
Package ‘maxLik’
March 5, 2012

Version 1.1-2

Date 2012/03/04

Title Maximum Likelihood Estimation

Author Ott Toomet <otoomet@gmail.com>, Arne Henningsen
<arne.henningsen@googlemail.com>, with contributions from
Spencer Graves and Yves Croissant

Maintainer Arne Henningsen <arne.henningsen@googlemail.com>

Depends R (>= 2.4.0), miscTools (>= 0.6-8)

Imports sandwich

Description Tools for Maximum Likelihood Estimation

License GPL (>= 2)

URL http://www.maxLik.org

Repository CRAN

Date/Publication 2012-03-05 07:20:12

R topics documented:
activePar . 2
AIC.maxLik . 3
bread.maxLik . 3
compareDerivatives . 4
condiNumber . 6
estfun.maxLik . 8
fnSubset . 9
hessian . 11
logLik.maxLik . 12
maxBFGS . 13
maximType . 16

1

http://www.maxLik.org

2 activePar

maxLik . 17
maxNR . 19
nIter . 24
nObs.maxLik . 26
nParam.maxim . 27
numericGradient . 28
returnCode . 29
returnMessage . 30
summary.maxim . 31
summary.maxLik . 33
sumt . 34
vcov.maxLik . 36

Index 38

activePar free parameters under maximisation

Description

Return a logical vector, indicating which parameters were free under maximisation, as opposed to
the fixed parameters, treated as constants.

Usage

activePar(x, ...)
Default S3 method:
activePar(x, ...)

Arguments

x object, created by a maximisation routine, or derived from a maximisation ob-
ject. Currently only maxNR and it’s derivations support activePar

... further arguments for methods

Details

Several optimisation routines allow the user to fix some parameter values (or do it automatically
in some cases). For gradient or Hessian based inference one has to know which parameters carry
optimisation-related information.

Value

A logical vector, indicating whether the parameters were free to change during optimisation algo-
rithm.

Author(s)

Ott Toomet, <otoomet@econ.au.dk>

AIC.maxLik 3

See Also

maxNR, nObs

Examples

a simple two-dimensional exponential hat
f <- function(a) exp(-a[1]^2 - a[2]^2)
#
maximize wrt. both parameters
free <- maxNR(f, start=1:2)
summary(free) # results should be close to (0,0)
activePar(free)
allow only the second parameter to vary
cons <- maxNR(f, start=1:2, activePar=c(FALSE,TRUE))
summary(cons) # result should be around (1,0)
activePar(cons)

AIC.maxLik Methods for the various standard functions

Description

These are methods for the maxLik related objects. See the documentation for the corresponding
generic functions

bread.maxLik Bread for Sandwich Estimator

Description

Extracting an estimator for the ‘bread’ of the sandwich estimator, see bread.

Usage

S3 method for class ’maxLik’
bread(x, ...)

Arguments

x an object of class maxLik.

... further arguments (currently ignored).

Value

Matrix, the inverse of the expectation of the second derivative (Hessian matrix) of the log-likelihood
function with respect to the parameters, usually equal to the variance covariance matrix of the
parameters times the number of observations.

4 compareDerivatives

Warnings

The sandwich package must be loaded before this method can be used.

This method works only if maxLik was called with argument grad equal to a gradient function or
(if no gradient function is specified) argument logLik equal to a log-likelihood function that return
the gradients or log-likelihood values, respectively, for each observation.

Author(s)

Arne Henningsen

See Also

bread, maxLik.

Examples

ML estimation of exponential duration model:
t <- rexp(100, 2)
loglik <- function(theta) log(theta) - theta*t

Estimate with numeric gradient and hessian
a <- maxLik(loglik, start=1)

Extract the "bread"
library(sandwich)
bread(a)

all.equal(bread(a), vcov(a) * nObs(a))

compareDerivatives function to compare analytic and numeric derivatives

Description

This function compares analytic and numerical derivative and prints a few diagnostics. It is intended
for testing pre-programmed derivative routines for maximisation algorithms.

Usage

compareDerivatives(f, grad, hess=NULL, t0, eps=1e-6, print=TRUE, ...)

Arguments

f function to be differentiated. The parameter (vector) of interest must be the first
argument. The function may return a vector.

compareDerivatives 5

grad analytic gradient. This may be either a function, returning the analytic gradient,
or a numeric vector, the pre-computed gradient. The function must use the same
set of parameters as f. If f is a vector-valued function, grad must return/be a
matrix where the number of rows equals the number of components of f, and
the number of columns must equal to the number of components in t0.

hess function returning the analytic hessian. If present, hessian matrices are com-
pared too. Only appropriate for scalar-valued functions.

t0 parameter vector indicating the point at which the derivatives are compared. The
derivative is taken with respect to this vector.

eps numeric. Step size for numeric differentiation. Central derivative is used.

print logical: TRUE to print a summary, FALSE to return the comparison only (invis-
ibly).

... further arguments to f, grad and hess.

Details

For every component of f, the parameter value, analytic and numeric derivative and their relative
difference

rel.diff = (analytic - numeric)/(0.5*(analytic+numeric))

are printed; if analytic = 0 = numeric, we define rel.diff = 0. If analytic derivatives are correct and
the function is sufficiently smooth, expect the relative differences to be less than 1e-7.

Value

A list with the following components:

t0 the input argument t0

f.t0 f(t0)

compareGrad a list with components analytic = grad(t0), nmeric = numericGradient(f, t0),
and their rel.diff.

maxRelDiffGrad max(abs(rel.diff))

If hess is also provided, the following optional components are also present:

compareHessian a list with components analytic = hess(t0), numeric = numericGradient(grad,
t0), and their rel.diff.

maxRelDiffHess max(abs(rel.diff)) for the Hessian

Author(s)

Ott Toomet <otoomet@ut.ee> and Spencer Graves

See Also

numericGradient deriv

6 condiNumber

Examples

A simple example with sin(x)’ = cos(x)
f <- function(x)c(sin=sin(x))
Dsin <- compareDerivatives(f, cos, t0=c(angle=1))
D2sin <- compareDerivatives(f, cos, function(x)-sin(x), t0=1)

##
Example of log-likelihood of normal density. Two-parameter
function.
##
x <- rnorm(100, 1, 2) # generate rnorm x
l <- function(b) sum(log(dnorm((x-b[1])/b[2])/b[2]))

b[1] = mu, b[2] = sigma
gradl <- function(b) {

c(mu=sum(x - b[1])/b[2]^2,
sigma=sum((x - b[1])^2/b[2]^3 - 1/b[2]))

}
gradl. <- compareDerivatives(l, gradl, t0=c(mu=1,sigma=2))

##
An example with f returning a vector, t0 = a scalar
##
trig <- function(x)c(sin=sin(x), cos=cos(x))
Dtrig <- function(x)c(sin=cos(x), cos=-sin(x))
Dtrig. <- compareDerivatives(trig, Dtrig, t0=1)

D2trig <- function(x)-trig(x)
D2trig. <- compareDerivatives(trig, Dtrig, D2trig, t0=1)

condiNumber Print matrix condition numbers column-by-column

Description

This function prints the condition number of a matrix while adding columns one-by-one. This is
useful for testing multicollinearity and other numerical problems. This is a generic function with
default method and method for maxLik objects.

Usage

condiNumber(x, ...)
Default S3 method:
condiNumber(x, exact = FALSE, norm = FALSE,
print.level=1, ...)
S3 method for class ’maxLik’
condiNumber(x, ...)

condiNumber 7

Arguments

x numeric matrix, condition numbers of which are to be printed

exact logical, should condition numbers be exact or approximations (see link{kappa})

norm logical, whether the columns should be normalised to have unit norm

print.level numeric, positive value will output the numbers during the calculations. Useful
for interactive work.

... other arguments to different methods

Details

Statistical model often fail because of strong correlation between explanatory variables in linear
index (multicollinearity) or because the evaluated maximum of a non-linear model is virtually flat.
In both cases, the (near) singularity of the related matrices may give us a hint, how to improve the
results.

condiNumber allows to inspect the matrices column-by-column and unerstand which variable leads
to a huge jump in the condition number. If the single column does not immediately tell what is the
problem, one may try to estimate this column by OLS using the previous columns as explanatory
variables. The columns, which explain virtually all the variation, should have extremely high t-
values.

Value

Invisible vector of condition numbers by column.

Author(s)

Ott Toomet <otoomet@ut.ee>

References

W. Greene, Advanced Econometrics, p ...

See Also

kappa

Examples

set.seed(0)
generate a simple multicollinear dataset
x1 <- runif(100)
x2 <- runif(100)
x3 <- x1 + x2 + 0.000001*runif(100) # this is virtually equal to x1 + x2
x4 <- runif(100)
y <- x1 + x2 + x3 + x4 + rnorm(100)
m <- lm(y ~ -1 + x1 + x2 + x3 + x4)
print(summary(m)) # note the low t-values while R^2 is 0.88.

This hints multicollinearity
condiNumber(model.matrix(m)) # this _prints_ condition numbers.

8 estfun.maxLik

note the values ’explode’ with x3
we may test the results further:
print(summary(lm(x3 ~ -1 + x1 + x2))) # Note the high t-values and R^2

estfun.maxLik Extract Gradients Evaluated at each Observation

Description

Extract the gradients of the log-likelihood function evaluated at each observation (‘Empirical Esti-
mating Function’, see estfun).

Usage

S3 method for class ’maxLik’
estfun(x, ...)

Arguments

x an object of class maxLik.

... further arguments (currently ignored).

Value

Matrix of gradients of the log-likelihood function at the estimated parameter value evaluated at each
observation

Warnings

The sandwich package must be loaded before this method can be used.

This method works only if maxLik was called with argument grad equal to a gradient function or
(if no gradient function is specified) argument logLik equal to a log-likelihood function that return
the gradients or log-likelihood values, respectively, for each observation.

Author(s)

Arne Henningsen

See Also

estfun, maxLik.

fnSubset 9

Examples

ML estimation of exponential duration model:
t <- rexp(100, 2)
loglik <- function(theta) log(theta) - theta*t

Estimate with numeric gradient and hessian
a <- maxLik(loglik, start=1)

Extract the gradients evaluated at each observation
library(sandwich)
estfun(a)

Estimate with analytic gradient
gradlik <- function(theta) 1/theta - t
b <- maxLik(loglik, gradlik, start=1)
estfun(b)
all.equal(c(estfun(b)), gradlik(coef(b)))

fnSubset Call fnFull with variable and fixed parameters

Description

Combine variable parameters in x with xFixed and pass to fnFull. Useful for optimizing over a
subset of parameters without writing a separate function. Values are combined by name if available.
Otherwise, xFull is constructed by position (the default).

Usage

fnSubset(x, fnFull, xFixed, xFull=c(x, xFixed), ...)

Arguments

x Variable parameters to be passed to fnFull.

fnFull Function whose first argument has length = length(xFull).

xFixed Parameters to be combined with x to construct the first argument for a call to
fnFull.

xFull Prototype initial argument for fnFull.

... Optional arguments passed to fnFull.

Details

1. Confirm that length(x) + length(xFixed) = length(xFull)

2. If xFull has names, match at least xFixed by name. Else xFull = c(x, xFixes), the default.

3. fnFull(xFull, ...)

10 fnSubset

Value

value returned by fnFull

Author(s)

Spencer Graves

See Also

optim dlmMLE maxLik maxNR

Examples

##
Test with ’optim’
##
fn <- function(x, x0)(x[2]-2*x[1]-x0)^2
fullEst <- optim(1:2, fn, x0=3)

Fix the last component
est4 <- optim(1, fnSubset, x0=3, fnFull=fn, xFixed=4)

Fix the first component
fnSubset(1, fn, c(a=4), c(a=1, b=2), x0=3)
After substitution: xFull = c(a=4, b=1),
so fn = (1-2*4-3)^2 = (-10)^2 = 100

est4. <- optim(1, fnSubset, x0=3, fnFull=fn, xFixed=c(a=4),
xFull=c(a=1, b=2))

At optim: xFull=c(a=4, b=10.9),
so fn = (10.9-2*4-3)^2 = (-0.1)^2 = 0.01

##
Test with maxNR
##
fn2max = -fn
fn2max <- function(x, x0, ...)(-(x[2]-2*x[1]-x0)^2)
Need "..." here when called directly from maxNR,
because maxNR will also pass ’constantPar’
Fix the last component
NR4 <- maxNR(fnSubset, start=1, x0=3, fnFull=fn2max, xFixed=4)
Same thing using maxNR(..., activePar)
NR4. <- maxNR(fn2max, start=c(1, 4), x0=3, constantPar=2)

##
Test with maxLik
##
Same as maxNR
max4 <- maxLik(fnSubset, start=1, x0=3, fnFull=fn2max, xFixed=4)
Same thing using constantPar in maxNR, called by maxLik
max4 <- maxLik(fn2max, start=c(1, 4), x0=3, constantPar=2)

hessian 11

hessian Hessian matrix

Description

This function extracts the Hessian of the M-estimator of statistical model. It should be supplied by
the underlying optimisation algorithm, possibly using approximations.

Usage

hessian(x, ...)
Default S3 method:
hessian(x, ...)

Arguments

x a M-estimator based statistical model

... other arguments for methods

Value

A numeric matrix, the Hessian of the model at the estimated parameter values. If the maximum is
flat, the Hessian is singular. In that case you may want to invert only the non-singular part of the
matrix. You may also want to fix certain parameters (see activePar).

Author(s)

Ott Toomet, <otoomet@econ.au.dk>

See Also

maxLik, activePar

Examples

log-likelihood for normal density
a[1] - mean
a[2] - standard deviation
ll <- function(a) sum(-log(a[2]) - (x - a[1])^2/(2*a[2]^2))
x <- rnorm(1000) # sample from standard normal
ml <- maxLik(ll, start=c(1,1))
ignore eventual warnings "NaNs produced in: log(x)"
summary(ml) # result should be close to c(0,1)
hessian(ml) # How the Hessian looks like
sqrt(-solve(hessian(ml))) # Note: standard deviations are on the diagonal
#
Now run the same example while fixing a[2] = 1
mlf <- maxLik(ll, start=c(1,1), activePar=c(TRUE, FALSE))
summary(mlf) # first parameter close to 0, the second exactly 1.0

12 logLik.maxLik

hessian(mlf)
Now look at the Hessian. Note that NA-s are in place of passive
parameters.
now invert only the free parameter part of the Hessian
sqrt(-solve(hessian(mlf)[activePar(mlf), activePar(mlf)]))
gives the standard deviation for the mean

logLik.maxLik Return the log likelihood value

Description

Return the log likelihood value of objects of class maxLik and summary.maxLik.

Usage

S3 method for class ’maxLik’
logLik(object, ...)
S3 method for class ’summary.maxLik’
logLik(object, ...)

Arguments

object object of class maxLik or summary.maxLik, usually a model estimated with
Maximum Likelihood

... additional arguments to methods

Value

A single numeric, log likelihood of the estimated model

Author(s)

Arne Henningsen, Ott Toomet <otoomet@ut.ee>

See Also

maxLik

Examples

ML estimation of exponential duration model:
t <- rexp(100, 2)
loglik <- function(theta) log(theta) - theta*t
gradlik <- function(theta) 1/theta - t
hesslik <- function(theta) -100/theta^2
Estimate with analytic gradient and hessian
a <- maxLik(loglik, gradlik, hesslik, start=1)
print log likelihood value

maxBFGS 13

logLik(a)
print log likelihood value of summary object
b <- summary(a)
logLik(b)

maxBFGS BFGS, conjugate gradient, SANN and Nelder-Mead Maximization

Description

These functions are wrappers for optim where the arguments are compatible with maxNR. Note that
there is a maxNR-based BFGS implementation maxBFGSR.

Usage

maxBFGS(fn, grad = NULL, hess=NULL, start, fixed = NULL,
print.level = 0, iterlim = 200, constraints = NULL,
tol = 1e-08, reltol=tol,
finalHessian=TRUE,
parscale=rep(1, length=length(start)), ...)

maxCG(fn, grad = NULL, hess = NULL, start, fixed = NULL,
print.level = 0, iterlim = 500, constraints = NULL,
tol = 1e-08, reltol=tol,
finalHessian=TRUE,
parscale = rep(1, length = length(start)),
alpha = 1, beta = 0.5, gamma = 2, ...)

maxSANN(fn, grad = NULL, hess = NULL, start, fixed = NULL,
print.level = 0, iterlim = 10000, constraints = NULL,
tol = 1e-08, reltol=tol,
finalHessian=TRUE,
cand = NULL, temp = 10, tmax = 10,
parscale = rep(1, length = length(start)),
random.seed = 123, ...)

maxNM(fn, grad = NULL, hess = NULL, start, fixed = NULL,
print.level = 0, iterlim = 500, constraints = NULL,
tol = 1e-08, reltol=tol,
finalHessian=TRUE,
parscale = rep(1, length = length(start)),
alpha = 1, beta = 0.5, gamma = 2, ...)

Arguments

fn function to be maximised. Must have the parameter vector as the first argument.
In order to use numeric gradient and BHHH method, fn must return vector of

14 maxBFGS

observation-specific likelihood values. Those are summed by maxNR if nec-
essary. If the parameters are out of range, fn should return NA. See details for
constant parameters.

grad gradient of the function. Must have the parameter vector as the first argument.
If NULL, numeric gradient is used (only maxBFGS uses gradient). Gradient may
return a matrix, where columns correspond to the parameters and rows to the
observations (useful for maxBHHH). The columns are summed internally.

hess Hessian of the function. Not used by any of these methods, for compatibility
with maxNR.

start initial values for the parameters.
fixed parameters that should be fixed at their starting values: either a logical vec-

tor of the same length as argument start, a numeric (index) vector indicating
the positions of the fixed parameters, or a vector of character strings indicating
the names of the fixed parameters (parameter names are taken from argument
start).

print.level a larger number prints more working information.
iterlim maximum number of iterations.
constraints either NULL for unconstrained optimization or a list with two components. The

components may be either eqA and eqB for equality-constrained optimization
Aθ + B = 0; or ineqA and ineqB for inequality constraints Aθ + B ≥ 0. The
equality-constrained problem is forwarded to sumt, the inequality-constrained
case to constrOptim2.

tol, reltol the relative convergence tolerance (see optim). tol is for compatibility with
maxNR.

finalHessian how (and if) to calculate the final Hessian. Either FALSE (not calculate), TRUE
(use analytic/numeric Hessian) or "bhhh"/"BHHH" for information equality ap-
proach. The latter approach is only suitable for maximizing log-likelihood func-
tion. It requires the gradient/log-likelihood to be supplied by individual obser-
vations, see maxBHHH for details.

cand a function used in the "SANN" algorithm to generate a new candidate point; if it
is NULL, a default Gaussian Markov kernel is used (see argument gr of optim).

temp controls the ’"SANN"’ method. It is the starting temperature for the cooling
schedule. Defaults to ’10’.

tmax is the number of function evaluations at each temperature for the ’"SANN"’
method. Defaults to ’10’. (see optim)

random.seed an integer used to seed R’s random number generator. This is to ensure replica-
bility when the ‘Simulated Annealing’ method is used. Defaults to 123.

parscale A vector of scaling values for the parameters. Optimization is performed on
’par/parscale’ and these should be comparable in the sense that a unit change in
any element produces about a unit change in the scaled value. (see optim)

alpha, beta, gamma

Scaling parameters for the ’"Nelder-Mead"’ method. ’alpha’ is the reflection
factor (default 1.0), ’beta’ the contraction factor (0.5) and ’gamma’ the expan-
sion factor (2.0). (see optim)

... further arguments for fn and grad.

maxBFGS 15

Details

The ‘state’ (or ‘seed’) of R’s random number generator is saved at the beginning of the maxSANN
function and restored at the end of this function so that this function does not affect the generation
of random numbers although the random seed is set to argument random.seed and the ‘SANN’
algorithm uses random numbers.

Value

Object of class "maxim":

maximum value of fn at maximum.

estimate best set of parameters found.

gradient vector, gradient at parameter value estimate.

gradientObs matrix of gradients at parameter value estimate evaluated at each observation
(only if grad returns a matrix or grad is not specified and fn returns a vector).

hessian value of Hessian at optimum.

code integer. Success code, 0 is success (see optim).

message character string giving any additional information returned by the optimizer, or
NULL.

fixed logical vector indicating which parameters are treated as constants.

iterations two-element integer vector giving the number of calls to fn and gr, respectively.
This excludes those calls needed to compute the Hessian, if requested, and any
calls to fn to compute a finite-difference approximation to the gradient.

type character string "BFGS maximisation".

constraints A list, describing the constrained optimization (NULL if unconstrained). Includes
the following components:

• typetype of constrained optimization
• outer.iterationsnumber of iterations in the constraints step
• barrier.valuevalue of the barrier function

Author(s)

Ott Toomet <otoomet@ut.ee>, Arne Henningsen

See Also

optim, nlm, maxNR, maxBHHH, maxBFGSR.

Examples

Maximum Likelihood estimation of the parameter of Poissonian distribution
n <- rpois(100, 3)
loglik <- function(l) n*log(l) - l - lfactorial(n)
we use numeric gradient
summary(maxBFGS(loglik, start=1))
you would probably prefer mean(n) instead of that ;-)

16 maximType

Note also that maxLik is better suited for Maximum Likelihood
###
Now an example of constrained optimization
###
f <- function(theta) {

x <- theta[1]
y <- theta[2]
exp(-(x^2 + y^2))
Note: you may want to use exp(- theta %*% theta) instead ;-)

}
use constraints: x + y >= 1
A <- matrix(c(1, 1), 1, 2)
B <- -1
res <- maxNM(f, start=c(1,1), constraints=list(ineqA=A, ineqB=B),
print.level=1)
print(summary(res))

maximType Type of Minimization/Maximization

Description

Returns the type of optimisation. It should be returned by the optimisation routine.

Usage

maximType(x)

Arguments

x object of class ’maxim’ or another object which involves numerical optimisa-
tion.

Value

A text message, describing the involved optimisation algorithm

Author(s)

Ott Toomet, <otoomet@ut.ee>

See Also

maxNR

maxLik 17

Examples

maximise two-dimensional exponential hat. Maximum is at c(2,1):
f <- function(a) exp(-(a[1] - 2)^2 - (a[2] - 1)^2)
m <- maxNR(f, start=c(0,0))
summary(m)
maximType(m)
Now use BFGS maximisation.
m <- maxBFGS(f, start=c(0,0))
summary(m)
maximType(m)

maxLik Maximum likelihood estimation

Description

This is just a wrapper for maximisation routines which return object of class "maxLik". Corre-
sponding methods can correctly handle the likelihood-specific properties of the estimate including
the fact that inverse of negative hessian is the variance-covariance matrix.

Usage

maxLik(logLik, grad = NULL, hess = NULL, start, method,
constraints=NULL, ...)

Arguments

logLik log-likelihood function. Must have the parameter vector as the first argument.
Must return either a single log-likelihood value or a numeric vector where each
component is log-likelihood corresponding to individual observations.

grad gradient of log-likelihood. Must have the parameter vector as the first argu-
ment. Must return either single gradient vector with length equal to the number
of parameters, or a matrix where each row corresponds to gradient vector of
individual observations. If NULL, numeric gradient will be used.

hess hessian of log-likelihood. Must have the parameter vector as the first argument.
Must return a square matrix. If NULL, numeric gradient will be used.

start numeric vector, initial value of parameters.

method maximisation method, currently either "Newton-Raphson", "BFGS", "BFGSR",
"BHHH", "SANN" or "NM" (for Nelder-Mead). Lower-case letters and short-
cuts (as ’nr’ for Newton-Raphson) allowed. If missing, a suitable method is
selected automathically.

constraints either NULL for unconstrained maximization or a list, specifying the constraints.
See maxBFGS.

... further arguments for the maximisation routine.

18 maxLik

Details

maxLik "support" constrained optimization in the sense that constraints are passed further to the
underlying optimization routines, and suitable default method is selected. However, no attempt is
made to correct the resulting variance-covariance matrix. Hence, the inference may be wrong. A
corresponding warning is issued by the summary method.

Value

object of class ’maxLik’ which inherits from class ’maxim’. Components are identical to those of
class ’maxim’, see maxNR.

Warning

The constrained maximum likelihood estimation should be considered as experimental. In particu-
lar, the variance-covariance matrix is not corrected for constrained parameter space.

Author(s)

Ott Toomet <otoomet@ut.ee>, Arne Henningsen

See Also

maxNR, nlm and optim for different non-linear optimisation routines.

Examples

ML estimation of exponential duration model:
t <- rexp(100, 2)
loglik <- function(theta) log(theta) - theta*t
gradlik <- function(theta) 1/theta - t
hesslik <- function(theta) -100/theta^2
Estimate with numeric gradient and hessian
a <- maxLik(loglik, start=1, print.level=2)
print(a)
coef(a)
Estimate with analytic gradient and hessian
a <- maxLik(loglik, gradlik, hesslik, start=1)
print(a)
coef(a)
##
##
Next, we give an example with vector argument: Estimate the mean and
variance of a random normal sample by maximum likelihood
##
loglik <- function(param) {

mu <- param[1]
sigma <- param[2]
ll <- -0.5*N*log(2*pi) - N*log(sigma) - sum(0.5*(x - mu)^2/sigma^2)
ll

}
x <- rnorm(1000, 1, 2) # use mean=1, stdd=2

maxNR 19

N <- length(x)
res <- maxLik(loglik, start=c(0,1)) # use ’wrong’ start values
print(res)
coef(res)

maxNR Newton- and Quasi-Newton Maximization

Description

Unconstrained maximization based on the quadratic approximation (Newton) method. The Newton-
Raphson, BFGS (Broyden 1970, Fletcher 1970, Goldfarb 1970, Shanno 1970), and BHHH (Berndt,
Hall, Hall, Hausman 1974) methods are available.

Usage

maxNR(fn, grad = NULL, hess = NULL, start, print.level = 0,
tol = 1e-08, reltol=sqrt(.Machine$double.eps), gradtol = 1e-06,
steptol = 1e-10, lambdatol = 1e-06, qrtol = 1e-10, iterlim = 150,
constraints = NULL, finalHessian = TRUE, bhhhHessian=FALSE,
fixed = NULL, activePar = NULL, ...)

maxBFGSR(fn, grad = NULL, hess = NULL, start, print.level = 0,
tol = 1e-8, reltol=sqrt(.Machine$double.eps), gradtol = 1e-6,
steptol = 1e-10, lambdatol=1e-6, qrtol=1e-10,
iterlim = 150,
constraints = NULL, finalHessian = TRUE,
fixed = NULL, activePar = NULL, ...)

maxBHHH(fn, grad = NULL, hess = NULL, start, print.level = 0,
iterlim = 100, finalHessian = "BHHH", ...)

Arguments

fn function to be maximized. It must have the parameter vector as the first argu-
ment and it must return either a single number or a numeric vector, which is
summed. If the BHHH method is used and argument gradient is not given,
fn must return a numeric vector of observation-specific likelihood values. If
the parameters are out of range, fn should return NA. See details for constant
parameters.
fn may also return attributes "gradient" and/or "hessian". If these attributes are
set, the algorithm uses the corresponding values as gradient and Hessian.

grad gradient of the objective function. It must have the parameter vector as the first
argument and it must return either a gradient vector of the objective function,
or a matrix, where columns correspond to individual parameters. The column
sums are treated as gradient components. If NULL, finite-difference gradients are
computed. If the BHHH method is used, grad must return a matrix, where rows
corresponds to the gradient vectors of individual observations and the columns
to the individual parameters. If fn returns an object with attribute gradient,
this argument is ignored.

20 maxNR

hess Hessian matrix of the function. It must have the parameter vector as the first
argument and it must return the Hessian matrix of the objective function. If
missing, finite-difference Hessians, based on gradient, are computed. Hes-
sians are used for maximizations with the Newton-Raphson method but not for
maximizations with the BFGS or BHHH method.

start initial value for the parameter vector.

print.level this argument determines the level of printing which is done during the mini-
mization process. The default value of 0 means that no printing occurs, a value
of 1 means that initial and final details are printed and a value of 2 means that
full tracing information for every iteration is printed. Higher values will result
in even more details.

tol stopping condition. Stop if the absolute difference between successive iterations
is less than tol, return code=2.

reltol Relative convergence tolerance. The algorithm stops if it is unable to increase
the value by a factor of ’reltol * (abs(val) + reltol)’ at a step. Defaults to
’sqrt(.Machine\$double.eps)’, typically about ’1e-8’.

gradtol stopping condition. Stop if the norm of the gradient less than gradtol, return
code=1.

steptol stopping/error condition. If the quadratic approximation leads to lower function
value instead of higher, or NA, the step length is halved and a new attempt is
made. This procedure is repeated until step < steptol, thereafter code=3 is
returned.

lambdatol control whether the Hessian is treated as negative definite. If the largest of the
eigenvalues of the Hessian is larger than -lambdatol, a suitable diagonal ma-
trix is subtracted from the Hessian (quadratic hill-climbing) in order to enforce
nagetive definiteness.

qrtol QR-decomposition tolerance

iterlim stopping condition. Stop if more than iterlim iterations, return code=4.

constraints either NULL for unconstrained optimization or a list with two components eqA
and eqB for equality-constrained optimization Aθ + B = 0. The constrained
problem is forwarded to sumt.

finalHessian how (and if) to calculate the final Hessian. Either FALSE (do not calculate), TRUE
(use analytic/finite-difference Hessian) or "bhhh"/"BHHH" for the information
equality approach. The latter approach is only suitable for maximizing log-
likelihood functions. It requires the gradient/log-likelihood to be supplied by
individual observations. Note that computing the (real, not BHHH) final Hessian
does not carry any extra penalty for the NR method, but for the other methods.

bhhhHessian logical. Indicating whether the approximation for the Hessian suggested by
Bernd, Hall, Hall, and Hausman (1974) should be used.

fixed parameters that should be fixed at their starting values: either a logical vec-
tor of the same length as argument start, a numeric (index) vector indicating
the positions of the fixed parameters, or a vector of character strings indicating
the names of the fixed parameters (parameter names are taken from argument
start).

maxNR 21

activePar this argument is retained for backward compatibility only; please use argument
fixed instead.

... further arguments to fn, grad and hess. Further arguments to maxBHHH are also
passed to maxNR.

Details

The idea of the Newton method is to approximate the function in a given location with a multidi-
mensional parabola, and use the estimated maximum as the initial value for the next iteration. Such
an approximation requires knowledge of both gradient and Hessian, the latter of which can be quite
costly to compute. Several methods for approximating Hessian exist, including BFGS and BHHH.

The BHHH method (maxNR with argument bhhhHessian = TRUE) or maxBHHH) is suitable only
for maximizing log-likelihood functions. It uses information equality in order to approximate the
Hessian of the log-likelihood function. Hence, the log-likelihood values and its gradients must e
calculated by individual observations. The Hessian is approximated as the negative of the sum of
the outer products of the gradients of individual observations, or, in the matrix form, -t(gradient)
%*% gradient = - crossprod(gradient).

The functions maxNR, maxBFGSR, and maxBHHH can work with constant parameters and related
changes of parameter values. Constant parameters are useful if a parameter value is converging
toward the boundary of support, or for testing. One way is to put fixed to non-NULL, specifying
which parameters should be treated as constants.

However, when using maxNR or maxBHHH, parameters can also be fixed in runtime by signaling with
fn. This may be useful if an estimation converges toward the edge of the parameter space possibly
causing problems. The value of fn may have following attributes (only used by maxNR):

• constPar index vector. Which parameters are redefined to constant

• newVal a list with following components:

– indexwhich parameters will have a new value
– valthe new value of parameters

Hence, constVal specifies which parameters are treated as constants. newVal allows one to over-
write the existing parameter values, possibly the non-constant values as well. If the attribute newVal
is present, the new function value need not to exceed the previous one (maximization is not per-
formed in that step).

Value

list of class "maxim" with following components:

maximum fn value at maximum (the last calculated value if not converged).

estimate estimated parameter value.

gradient vector, last gradient value which was calculated. Should be close to 0 if normal
convergence.

gradientObs matrix of gradients at parameter value estimate evaluated at each observation
(only if grad returns a matrix or grad is not specified and fn returns a vector).

hessian Hessian at the maximum (the last calculated value if not converged).

code return code:

22 maxNR

• 1 gradient close to zero (normal convergence).
• 2 successive function values within tolerance limit (normal convergence).
• 3 last step could not find higher value (probably not converged). This is

related to line search step getting too small, usually because hitting the
boundary of the parameter space. It may also be related to attempts to
move to a wrong direction because of numerical errors. In some cases it
can be helped by changing steptol.

• 4 iteration limit exceeded.
• 5 Infinite value.
• 6 Infinite gradient.
• 7 Infinite Hessian.
• 8 Successive function values withing relative tolerance limit (normal con-

vergence).
• 9 (BFGS) Hessian approximation cannot be improved because of gradient

did not change. May be related to numerical approximation problems or
wrong analytic gradient.

• 100 Initial value out of range.

message a short message, describing code.

last.step list describing the last unsuccessful step if code=3 with following components:

• theta0 previous parameter value
• f0 fn value at theta0
• climb the movement vector to the maximum of the quadratic approximation

fixed logical vector, which parameters are constants.

iterations number of iterations.

type character string, type of maximization.

constraints A list, describing the constrained optimization (NULL if unconstrained). Includes
the following components:

• type type of constrained optimization
• outer.iterations number of iterations in the constraints step
• barrier.value value of the barrier function

Warning

No attempt is made to ensure that user-provided analytic gradient/Hessian correct. However, the
users are recommended to use compareDerivatives function, designed for this purpose. If analytic
gradient/Hessian are wrong, the algorithm may not converge, or converge to a wrong point.

As the BHHH method (maxNR with argument bhhhHessian = TRUE or maxBHHH) uses the likelihood-
specific information equality, it is only suitable for maximizing log-likelihood functions!

Quasi-Newton methods, including those mentioned above, do not work well in non-concave re-
gions. This is especially the case with the implementation in maxBFGSR. The user is advised to
experiment with various tolerance options to achieve convergence.

maxNR 23

Author(s)

Ott Toomet <otoomet@ut.ee>, Arne Henningsen, function maxBFGSR was originally developed by
Yves Croissant (and placed in ’mlogit’ package)

References

Berndt, E., Hall, B., Hall, R. and Hausman, J. (1974): Estimation and Inference in Nonlinear
Structural Models, Annals of Social Measurement 3, p. 653-665.

Broyden, C.G. (1970): The Convergence of a Class of Double-rank Minimization Algorithms, Jour-
nal of the Institute of Mathematics and Its Applications 6, p. 76-90.

Fletcher, R. (1970): A New Approach to Variable Metric Algorithms, Computer Journal 13, p.
317-322.

Goldfeld, S.M. and Quandt, R.E. (1972): Nonlinear Methods in Econometrics. Amsterdam: North-
Holland.

Goldfarb, D. (1970): A Family of Variable Metric Updates Derived by Variational Means, Mathe-
matics of Computation 24, p. 23-26.

Greene, W.H., 2008, Econometric Analysis, 6th edition, Prentice Hall.

Shanno, D.F. (1970): Conditioning of Quasi-Newton Methods for Function Minimization, Mathe-
matics of Computation 24, p. 647-656.

See Also

maxLik for a general framework for maximum likelihood estimation (MLE), maxBHHH for maxi-
mizations using the Berndt, Hall, Hall, Hausman (1974) algorithm (which is a wrapper function to
maxNR), maxBFGS for maximization using the BFGS, Nelder-Mead (NM), and Simulated Annealing
(SANN) method (based optim), nlm for Newton-Raphson optimization, and optim for different
gradient-based optimization methods.

Examples

ML estimation of exponential duration model:
t <- rexp(100, 2)
loglik <- function(theta) sum(log(theta) - theta*t)
Note the log-likelihood and gradient are summed over observations
gradlik <- function(theta) sum(1/theta - t)
hesslik <- function(theta) -100/theta^2
Estimate with finite-difference gradient and Hessian
a <- maxNR(loglik, start=1, print.level=2)
summary(a)
You would probably prefer 1/mean(t) instead ;-)
Estimate with analytic gradient and Hessian
a <- maxNR(loglik, gradlik, hesslik, start=1)
summary(a)

BFGS estimation with finite-difference gradient
a <- maxBFGSR(loglik, start=1)
summary(a)
BFGS estimation with analytic gradient

24 nIter

a <- maxBFGSR(loglik, gradlik, start=1)
summary(a)

For the BHHH method we need likelihood values and gradients
of individual observations
loglikInd <- function(theta) log(theta) - theta*t
gradlikInd <- function(theta) 1/theta - t
Estimate with finite-difference gradient
a <- maxBHHH(loglikInd, start=1, print.level=2)
summary(a)
Estimate with analytic gradient
a <- maxBHHH(loglikInd, gradlikInd, start=1)
summary(a)

##
Next, we give an example with vector argument: Estimate the mean and
variance of a random normal sample by maximum likelihood
Note: you might want to use maxLik instead
##
loglik <- function(param) {

mu <- param[1]
sigma <- param[2]
ll <- -0.5*N*log(2*pi) - N*log(sigma) - sum(0.5*(x - mu)^2/sigma^2)
ll

}
x <- rnorm(1000, 1, 2) # use mean=1, stdd=2
N <- length(x)
res <- maxNR(loglik, start=c(0,1)) # use ’wrong’ start values
summary(res)
###
Now an example of constrained optimization
###
We maximize exp(-x^2 - y^2) where x+y = 1
f <- function(theta) {

x <- theta[1]
y <- theta[2]
exp(-(x^2 + y^2))
Note: you may want to use exp(- theta %*% theta) instead ;-)

}
use constraints: x + y = 1
A <- matrix(c(1, 1), 1, 2)
B <- -1
res <- maxNR(f, start=c(0,0), constraints=list(eqA=A, eqB=B), print.level=1)
print(summary(res))

nIter Return number of iterations for iterative models

nIter 25

Description

Returns the number of iterations for iterative models. The default method assumes presence of a
component iterations in x.

Usage

nIter(x, ...)
Default S3 method:
nIter(x, ...)

Arguments

x a statistical model, or a result of maximisation, such as created by maxLik or
maxNR

... further arguments for methods

Details

This is a generic function. The default method returns the component x$iterations.

Value

numeric, number of iterations

Author(s)

Ott Toomet, <otoomet@econ.au.dk>

See Also

maxLik, maxNR

Examples

ML estimation of exponential duration model:
t <- rexp(100, 2)
loglik <- function(theta) sum(log(theta) - theta*t)
Estimate with numeric gradient and numeric Hessian
a <- maxNR(loglik, start=1)
nIter(a)

26 nObs.maxLik

nObs.maxLik Number of Observations

Description

Returns the number of observations for statistical models estimated by Maximum Likelihood using
maxLik.

Usage

S3 method for class ’maxLik’
nObs(x, ...)

Arguments

x a statistical model estimated by Maximum Likelihood using maxLik.

... further arguments (currently ignored).

Details

The nObs method for objects of class "maxLik" can return the number of observations only if
maxLik was called with argument grad equal to a gradient function or (if no gradient function
is specified) argument logLik equal to a log-likelihood function that return the gradients or log-
likelihood values, respectively, for each observation.

Value

numeric, number of observations

Author(s)

Arne Henningsen, Ott Toomet

See Also

nObs, maxLik, nParam.

Examples

fit a normal distribution by ML
generate a variable from normally distributed random numbers
x <- rnorm(100, 1, 2)
log likelihood function (for individual observations)
llf <- function(param) {

return(dnorm(x, mean = param[1], sd = param[2], log = TRUE))
}
ML method
ml <- maxLik(llf, start = c(mu = 0, sigma = 1))

nParam.maxim 27

return number of onservations
nObs(ml)

nParam.maxim Number of model parameters

Description

This function returns the number of model parameters.

Usage

S3 method for class ’maxim’
nParam(x, free=FALSE, ...)

Arguments

x a model returned by a maximisation method from the maxLik package.

free logical, whether to report only the free parameters or the total number of param-
eters (default)

... other arguments for methods

Details

Free parameters are the parameters with no equality restrictions. Some parameters may be restricted
(e.g. sum of two probabilities may be restricted to equal unity). In this case the total number of
parameters may depend on the normalisation.

Value

Number of parameters in the model

Author(s)

Ott Toomet, <otoomet@econ.au.dk>

See Also

nObs for number of observations

28 numericGradient

Examples

fit a normal distribution by ML
generate a variable from normally distributed random numbers
x <- rnorm(100, 1, 2)
log likelihood function (for individual observations)
llf <- function(param) {

return(dnorm(x, mean = param[1], sd = param[2], log = TRUE))
}
ML method
ml <- maxLik(llf, start = c(mu = 0, sigma = 1))
return number of parameters
nParam(ml)

numericGradient Functions to Calculate Numeric Derivatives

Description

Calculate (central) numeric gradient and Hessian. numericGradient accepts vector-valued func-
tions.

Usage

numericGradient(f, t0, eps=1e-06, fixed, ...)
numericHessian(f, grad=NULL, t0, eps=1e-06, fixed, ...)
numericNHessian(f, t0, eps=1e-6, fixed, ...)

Arguments

f function to be differentiated. The first argument must be the parameter vector
with respect to which it is differentiated. For numeric gradient, f may return a
(numeric) vector, for Hessian it should return a numeric scalar

grad function, gradient of f
t0 vector, the value of parameters
eps numeric, the step for numeric differentiation
fixed logical vector, length of which equal the length of the parameter. Derivative is

calculated only along the parameters for which it is FALSE, NA returned for the
others. If missing, all parameters are treated as active.

... furter arguments for f

Details

numericGradient numerically differentiates a (vector valued) function with respect to it’s (vector
valued) argument. If the functions value is a NVal * 1 vector and the argument is Npar * 1 vector,
the resulting gradient is a NVal * NPar matrix.

numericHessian checks whether a gradient function is present and calculates a gradient of the
gradient (if present), or full numeric Hessian (numericNHessian) if grad is NULL.

returnCode 29

Value

Matrix. For numericGradient, the number of rows is equal to the length of the function value
vector, and the number of columns is equal to the length of the parameter vector.

For the numericHessian, both numer of rows and columns is equal to the length of the parameter
vector.

Warning

Be careful when using numerical differentiation in optimisation routines. Although quite precise in
simple cases, they may work very poorly in more complicated conditions.

Author(s)

Ott Toomet <otoomet@gmail.com>

See Also

compareDerivatives, deriv

Examples

A simple example with Gaussian bell surface
f0 <- function(t0) exp(-t0[1]^2 - t0[2]^2)
numericGradient(f0, c(1,2))
numericHessian(f0, t0=c(1,2))

An example with the analytic gradient
gradf0 <- function(t0) -2*t0*f0(t0)
numericHessian(f0, gradf0, t0=c(1,2))
The results should be similar as in the previous case

The central numeric derivatives have usually quite a high precision
compareDerivatives(f0, gradf0, t0=1:2)
The difference is around 1e-10

returnCode Return code for optimisation and other objects

Description

This function gives the return code of various optimisation objects. The return code gives a brief
information about the success or problems, occured during the optimisation (see documentation for
the corresponding function).

Usage

returnCode(x, ...)
Default S3 method:
returnCode(x, ...)

30 returnMessage

Arguments

x object, usually an estimator, achieved by optimisation

... further arguments for other methods

Details

The default methods returns component returnCode.

Value

Integer, the success code of optimisation procedure. However, different optimisation routines may
define it in a different way.

Author(s)

Ott Toomet, <otoomet@ut.ee>

See Also

returnMessage, maxNR

Examples

maximise the exponential bell
f1 <- function(x) exp(-x^2)
a <- maxNR(f1, start=2)
returnCode(a) # should be success (1 or 2)
Now try to maximise log() function
f2 <- function(x) log(x)
a <- maxNR(f2, start=2)
returnCode(a) # should give a failure (4)

returnMessage Information about the optimisation process

Description

This function returns a short message, summarising the outcome of the statistical process, typically
optimisation. The message should describe either the type of the convergence, or the problem.
returnMessage is a generic function, with methods for various optimisation algorithms.

Usage

returnMessage(x, ...)
S3 method for class ’maxim’
returnMessage(x, ...)
S3 method for class ’maxLik’
returnMessage(x, ...)

summary.maxim 31

Arguments

x object, should orginate from an optimisation problem
... further arguments to other methods.

Details

The default methods returns component returnMessage.

Value

Character string, the message describing the success or failure of the statistical procedure.

Author(s)

Ott Toomet, <otoomet@ut.ee>

See Also

returnCode, maxNR

Examples

maximise the exponential bell
f1 <- function(x) exp(-x^2)
a <- maxNR(f1, start=2)
returnMessage(a) # should be success (1 or 2)
Now try to maximise log() function
f2 <- function(x) log(x)
a <- maxNR(f2, start=2)
returnMessage(a) # should give a failure (4)

summary.maxim Summary method for maximisation/minimisation

Description

Summarises the maximisation results

Usage

S3 method for class ’maxim’
summary(object, hessian=FALSE, unsucc.step=FALSE, ...)

Arguments

object optimisation result, object of class maxim. See maxNR.
hessian logical, whether to display Hessian matrix.
unsucc.step logical, whether to describe last unsuccesful step if code == 3
... currently not used.

32 summary.maxim

Value

Object of class summary.maxim, intended to print with corresponding print method. There are
following components:

type type of maximisation.

iterations number of iterations.

code exit code (see maxNR.)

message a brief message, explaining code.

unsucc.step description of last unsuccessful step, only if requested and code == 3

maximum function value at maximum

estimate matrix with following columns:

• resultscoefficient estimates at maximum
• gradientestimated gradient at maximum

constraints information about the constrained optimization. Passed directly further from
maxim-object. NULL if unconstrained maximization.

hessian estimated hessian at maximum, only if requested

Author(s)

Ott Toomet <siim@obs.ee>

See Also

maxNR

Examples

minimize a 2D quadratic function:
f <- function(b) {

x <- b[1]; y <- b[2];
val <- (x - 2)^2 + (y - 3)^2
attr(val, "gradient") <- c(2*x - 4, 2*y - 6)
attr(val, "hessian") <- matrix(c(2, 0, 0, 2), 2, 2)
val

}
Note that NR finds the minimum of a quadratic function with a single
iteration. Use c(0,0) as initial value.
result1 <- maxNR(f, start = c(0,0))
summary(result1)
Now use c(1000000, -777777) as initial value and ask for hessian
result2 <- maxNR(f, start = c(1000000, -777777))
summary(result2)

summary.maxLik 33

summary.maxLik summary the Maximum-Likelihood estimation

Description

Summary the Maximum-Likelihood estimation including standard errors and t-values.

Usage

S3 method for class ’maxLik’
summary(object, eigentol=1e-12, ...)
S3 method for class ’summary.maxLik’
coef(object, ...)

Arguments

object object of class ’maxLik’, or ’summary.maxLik’, usually a result from Maximum-
Likelihood estimation.

eigentol nonzero print limit on the range of the absolute values of the hessian. Specifi-
cally, define:
absEig <- eigen(hessian(object), symmetric=TRUE)[[’values’]]
Then compute and print t values, p values, etc. only if min(absEig) > (eigentol
* max(absEig)).

... currently not used.

Value

summary.maxLik returns an object of class ’summary.maxLik’ with following components:

type type of maximisation.
iterations number of iterations.
code code of success.
message a short message describing the code.
loglik the loglik value in the maximum.
estimate numeric matrix, the first column contains the parameter estimates, the second

the standard errors, third t-values and fourth corresponding probabilities.
fixed logical vector, which parameters are treated as constants.
NActivePar number of free parameters.
constraints information about the constrained optimization. Passed directly further from

maxim-object. NULL if unconstrained maximization.

coef.summary.maxLik returns the matrix of estimated values, standard errors, and

t

- and
p

-values.

34 sumt

Author(s)

Ott Toomet <otoomet@ut.ee>, Arne Henningsen

See Also

maxLik

Examples

ML estimation of exponential duration model:
t <- rexp(100, 2)
loglik <- function(theta) log(theta) - theta*t
gradlik <- function(theta) 1/theta - t
hesslik <- function(theta) -100/theta^2
Estimate with numeric gradient and hessian
a <- maxLik(loglik, start=1, print.level=2)
summary(a)
Estimate with analytic gradient and hessian
a <- maxLik(loglik, gradlik, hesslik, start=1)
summary(a)

sumt Equality-constrained optimization

Description

Sequentially Unconstrained Maximization Technique (SUMT) based optimization for linear equal-
ity constraints.

This implementation is mostly intended to be called from other maximization routines, such as
maxNR.

Usage

sumt(fn, grad=NULL, hess=NULL,
start,
maxRoutine, constraints,
SUMTTol = sqrt(.Machine$double.eps),
SUMTPenaltyTol = sqrt(.Machine$double.eps),
SUMTQ = 10,
SUMTRho0 = NULL,
print.level = 0, SUMTMaxIter = 100, ...)

Arguments

fn function of a (single) vector parameter. The function may have more arguments,
but those are not treated as parameter

grad gradient function of fn. NULL if missing

sumt 35

hess hessian matrix of the fn. NULL if missing

start initial value of the parameter.

maxRoutine maximization algorithm

constraints list, information for constrained maximization. Currently two components are
supported: eqA and eqB for linear equality constraints: Aβ + B = 0. The user
must ensure that the matrices A and B are conformable.

SUMTTol stopping condition. If the coefficient of successive outer iterations are close
enough, i.e. maximum of the absolute value over the component difference is
smaller than SUMTTol, the algorithm stops.
Note this does not necessarily mean satisfying the constraints. In case of the
penalty function is too ’weak’, SUMT may repeatedly find the same optimum.
In that case a warning is issued. The user may try to set SUMTTol to a lower
value, e.g. to zero.

SUMTPenaltyTol stopping condition. If barrier value (also called penalty) (Aβ+B)′(Aβ+B) is
less than SUMTTol, the algorithm stops

SUMTQ a double greater than one controlling the growth of the rho as described in De-
tails. Defaults to 10.

SUMTRho0 Initial value for rho. If not specified, a (possibly) suitable value is selected. See
Details.
One should consider supplying SUMTRho0 in case where the unconstrained prob-
lem does not have a maximum, or the maximum is too far from the constrained
value. Otherwise the algorithm may pick values too to achive convergence.

print.level Integer, debugging information. Larger number print more details.

SUMTMaxIter Maximum SUMT iterations

... Other arguments to maxRoutine and fn.

Details

The Sequential Unconstrained Minimization Technique is a heuristic for constrained optimization.
To minimize a function f subject to constraints, one employs a non-negative function P penalizing
violations of the constraints, such that P (x) is zero iff x satisfies the constraints. One iteratively
minimizes L(x) + %kP (x), where the % values are increased according to the rule %k+1 = q%k for
some constant q > 1, until convergence is obtained in the sense that the barrier value P (x)′P (x)
is close to zero. Note that there is no guarantee that global (approximately) constrained optima are
found. Standard practice would recommend to use the best solution found in "sufficiently many"
replications of the algorithm.

The unconstrained minimizations are carried out by either any of the maximization algorithms in
the maxLik, such as maxNR. Analytic gradient and hessian are used if provided, numeric ones
otherwise.

Value

Object of class ’maxim’. In addition, a component

constraints A list, describing the constrained optimization. Includes the following compo-
nents:

36 vcov.maxLik

• typetype of constrained optimization
• barrier.valuevalue of the penalty function at maximum
• codecode for the stopping condition
• messagea short message, describing the stopping condition
• outer.iterationsnumber of iterations in the SUMT step

Note

It may be a lot more efficient to embrace the actual function to be optimized to an outer function,
which calculates the actual parameters based on a smaller set of parameters and the constraints.

Author(s)

Ott Toomet <otoomet@ut.ee>, Arne Henningsen

See Also

sumt

vcov.maxLik Variance Covariance Matrix of maxLik objects

Description

Extract variance-covariance matrices of objects of class maxLik.

Usage

S3 method for class ’maxLik’
vcov(object, eigentol=1e-12, ...)

Arguments

object an object of class probit or maxLik.

eigentol nonzero print limit on the range of the absolute values of the hessian. Specifi-
cally, define:
absEig <- eigen(hessian(object), symmetric=TRUE)[[’values’]]
Then compute and print t values, p values, etc. only if min(absEig) > (eigentol
* max(absEig)).

... further arguments (currently ignored).

Value

the estimated variance covariance matrix of the coefficients. In case of the estimated Hessian is
singular, it’s values are Inf. The values corresponding to fixed parameters are zero.

vcov.maxLik 37

Author(s)

Arne Henningsen, Ott Toomet <otoomet@ut.ee>

See Also

vcov, maxLik.

Examples

ML estimation of exponential duration model:
t <- rexp(100, 2)
loglik <- function(theta) log(theta) - theta*t
gradlik <- function(theta) 1/theta - t
hesslik <- function(theta) -100/theta^2
Estimate with numeric gradient and hessian
a <- maxLik(loglik, start=1, print.level=2)
vcov(a)
Estimate with analytic gradient and hessian
a <- maxLik(loglik, gradlik, hesslik, start=1)
vcov(a)

Index

∗Topic debugging
condiNumber, 6

∗Topic math
compareDerivatives, 4
condiNumber, 6
numericGradient, 28

∗Topic methods
activePar, 2
AIC.maxLik, 3
bread.maxLik, 3
estfun.maxLik, 8
hessian, 11
logLik.maxLik, 12
maximType, 16
nIter, 24
nObs.maxLik, 26
nParam.maxim, 27
returnCode, 29
returnMessage, 30
summary.maxim, 31
vcov.maxLik, 36

∗Topic models
summary.maxLik, 33

∗Topic optimize
activePar, 2
fnSubset, 9
hessian, 11
maxBFGS, 13
maximType, 16
maxLik, 17
maxNR, 19
sumt, 34

∗Topic print
summary.maxim, 31

∗Topic utilities
compareDerivatives, 4
condiNumber, 6
numericGradient, 28
returnCode, 29

returnMessage, 30

activePar, 2, 11
AIC.maxLik, 3

bread, 3, 4
bread.maxLik, 3

coef.maxLik (maxLik), 17
coef.summary.maxLik (summary.maxLik), 33
compareDerivatives, 4, 22, 29
condiNumber, 6
constrOptim2, 14

deriv, 5, 29
dlmMLE, 10

estfun, 8
estfun.maxLik, 8

fnSubset, 9

hessian, 11

kappa, 7

logLik.maxLik, 12
logLik.summary.maxLik (logLik.maxLik),

12

maxBFGS, 13, 17, 23
maxBFGSR, 13, 15
maxBFGSR (maxNR), 19
maxBHHH, 14, 15, 23
maxBHHH (maxNR), 19
maxCG (maxBFGS), 13
maximType, 16
maxLik, 4, 8, 10–12, 17, 23, 25, 26, 34, 36, 37
maxNM (maxBFGS), 13
maxNR, 2, 3, 10, 13–16, 18, 19, 25, 30–32, 34,

35

38

INDEX 39

maxSANN (maxBFGS), 13

nIter, 24
nlm, 15, 18, 23
nObs, 3, 26, 27
nObs.maxLik, 26
nParam, 26
nParam.maxim, 27
numericGradient, 5, 28
numericHessian (numericGradient), 28
numericNHessian (numericGradient), 28

optim, 10, 13–15, 18, 23

print.maxLik (maxLik), 17

returnCode, 29, 31
returnMessage, 30, 30

std.maxlik (AIC.maxLik), 3
summary.maxim, 31
summary.maxLik, 33
sumt, 14, 20, 34, 36

vcov, 37
vcov.maxLik, 36

	activePar
	AIC.maxLik
	bread.maxLik
	compareDerivatives
	condiNumber
	estfun.maxLik
	fnSubset
	hessian
	logLik.maxLik
	maxBFGS
	maximType
	maxLik
	maxNR
	nIter
	nObs.maxLik
	nParam.maxim
	numericGradient
	returnCode
	returnMessage
	summary.maxim
	summary.maxLik
	sumt
	vcov.maxLik
	Index

