Viviana Jorgelina del Barco


Professora Doutora at

Instituto de Matemática, Estatística e Computação Científica

Universidade Estadual de Campinas

Rua Sérgio Buarque de Holanda, 651

13083-859 Campinas - São Paulo


Tél. : +55 (19) 3521-5921


Research interests.


My research focuses mainly on the study of geometric structures on differential manifolds which are invariant under Lie group actions.

Interesting webinars.


--      AmSur/AmSul Geometry Webinar Webpage

--      Virtual seminar on geometry with symmetries Webpage

--      Seminario (Web) de Geometría Diferencial You tube channel

--      Séminaire Géométrie Topologie Dynamique Webpage

--      Geometry & TACoS Montly sessions Webpage

Further Positions.


         Since June 2015: Assistant Researcher at CONICET, Argentina. Personal profile. (Currently on leave)

         Since Mars 2014: Adjoint Professor at Math. Department, FCEIA Universidad Nacional de Rosario, Argentina (Currently on leave).

         Oct. 2019 -- Nov. 2020, ATER (temporary teaching assistant position) at the Laboratoire de Mathématiques, Université Paris-Saclay, France.

         May 2016 - April 2019 : Postdoctoral researcher at IMECC (Brazil) within the Lie Theory research group. Funded by FAPESP

         Dec. 2017 - Nov. 2018 : Postdoctoral internship abroad, visiting LMO (France). Funded by FAPESP

         April 2012 - March 2014 : Postdoctoral researcher at FCEIA (Argentina) within the Differential Geometry and Lie Theory research group. Funded by CONICET

Publications. (MR Id) (Google scholar)


17.      Higher degree Killing forms on 2-step nilmanifolds (with A. Moroianu) J. Algebra 563 (2020) 251-273. [link to the article] [arxiv]

16.      Diagram involutions and homogeneous Ricci-flat metrics (2019) (with D. Conti and F. A. Rossi) Manuscripta Math. [link to the article] [arxiv]

15.      Symmetric Killing tensors on nilmanifolds (with A. Moroianu) Bull. Soc. Math. France 148.3 (2020), pp. 411-438. [link to the article] [arxiv]

14.      Killing forms on 2-step nilmanifolds (with A. Moroianu) J. Geom. Anal. 31, pp. 863-887 (2021) [link to the article] [arxiv]

13.      Symplectic structures on free nilpotent Lie algebras. Proc. Japan Acad. Ser. A Math. Sci. 95.8 (2019), pp. 88-90. [link to the article] [arxiv]

12.      De Rham 2-cohomology of real flag manifolds (with L. San Martin) SIGMA 15 (2019), 051, 23 pages. [link to the article] [arxiv]

11.      On generalized G2-structures and T-duality (with L. Grama) J. Geom. Phys. 132 (2018) 109-113. [link to the article] [arxiv]

10.      T-duality on nilmanifolds (with L. Grama and L. Soriani) J. High Energ. Phys. (2018) 2018: 153. [link to the article] [arxiv]

9.      Invariant almost complex structures on real flag manifolds (with A. Cruz de Freitas and L. San Martin) Ann. Mat. Pura Appl. 197 (6) (2018) 1821-1844. [link to the article] [arxiv]

8.      Nilradicals of parabolic subalgebras admitting symplectic structures (with L. Cagliero) Differ. Geom. Appl. 46 (2016) 1-13. [link to the article] [arXiv]

7.      Homogeneous geodesics in pseudo-Riemannian nilmanifolds Adv. Geom. 16 (2) (2016) 175-188. [link to the article] [arxiv]

6.      On a spectral sequence for the cohomology of a nilpotent Lie algebras J. Algebra Appl. 14 (1) (2015) Id: 1450078, 17pages [link to the article] [arxiv]

5.      Isometric actions on pseudo-Riemannian nilmanifolds (with G. Ovando) Ann. Glob. Anal. Geom. 45 (2) (2014) 95-110. [link to the article] [arxiv]

4.      On the isometry groups of invariant Lorentzian metrics on the Heisenberg group (with G. Ovando and F. Vittone) Mediterr. J. Math. 11 (1) (2014) 137-153. [link to the article] (previous version [arxiv])

3.      Lorentzian compact manifolds: isometries and geodesics (with G. Ovando and F. Vittone) J. Geom. Phys 78 (2014) 48-58. [link to the article][arxiv]

2.      Symplectic structures on nilmanifolds: an obstruction for its existence. J. Lie Theory 24 (3) (2014) 889-908. [link to the article] [arxiv]

1.      Free nilpotent Lie algebras admitting ad-invariant metrics (with G. Ovando) J. Algebra 366 (2012) 205-216.[link to the article] [arxiv]



18.      Conformal Killing symmetric tensors on Lie groups (with A. Moroianu) [arxiv]

19.      Conformal Killing forms on 2-step nilpotent Riemannian Lie groups (with A. Moroianu) [arxiv]

20.      Purely coclosed G2-structures on 2-step nilpotent Lie groups (with A. Moroianu and A. Raffero) [arxiv]

21.      Lie algebras admitting symmetric, invariant and nondegenerate bilinear forms (2016) [arxiv]


         English [CV]


         An aproximation to the study of nilmanifolds.Cohomology and its applications. May 2012 [.pdf] (in Spanish)

         Advisor: Dra. Isabel Dotti

         Second Advisor: Dra. Gabriela Ovando








         Unión Matemática Argentina

         Encuentro de Geometría Rosario 2012

Last update: February 2021.