Mais exemplos sobre análise de dados via modelos de regressão

Prof. Caio Azevedo

Exemplo 2: Estudo da eficácia de escovas de dentes

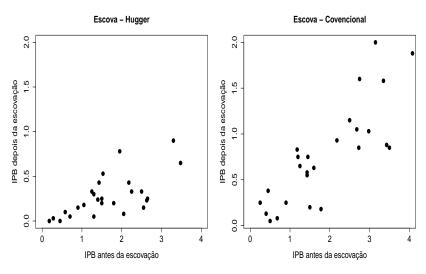
- Considere o seguinte estudo na área de Odontopediatria.
- O objetivo é comparar duas escovas de dente (convencional e experimental, chamada de "hugger") com respeito à redução de um índice de placa bacteriana (IPB) em crianças de ambos os sexos em idade pré-escolar.
- Os valores obtidos correspondem aos IPB's medidos em alguns dentes antes e depois da escovação dental de 14 crianças do sexo feminino e 12 do sexo masculino. Cada criança utilizou cada um dos tipos de escova sendo sempre a experimental, a primeira. O tipo de escova tende a ser melhor quanto maior for sua "capacidade de remoção" da placa bacteriana.

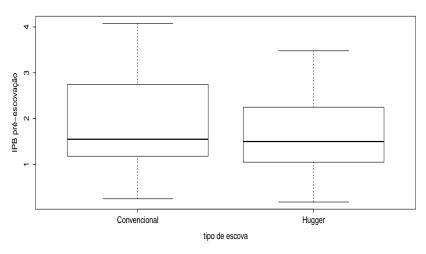
Dados

		Tipo de escova				
		Hugger		Conve	encional	
Criança	Sexo	Antes	Depois	Antes	Depois	
1	F	2,18	0,43	1,2	0,75	
2	F	2,05	0,08	1,43	0,55	
•	:	:	:	:	•	
25	М	1,3	0,05	2,73	0,85	
26	М	2,65	0,25	3,43	0,88	

Voltando ao exemplo 2: Estudo da eficácia de escovas de dentes

- Como utilizar os IPB's antes e depois ?
- Deve-se considerar a variável sexo?
- O fato de sempre se utilizar o tipo de escova experimental primeiramente pode ter influenciado os resultados?
- Medidas repetidas: cada criança é avaliada duas vezes. Possível existência de dependência entre as observações.





Comentário sobre os dados

- O modelo deve permitir, de forma simples, comparar o desempenhos dos dois tipos de escova, identificando e quantificando tal diferença, se ela existir.
- A variável resposta é positiva.
- O IPB pós-escovação deve ser menor do que o IPB pré-escovação.
 Em particular, se o IPB pré for igual a zero o IPB também deve ser igual a zero.
- Inicialmente, vamos desconsiderar a variável sexo.

Exemplo 2: desconsiderando o sexo

$$Y_{ij}=eta_{0i}+eta_{1i}x_{ij}, i=1$$
 (convencional), 2(hugger)(tipo de escova),
$$j=1,...,26 ({\sf criança}).$$

- $\xi_{ij} \stackrel{i.i.d.}{\sim} N(0, \sigma^2)$.
- **•** x_{ij} : IPB pré-escovação da criança j utilizando a escova do tipo i.
- lacksquare Y_{ij} : IPB pós-escovação da criança j utilizando a escova do tipo i.
- β_{0i}: IPB pós-escovação esperado quando se utiliza a escova do tipo
 i para um IPB pré-escovação igual a 0.
- eta_{1i} : incremento (positivo ou negativo) no IPB pós-escovação esperado quando se utiliza a escova do tipo i, para o aumento em uma unidade no IPB pré-escovação.

Exemplo 2: desconsiderando o sexo

- O que devemos esperar em relação às estimativas de β_{0i} , i=1,2?
- Como utilizar as estimativas de β_{1i} , i=1,2 para comparar o desempenho das escovas?

Estimativas dos parâmetros do modelo

Parâmetro	Est.	EP	Estat.t	IC(95%)	p-valor
eta_{01} (convenc.)	0,013	0,101	[-0,190 ; 0,216]	0,128	0,8985
eta_{02} (hugger)	-0,001	0,108	[-0,226 ; 0,207]	-0,089	0,9294
eta_{11} (convenc.)	0,400	0,046	[0,307;0,493]	8,654	<0,0001
β_{12} (hugger)	0,174	0,058	[0,057; 0,291]	2,993	0,0044

Os dois interceptos parecem ser nulos e os dois coeficientes angulares parecem ser diferentes. As estimativas dos coeficientes angulares sugerem uma superioridade da escova do tipo Hugger. Devemos ajustar um modelo reduzido sem interceptos.

Exemplo 2 (modelo reduzido): desconsiderando o sexo

$$Y_{ij}=eta_{1i}x_{ij}, i=1$$
(convencional), 2(hugger)(tipo de escova); $j=1,...,26$ (criança).

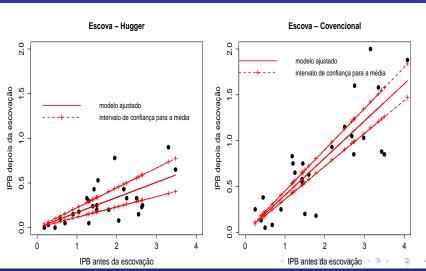
- $\xi_{ij} \stackrel{i.i.d.}{\sim} N(0, \sigma^2)$.
- \mathbf{x}_{ij} : IPB pré-escovação da criança j utilizando a escova do tipo i.
- lacksquare Y_{ij} : IPB pós-escovação da criança j utilizando a escova do tipo i.
- β_{1i} : diminuição (se $\beta_{i1} \in (0,1)$) ou aumento (se $\beta_{i1} > 1$), no IPB quando se usa a escova do tipo i.

Estimativas dos parâmetros do modelo reduzido

Parâmetro	Est.	EP	Estat.t	IC(95%)	p-valor
β_{11} (convenc.)	0,405	0,023	[0,360 ; 0,450]	17,972	<0,0001
eta_{12} (hugger)	0,169	0,027	[0,116; 0,223]	6,373	<0,0001

Os dois coeficientes angulares parecem ser diferentes. De fato, o teste do tipo Wald para testar igualdade vs diferença forneceu os seguintes resultados: 45,82~(<0,0001). Os dois tipos de escova, de fato, reduzem o IPB, com evidente superioridade da escova do tipo Hugger, sendo a redução obtida para este tipo de escova da ordem de 16,9% [11,6%;22,3%].

Retas ajustadas e intervalos de confiança para as médias



Estimativa da superioridade da escova do tipo Hugger

- Defina $\theta = \beta_{12}/\beta_{11}$: o quanto a escova do tipo Hugger reduz o IPB em relação à escova do tipo convencional.
- Estimador $\widehat{\theta} = \widehat{\beta}_{12}/\widehat{\beta}_{11}$.
- Novamente, utilizaremos o método delta para fazer inferência sobre θ com base em $\widehat{\theta}$.
- Método Delta: sob os resultados obtidos e assumindo válidas as condições de regularidade, temos que $\widehat{\theta} \approx N(\theta, \sigma_{\theta}^2)$, em que

$$\sigma_{\theta}^{2} = \sigma^{2} \left(\mathbf{\Delta}\right)' \left(\mathbf{X}'\mathbf{X}\right)^{-1} \left(\mathbf{\Delta}\right)$$

Estimativas da superioridade da escova do tipo Hugger

$$\bullet \Delta = \begin{bmatrix} 0 & -\frac{\beta_{12}}{2\beta_{11}^2} & \frac{1}{\beta_{11}} \end{bmatrix}'.$$

■ Logo
$$IC(\theta, \gamma) = \left[\widehat{\theta} - z_{\frac{1+\gamma}{2}} \sqrt{\widehat{\sigma}_{\theta}^2}; \widehat{\theta} + z_{\frac{1+\gamma}{2}} \sqrt{\widehat{\sigma}_{\theta}^2}\right]$$
, em que $P(Z \le z_{\frac{1+\gamma}{2}}) = \frac{1+\gamma}{2}, Z \approx N(0,1), \ \widehat{\sigma}_{\theta}^2 = \widehat{\sigma}^2 \left(\widehat{\Delta}\right)' \left(\mathbf{X}'\mathbf{X}\right)^{-1} \left(\widehat{\Delta}\right)$ e $\widehat{\Delta} = \left[\begin{array}{cc} 0 & -\frac{\widehat{\beta}_{12}}{2\widehat{\beta}_{11}^2} & \frac{1}{\widehat{\beta}_{11}} \end{array}\right]'.$

$$\widehat{\mathbf{\Delta}} = \left[\begin{array}{ccc} 0 & -\frac{\widehat{\beta}_{12}}{2\widehat{\beta}_{11}^2} & \frac{1}{\widehat{\beta}_{11}} \end{array} \right]'.$$

Estimativas da superioridade da escova do tipo Hugger

- Em nosso exemplo $\tilde{\theta}=0,417(0,070),IC(\theta,95\%)=[0,282;0,554].$ Conclusão, espera-seque IPB pós escovação quando se usa a escova do tipo Hugger seja da ordem de 41,7%[28,2%;55,4%] do IPB caso se usa-se a escova do tipo Convencional.
- Exercício: obter as estimativas pontual e intervalar de θ , utilizando $\widehat{\theta}$ via bootstrap não-paramétrico. Obter também uma aproximação empírica da distribuição de $\widehat{\theta}$.

ANOVA para modelos de regressão com intercepto nulo

Suponha o seguinte modelo:

$$Y_i = \beta_1 x_{1i} + \beta_2 x_{2i} + \dots + \beta_{p-1} x_{(p-1)i} + \xi_i, \xi_i \overset{i.i.d}{\sim} N(0, \sigma^2)$$

- Logo $Y_i \stackrel{ind.}{\sim} N(\sum_{j=1}^{p-1} \beta_j x_{ji}, \sigma^2)$.
- O modelo acima define uma média (condicional aos valores de $x_{ji}, j=1,...,p-1; i=1,...,n$) para cada observação Y_i .
- Defina $\widehat{Y}_i = \widehat{\beta}_1 x_{1i} + \widehat{\beta}_2 x_{2i} + ... + \widehat{\beta}_{p-1} x_{(p-1)i}$ (valor predito pelo modelo).
- O resíduo é definido por $R_i = \widehat{\xi}_i = Y_i \widehat{Y}_i$.

- Nosso objetivo é considerar um modelo que explique adequadamente a variabilidade dos dados, ou seja, um modelo para o qual os resíduos sejam "pequenos".
- Pode-se provar que, a soma de quadrados total $SQT = \sum_{i=1}^{n} Y_i^2$, pode ser decomposta como:

$$SQT = \underbrace{\sum_{i=1}^{n} \widehat{Y}_{i}^{2}}_{SQM} + \underbrace{\sum_{i=1}^{n} (Y_{i} - \widehat{Y}_{i})^{2}}_{SQR}$$

Assim, quanto maior for o valor de SQM em relação à SQR, maior será a contribuição da parte sistemática para explicar a variabilidade dos dados. Portanto, mais "provável" que exista (pelo menos um)
β_i ≠ 0, j = 1,..., p − 1.

- Lembrando da forma matricial do modelo: $\mathbf{Y} = \mathbf{X}\boldsymbol{\beta} + \boldsymbol{\xi}$, pode-se demonstrar que:
 - SQT = Y'IY = Y'Y.
 - SQM = $\mathbf{Y}'\mathbf{H}\mathbf{Y}$, em que $\mathbf{H} = \mathbf{X}(\mathbf{X}'\mathbf{X})^{-1}\mathbf{X}'$ (chamada de matriz de projeção ou matriz "hat").
 - SQR = Y'(I H)Y.
- Pode-se provar que as matrizes H e B = I H são ortogonais, ou seja, HB = 0.
- Dizemos que $\widehat{\mathbf{Y}} = \mathbf{X}\widehat{\boldsymbol{\beta}} = \mathbf{X}(\mathbf{X}'\mathbf{X})^{-1}\mathbf{X}'\mathbf{Y} = \mathbf{H}\mathbf{Y}$ e $\mathbf{R} = \mathbf{Y} \widehat{\mathbf{Y}} = (\mathbf{I} \mathbf{X}(\mathbf{X}'\mathbf{X})^{-1}\mathbf{X}')\mathbf{Y} = (\mathbf{I} \mathbf{H}) \text{ projetam } \mathbf{Y} \text{ em dois subespaços ortogonais, pois } \mathbf{H}(\mathbf{I} \mathbf{H}) = \mathbf{0}.$
- Podemos utilizar raciocínio análogo ao que foi usado para o modelo com intercepto.

Tabela de ANOVA (matricial)

Para testar $H_0: \beta_1=\beta_2=...=\beta_{(p-1)}=0$ vs $H_1:$ Há pelo menos uma diferença.

FV	SQ	GL	QM	Estatística F	pvalor
Modelo	$SQM = \mathbf{Y}'\mathbf{HY}$	р	$QMM = \frac{SQM}{p-1}$	$F_t = \frac{QMM}{QMR}$	$P(X \geq f_t H_0)$
Resíduo	$SQR = \mathbf{Y}' \left(\mathbf{I} - \mathbf{H} \right) \mathbf{Y}$	n-p	$QMR = \frac{SQR}{n-p}$		
Total	SQT	n			

FV: fonte de variação, SQ: soma de quadrados, GI: graus de liberdade, QM: quadrado médio. Portanto, rejeita-se H_0 se $f_t \geq f_c$ ou, analogamente, se $p-valor=P(X \geq f_t|H_0) \leq \alpha$, em que f_t é o valor calculado da estatística F_t e $P(X \geq f_c|H_0)=\alpha, X \sim F_{(p,n-p)}$.

Anova para modelos sem intercepto: Exemplo 2 (sem intercepto)

FV	GL	SQ	QM	Estat. F	p-valor
Modelo	2	22,97	11,48	181,80	<0,0001
Resíduo	50	3,16	0,06		

Conclui-se que pelo menos um dos coeficientes β_{2i} , i=1,2 é diferente de zero. Ou seja, o IPB pré-escovação influencia o IPB pós-escovação para pelo menos um tipo de escova.

Previsão para uma única observação

- Já vimos como estimar pontual e intervalarmente a média $\mu_i = \mathcal{E}(Y_i) = \mathbf{X}_i' \boldsymbol{\beta}$ em que \mathbf{X}_i' é a i-ésima linha da matriz \mathbf{X} .
- Para isso usamos $\widehat{\mu}_i = \mathbf{X}_i'\widehat{\boldsymbol{\beta}}$. Note que $\mathcal{E}(\widehat{\mu}_i) = \mathbf{X}_i'\mathcal{E}(\widehat{\boldsymbol{\beta}}) = \mathbf{X}_i'\boldsymbol{\beta} = \mu_i$. Como medida de precisão adotamos o erro quadrático médio (EQM):

$$\mathcal{E}[(\widehat{\mu}_i - \mu_i)^2] = \mathcal{E}[(\widehat{\mu}_i - \mathcal{E}(\widehat{\mu}_i))^2] + [\mathcal{E}(\widehat{\mu}_i) - \mu_i]^2$$
$$= \mathcal{V}(\widehat{\mu}_i) + 0 = \mathcal{V}(\widehat{\mu}_i)$$

Previsão para uma única observação

- Note ainda que Y_h é uma variável aleatória e não, à rigor, um parâmetro (valor "fixo").
- Como estimador pontual adotaremos, novamente, $\widehat{\mu}_h = \widehat{Y}_h = \mathbf{X}_h' \widehat{\boldsymbol{\beta}}$. Note que $\mathcal{E}(\widehat{Y}_h - Y_h) = \mathcal{E}(\widehat{Y}_h) - \mathcal{E}(Y_h) = \mu_h - \mu_h = 0$, em que $\mu_h = \mathbf{X}_h' \widehat{\boldsymbol{\beta}}$. Logo $\mathcal{E}[(\widehat{Y}_h - Y_h)^2] = \mathcal{V}(\widehat{Y}_h - Y_h)$.
- Como medida de precisão adotamos:

$$\mathcal{E}[(\widehat{Y}_h - Y_h)^2] = \mathcal{E}[(\widehat{\mu}_h - \mathcal{E}(\widehat{\mu}_h))^2] + \mathcal{E}[(\mathcal{E}(\widehat{\mu}_h) - Y_h)^2]$$

$$= \mathcal{V}(\widehat{Y}_h) + \sigma^2 = \sigma^2 \mathbf{X}_h' (\mathbf{X}' \mathbf{X})^{-1} \mathbf{X}_h + \sigma^2$$

$$= \sigma^2 \left[\mathbf{X}_h' (\mathbf{X}' \mathbf{X})^{-1} \mathbf{X}_h + 1 \right] = \sigma_{\widehat{Y}_h}^2$$

Previsão para uma única observação

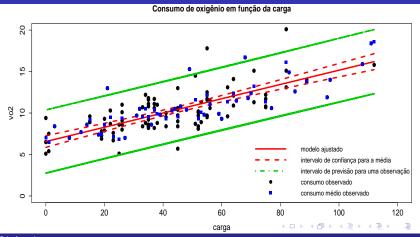
- Assim $\frac{\widehat{Y}_h Y_h}{\sqrt{\sigma_{\widehat{Y}_h}^2}} \sim N(0, 1)$.
- Pode-se provar que: $\frac{\widehat{Y}_h Y_h}{\sqrt{\widehat{\sigma}_{\widehat{Y}_h}^2}} \sim t_{(n-p)}$ em que $\widehat{\sigma}_{\widehat{Y}_h}^2 = \widehat{\sigma}^2 \left[\mathbf{X}_h'(\mathbf{X}'\mathbf{X})^{-1} \mathbf{X}_h + 1 \right].$
- Logo, $IP[Y_h; \gamma] = \left[\widehat{Y}_h t_{\frac{1+\gamma}{2}} \sqrt{\widehat{\sigma}_{\widehat{Y}_h}^2}; \widehat{Y}_h + t_{\frac{1+\gamma}{2}} \sqrt{\widehat{\sigma}_{\widehat{Y}_h}^2}\right]$, em que $P(X \leq t_{\frac{1+\gamma}{2}}) = \frac{1+\gamma}{2}, X \sim t_{(n-p)}$.

Estimação da média e previsão para uma única observação

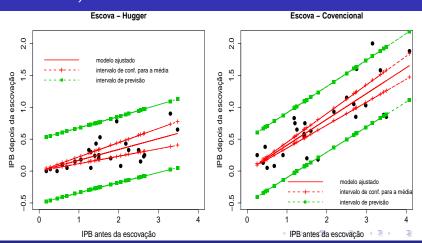
	Média (μ_i)	Observação (Y_h)
Estimador	$\widehat{\mu}_i = \mathbf{X}_i' \widehat{\boldsymbol{\beta}}$	$\widehat{\mu}_{ extsf{ extit{h}}} = \mathbf{X}_{ extsf{ extit{h}}}' \widehat{oldsymbol{eta}}$
Distr. do estimador	$N(\mu_i, \sigma^2 \mathbf{X}_i'(\mathbf{X}'\mathbf{X})^{-1}\mathbf{X}_i)$	$N(\mu_h, \sigma^2 \mathbf{X}_h'(\mathbf{X}'\mathbf{X})^{-1}\mathbf{X}_h)$
Medida de precisão	$\sigma^2 \mathbf{X}_i' (\mathbf{X}' \mathbf{X})^{-1} \mathbf{X}_i$	$\sigma^2 \left[1 + \mathbf{X}_h' (\mathbf{X}'\mathbf{X})^{-1} \mathbf{X}_h ight]$
Quantidade pivotal	$\frac{\widehat{\mu}_i - \mu_i}{\widehat{\sigma} \sqrt{\mathbf{X}_i'(\mathbf{X}'\mathbf{X})^{-1}\mathbf{X}_i}}$	$\frac{\widehat{\mu}_h - Y_h}{\widehat{\sigma} \left[\sqrt{1 + \mathbf{X}_h'(\mathbf{X}'\mathbf{X})^{-1} \mathbf{X}_h} \right]}$
$IC(.,\gamma)$ ou $IP(.,\gamma)$	$\widehat{\mu}_i \pm t_{rac{1+\gamma}{2}} \widehat{\sigma} \sqrt{\mathbf{X}_i'(\mathbf{X}'\mathbf{X})^{-1}\mathbf{X}_i}$	$\widehat{\mu}_h \pm t_{rac{1+\gamma}{2}} \widehat{\sigma} \sqrt{1+ {f X}_h' ({f X}'{f X})^{-1} {f X}_h}$

em que $P(X \le t_{\frac{1+\gamma}{2}}) = \frac{1+\gamma}{2}, X \sim t_{(n-p)}$

Exemplo 1: ajuste para o modelo final (sem o fator etiologia)



Exemplo 2: ajuste para o modelo final (sem considerar o fator "sexo")



Exemplo 3: ajuste para o modelo final (quadrático)

