Processos Lineares

Prof. Caio Azevedo

- Processos lineares desempenham um papel muito importante em ST.
- Isso se deve ao fato de possuírem diversas propriedades importantes (interessantes) e também por permitirem a obtenção de resultados de forma menos complicada.
- Além disso, muitos modelos que veremos estão relacionados à esse tipo de processo.
- Uma classe importante de processos lineares que veremos nas próximas aulas é a família ARMA (auto-regressivos de médias móveis) (e suas duas subclasses (AR - Autor-regressivos e MA-médias móveis).

■ Um processo $\{Y_t\}$ é dito ser um Processo Linear se puder ser escrito como:

$$Y_t = \sum_{j=-\infty}^{\infty} \psi_j \epsilon_{t-j}, t = 1, 2, \dots,$$
 (1)

em que $\{\epsilon_t\}$ é um ruído branco estrito (i.e., $\epsilon_t \perp \epsilon_k$, $\forall t \neq k$) e $\sum_{j=0}^{\infty} |\psi_j| < \infty \text{ (embora alguns autores considerem necessário apenas}$ que $\sum_{j=0}^{\infty} \psi_j^2 < \infty \text{)}.$

■ Um processo linear $\{Y_t\}$ é dito ser $MA(\infty)$ (média móvel infinito ou "infinity moving average") se puder ser escrito como:

$$Y_t = \sum_{j=0}^{\infty} \psi_j \epsilon_{t-j}, t = 1, 2, \dots,$$
 (2)

em que $\{\epsilon_t\}$ é um ruído branco estrito (i.e., $\epsilon_t \perp \epsilon_k$, $\forall t \neq k$) e $\sum_{j=0}^{\infty} |\psi_j| < \infty \text{ (embora alguns autores considerem necessário apenas}$ que $\sum_{j=0}^{\infty} \psi_j^2 < \infty \text{)}.$

- Ou seja um Processo Linear $MA(\infty)$ é um Processo Linear em que $\psi_j = 0, \forall j < 0$ (veja Equação (1)).
- Note que a equação (2) equivale a dizer que o processo corresponde à uma série matemática de variáveis independentes (ϵ_t) , ponderadas por coeficientes não aleatórios (ψ_i) .
- Uma ferramenta importante para definirmos e obtermos propriedades de processos lineares é o operador defasagem (B), definido por:

$$B^k Y_t = Y_{t-k}$$
.

Operador defasagem

Exemplo: Considere Y_t um processo MA(∞), então:

$$Y_{t} = \sum_{j=0}^{\infty} \psi_{j} \epsilon_{t-j} = \psi_{0} \epsilon_{t} + \psi_{1} \epsilon_{t-1} + \psi_{2} \epsilon_{t-2} + \dots$$

$$= \psi_{0} \epsilon_{t} + \psi_{1} B \epsilon_{t} + \psi_{2} B^{2} \epsilon_{t} + \dots$$

$$= (\psi_{0} + \psi_{1} B + \psi_{2} B^{2} + \dots) \epsilon_{t} = \Psi(B) \epsilon_{t}$$
(3)

em que $\Psi(B) = \sum_{j=0}^{\infty} \psi_j B^j$.

- Assim, o polinômio $\Psi(B)$ pode ser visto como um Filtro Linear, o qual, aplicado no processo de entrada $\{\epsilon_t\}$ produz a saída $\{Y_t\}$.
- Seja Y_t um processo AR(1) estacionário (e suponha que $\epsilon_t \sim RB(0, \sigma^2)$), ou seja:

$$Y_t = \phi Y_{t-1} + \epsilon_t, |\phi| < 1 \tag{4}$$

Usando o operador defasagem na Equação (4), temos que:

$$Y_{t} = \phi Y_{t-1} + \epsilon_{t} \to Y_{t} - \phi Y_{t-1} = \epsilon_{t}$$

$$\to Y_{t} - \phi B Y_{t} = \epsilon_{t} \to (1 - \phi B) Y_{t} = \epsilon_{t}$$

$$Y_{t} = \frac{1}{1 - \phi B} \epsilon_{t}$$
(5)

■ Portanto, igualando (3) a (5) vem que:

$$\frac{1}{1 - \phi B} \epsilon_t = (\psi_0 B^0 + \psi_1 B + \psi_2 B^2 + \dots) \epsilon_t$$

$$\rightarrow 1 = (1 - \phi B) (\psi_0 B^0 + \psi_1 B + \psi_2 B^2 + \dots)$$

$$\rightarrow 1 = \psi_0 B^0 + (\psi_1 - \psi_0 \phi) B + (\psi_2 - \psi_1 \phi) B^2 + \dots (6)$$

Na equação (6) temos dois polinômios em B, que serão iguais se, e somente se, os respectivos coeficientes o forem, ou seja:

$$\begin{array}{rcl} \psi_0 & = & 1 \\ \psi_1 - \psi_0 \phi & = & 0 \rightarrow \psi_1 = \phi \\ \psi_2 - \psi_1 \phi & = & 0 \rightarrow \psi_2 = \phi^2 \\ & & \vdots \\ \psi_k - \psi_{k-1} \phi & = & 0 \rightarrow \psi_k = \phi^k \\ & \vdots \end{array}$$

■ Analogamente, da fórmula da soma de uma PG infinita temos que:

$$\frac{1}{1 - \phi B} = \sum_{j=0}^{\infty} (\phi B)^j = \sum_{j=0}^{\infty} \phi^j B^j,$$

portanto:

$$Y_t = \frac{1}{1 - \phi B} \epsilon_t = \sum_{j=0}^{\infty} \phi^j B^j \epsilon_t = \sum_{j=0}^{\infty} \phi^j \epsilon_{t-j},$$

logo, Y_t é um processo MA (∞) com $\psi_j=\phi^j$. Além disso, note que se $|\phi|<1$ então $\sum_{i=0}^\infty |\phi^j|<\infty$ e $\sum_{i=0}^\infty \left(\phi^j\right)^2<\infty$.

- O exemplo anterior ilustra um procedimento para obter a representação $MA(\infty)$ de um processo.
- De fato, seja $Y_t = A(B)\epsilon_t$ com $A(B) = a_0 + a_1B + a_2B^2 + ...$
- De (3) obtemos que $A(B) = \Psi(B)$, então os coeficientes ψ_j são encontrados resolvendo essa igualdade de polinômios.
- O seguinte resultado (próximo slide) estabelece que se aplicarmos um filtro linear a um processo estacionário, então o resultado é outro processo estacionário.

Definição: Seja Y_t um processo estacionário com $E(Y_t) = 0$ e (função de) autocovariância $\gamma(h)$. Se $\sum_{j} \psi_{j}^{2} < \infty$ então $X_{t} =$

 $\sum \psi_i Y_{t-i}$ é estacionário com esperança zero e autocovariância $i=-\infty$ dada por:

$$\gamma_X(h) = Cov \left(\sum_{j=-\infty}^{\infty} \psi_j Y_{t-j}, \sum_{k=-\infty}^{\infty} \psi_k Y_{t-k+h} \right)$$

$$= \sum_{j=-\infty}^{\infty} \sum_{k=-\infty}^{\infty} \psi_j \psi_k Cov(Y_{t-j}, Y_{t-k+h})$$

$$= \sum_{j=-\infty}^{\infty} \sum_{k=-\infty}^{\infty} \psi_j \psi_k \gamma(h+k-j).$$

■ Mais ainda, se Y_t for um ruído branco então

$$\gamma_X(h) = \sigma^2 \sum_{j=-\infty}^{\infty} \psi_j \psi_{j+h}.$$

 A expressão acima permite calcular as autocovariancias em processos lineares.

Exemplo: No caso do modelo AR(1) (estacionário) provamos que Y_t pode ser representado como um processo MA(∞) do tipo

$$Y_t = \sum_{j=0}^{\infty} \psi_j \epsilon_{t-j}, ext{ em que } \psi_j = \phi^j ext{ e } \epsilon_t \sim \mathit{RB}(0,\sigma^2).$$

- Logo $\gamma(h) = \sigma^2 \sum_{j=0}^{\infty} \phi^j \phi^{j+h} = \sigma^2 \phi^h \sum_{j=0}^{\infty} \phi^{2j} = \sigma^2 \phi^h \frac{1}{1 \phi^2}.$
- Como $\gamma(0) = \sigma^2/(1-\phi^2)$ então sua função de autocorrelação é dada por $\rho(h) = \phi^h$.

- **Teorema:** Seja Y_t um processo linear satisfazendo $\sum_{j=-\infty} \psi_j^2 < \infty$, então $|\gamma(h)| \to 0$ quando $h \to \infty$. Ou seja, a FAC tende à zero à medida que a distância entre as observação de uma ST aumenta.
- Existe uma classe de processos estacionários que não satisfazem o teorema acima e que será de nosso interesse estudar para definirmos o teorema de Wold.
- Tais processos são conhecidos como harmônicos ou singulares.

Processos singulares

• Y_t é dito ser um processo singular se satisfaz:

$$Y_t = \sum_{j=-\infty}^{\infty} \varphi_j e^{i\lambda_j t} \epsilon_j, \ t \in \mathbb{Z},$$

em que $\{\varphi_j\}$ é uma sequência de constantes tais que $\sum_{j=-\infty}^{\infty} \varphi_j^2 < \infty$, $\lambda_i \in (-\pi, \pi], \ \forall j \in \epsilon_i \sim RB(0, \sigma^2)$.

Processos singulares

É possível demonstrar que um processo singular é estacionário com função de autocovariância:

$$\gamma(h) = \sigma^2 \sum_{j=-\infty}^{\infty} \varphi_j^2 e^{i\lambda_j h}, \ h \in \mathbb{Z},$$

logo, é possível mostrar que $|\gamma(h)| \not\to 0$ quando $h \to \infty$ (lembre que $e^{ix} = \cos(x) + i\sin(x)$).

Teorema de Wold

■ Teorema de Wold: Todo processo estacionário $\{Y_t\}$ pode ser escrito como $Y_t = U_t + V_t$ em que $U_t = \sum_{j=0}^{\infty} \psi_j \epsilon_{t-j}$ é um processo $\mathrm{MA}(\infty)$, $V_t = \sum_{j=-\infty}^{\infty} \varphi_j e^{i\lambda_j t} \varepsilon_j$ é um processo singular, $\{\epsilon_t\}$ e $\{\varepsilon_t\}$ e são ruídos brancos com $E(\epsilon_t) = E(\varepsilon_t) = 0$, $Var(\epsilon_t) < \infty$ e $Var(\varepsilon_t) < \infty$. Além disso $\{\psi_j\}$, $\{\varphi_j\}$, $\{\lambda_j\}$ satisfazem $\sum_{j=0}^{\infty} \psi_j^2 < \infty$, $\sum_{j=0}^{\infty} \varphi_j^2 < \infty$, $\lambda_j \in (-\pi, \pi]$ e $Cov(U_t, V_t) = 0, \forall t$.

Comentários

- Os resultados anteriores ajudar-nos-ão a identificar modelos mais apropriados para as ST de interesse.
- Também serão úteis para obtenção de outros resultados de interesse e processos inferenciais.