
in the case of a Dirac-Lagrangian with complex (4 x 4) Dirac matrices we do not
have necessarily a doublet under U(1,¢). So that we have not derived the gange
group of the Salam-Weinberg model. The pair may consist of two singlets, However
it was not even obvious a priori that a global invariance group U(1, ¢) isomorphic
at the generator level with SU(2, ¢) exists. We have thus shoun that even with
quaternionic fields, it is possible to impose a Glashow group invariance and that
this occurs by merely adopting reducible gamma matrices.

Our viewpoint is that SU{2, ¢) invariance in particle physics is really indication
of invariance under the simplest of all unitary quaternionic groups. We also have
a complex invariance group U(1,¢) but this is justified by the complex projection
of the Lagrangian density. This complex projection was not imposed to obtain the
(1, ¢) factor group but in order to obtain the desired quaternionic Dirac equation.
The fact that this group exists in nature as the weak-hypercharge group is an
undoubted success of this model. Further, the automatic appearance of this complex
unitary group is expected whatever the left acting (quaternionic) unitary group is.
This strongly suggests that in the search for grand unified theories one should
consider preferentially a product group of the type G|U(1, ¢) with & a quaternionic
unitary group, conditioned to commute with the Dirac gamma matrices in the
chosen representation.

Let us recall the other results of this letter. We have discussed the application of
the variational principle to Lagrangians with possibly quaternionic fields. We noted
en passant that even within standard field theory the limitation of variations in the
fields to complex variations is an implicit assumption, since the variations them-
selves have no physical content. Thus quaternionic variations have always erxisted
even if not traditionally applied. Of course this observation can be generalized to
even more exotic variations, e.g. supersymmetric variations containing Grassmann
terms.

“An additional right acting complex phase [/(1.c) is also allowed. but this is equivalent to that
already described in the previous section.
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Finally, whereas in this work the need of a complex projection of the Diarc
Lagrangian density is demonstrated, for the scalar field Lagrangian it is an
assumption with interesting consequences.” We suggest that, for reasons which still
elude us, all terms in the quaternionic Lagrangians including interaction terms must
be complex projected.
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