Exercícios sobre Matriz Inversa

MA141 - Geometria Analítica

26 de março de 2014

Exercício 1 Dadas as matrizes a seguir, calcule suas respectivas inversas.

a)

\[
A = \begin{pmatrix} 1 & 1 & 0 \\ 3 & 1 & 1 \\ 2 & 1 & 1 \end{pmatrix}
\]

b)

\[
B = \begin{pmatrix} 2 & 0 & 1 \\ 1 & 2 & 1 \\ 3 & 2 & 1 \end{pmatrix}
\]

c)

\[
C = \begin{pmatrix} 1 & 2 & 3 \\ 0 & 1 & 0 \\ 3 & 2 & 1 \end{pmatrix}
\]

Resolução

a) Primeiramente, encontraremos o determinante da matriz \(A \):

\[
det A = \begin{vmatrix} 1 & 1 & 0 \\ 3 & 1 & 1 \\ 2 & 1 & 1 \end{vmatrix} = (1 + 2 + 0) - (0 + 1 + 3) = -1
\]

Feito isso, devemos encontrar a matriz adjunta de \(A \). Para tal, encontraremos a matriz dos cofatores de \(A \).

\[
\tilde{a}_{11} = (-1)^2 \cdot \begin{vmatrix} 1 & 1 \\ 1 & 1 \end{vmatrix} = 0, \tilde{a}_{12} = (-1)^3 \cdot \begin{vmatrix} 3 & 1 \\ 2 & 1 \end{vmatrix} = -1
\]

\[
\tilde{a}_{13} = (-1)^4 \cdot \begin{vmatrix} 1 & 2 \\ 1 & 1 \end{vmatrix} = 1, \tilde{a}_{21} = (-1)^3 \cdot \begin{vmatrix} 1 & 0 \\ 1 & 1 \end{vmatrix} = -1
\]

\[
\tilde{a}_{22} = (-1)^4 \cdot \begin{vmatrix} 1 & 0 \\ 2 & 1 \end{vmatrix} = 1, \tilde{a}_{23} = (-1)^5 \cdot \begin{vmatrix} 1 & 1 \\ 2 & 1 \end{vmatrix} = 1
\]

\[
\tilde{a}_{31} = (-1)^4 \cdot \begin{vmatrix} 1 & 0 \\ 1 & 1 \end{vmatrix} = 1, \tilde{a}_{32} = (-1)^5 \cdot \begin{vmatrix} 1 & 1 \\ 3 & 1 \end{vmatrix} = -1
\]

\[
\tilde{a}_{33} = (-1)^6 \cdot \begin{vmatrix} 1 & 1 \\ 1 & 1 \end{vmatrix} = -2
\]
Assim, a matriz dos cofatores será

\[\tilde{A} = \begin{pmatrix} 0 & -1 & 1 \\ -1 & 1 & 1 \\ 1 & -1 & -2 \end{pmatrix} \]

A matriz adjunta de \(A \) é a transposta da matriz dos cofatores, logo

\[A_{adj} = \begin{pmatrix} 0 & -1 & 1 \\ -1 & 1 & -1 \\ 1 & 1 & -2 \end{pmatrix} \]

Como \(A^{-1} = \frac{A_{adj}}{\det A} \), temos

\[A^{-1} = \begin{pmatrix} 0 & 1 & -1 \\ 1 & -1 & 1 \\ -1 & -1 & 2 \end{pmatrix} \]

b) Primeiramente, encontraremos o determinante da matriz \(B \):

\[\det B = \begin{vmatrix} 2 & 0 & 1 \\ 1 & 2 & 1 \\ 3 & 2 & 1 \end{vmatrix} = (4 + 0 + 2) - (6 + 4 + 0) = -4 \]

Feito isso, devemos encontrar a matriz adjunta de \(B \). Para tal, encontraremos a matriz dos cofatores de \(B \).

\[\tilde{b}_{11} = (-1)^2 \cdot \begin{vmatrix} 2 & 1 \\ 2 & 1 \end{vmatrix} = 0, \quad \tilde{b}_{12} = (-1)^3 \cdot \begin{vmatrix} 1 & 1 \\ 3 & 1 \end{vmatrix} = 2 \]

\[\tilde{b}_{13} = (-1)^4 \cdot \begin{vmatrix} 1 & 2 \\ 3 & 2 \end{vmatrix} = -4, \quad \tilde{b}_{21} = (-1)^3 \cdot \begin{vmatrix} 0 & 1 \\ 2 & 1 \end{vmatrix} = 2 \]

\[\tilde{b}_{22} = (-1)^4 \cdot \begin{vmatrix} 2 & 1 \\ 3 & 1 \end{vmatrix} = -1, \quad \tilde{b}_{23} = (-1)^5 \cdot \begin{vmatrix} 2 & 0 \\ 3 & 2 \end{vmatrix} = -4 \]

\[\tilde{b}_{31} = (-1)^4 \cdot \begin{vmatrix} 0 & 1 \\ 2 & 1 \end{vmatrix} = -2, \quad \tilde{b}_{32} = (-1)^5 \cdot \begin{vmatrix} 2 & 1 \\ 1 & 1 \end{vmatrix} = -1 \]

\[\tilde{b}_{33} = (-1)^6 \cdot \begin{vmatrix} 2 & 0 \\ 1 & 2 \end{vmatrix} = 4 \]

Assim, a matriz dos cofatores será

\[\tilde{B} = \begin{pmatrix} 0 & 2 & -4 \\ 2 & -1 & -4 \\ -2 & -1 & 4 \end{pmatrix} \]

A matriz adjunta de \(B \) é a transposta da matriz dos cofatores, logo
$B_{adj} = \begin{pmatrix}
0 & 2 & -2 \\
2 & -1 & -1 \\
-4 & -4 & 4 \\
\end{pmatrix}$

Como $B^{-1} = \frac{B_{adj}}{detB}$, temos

$$B^{-1} = \begin{pmatrix}
0 & -1 & 1 \\
-1 & 4 & -1 \\
1 & 1 & -1 \\
\end{pmatrix}$$

c) Primeiramente, encontraremos o determinante da matriz C:

$$detC = \begin{vmatrix}
1 & 2 & 3 \\
0 & 1 & 0 \\
3 & 2 & 1 \\
\end{vmatrix} = (1 + 0 + 0) - (9 + 0 + 0) = -8$$

Feito isso, devemos encontrar a matriz adjunta de C. Para tal, encontraremos a matriz dos cofatores de C.

$\tilde{c}_{11} = (-1)^2 \begin{vmatrix}
1 & 0 \\
2 & 1 \\
\end{vmatrix} = 1, \tilde{c}_{12} = (-1)^3 \begin{vmatrix}
0 & 0 \\
3 & 1 \\
\end{vmatrix} = 0$

$\tilde{c}_{13} = (-1)^4 \begin{vmatrix}
0 & 1 \\
3 & 2 \\
\end{vmatrix} = -3, \tilde{c}_{21} = (-1)^3 \begin{vmatrix}
2 & 3 \\
2 & 1 \\
\end{vmatrix} = 4$

$\tilde{c}_{22} = (-1)^5 \begin{vmatrix}
1 & 3 \\
3 & 1 \\
\end{vmatrix} = -8, \tilde{c}_{23} = (-1)^5 \begin{vmatrix}
1 & 2 \\
3 & 2 \\
\end{vmatrix} = 4$

$\tilde{c}_{31} = (-1)^4 \begin{vmatrix}
2 & 3 \\
1 & 0 \\
\end{vmatrix} = -3, \tilde{c}_{32} = (-1)^5 \begin{vmatrix}
1 & 3 \\
0 & 0 \\
\end{vmatrix} = 0$

$\tilde{c}_{33} = (-1)^6 \begin{vmatrix}
1 & 2 \\
0 & 1 \\
\end{vmatrix} = 1$

Assim, a matriz dos cofatores será

$$\tilde{C} = \begin{pmatrix}
1 & 0 & -3 \\
4 & -8 & 4 \\
-3 & 0 & 1 \\
\end{pmatrix}$$

A matriz adjunta de C é a transposta da matriz dos cofatores, logo

$$C_{adj} = \begin{pmatrix}
1 & 4 & -3 \\
0 & -8 & 0 \\
-3 & 4 & 1 \\
\end{pmatrix}$$

Como $C^{-1} = \frac{C_{adj}}{detC}$, temos
\[C^{-1} = \begin{pmatrix} \frac{-1}{\gamma} & \frac{-1}{\gamma} & \frac{3}{\gamma} \\ 0 & 1 & 0 \\ \frac{2}{\gamma} & \frac{-1}{\gamma} & \frac{-1}{\gamma} \end{pmatrix} \]