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Introdução e hipóteses mais gerais

Já vimos como realizar comparações de interesse (em termos de

igualdade de médias, existência de interação etc), através dos testes

para comparações do tipo

H0 : Cβ = 0 vs H1 : Cβ ̸= 0

O teste visto para testar a hipótese acima, pode ser facilmente

adaptado para testar as hipóteses

H0 : C(r×p)β(p×1) = M(r×1) vs H1 : C(r×p)β(p×1) ̸= M(r×1)
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Introdução e hipóteses mais gerais

Basta utilizar a seguinte estat́ıstica

Q =
1

r σ̂2

(
C β̂ − M

)′ (
C (X ′X )

−1 C ′
)−1 (

C β̂ − M
)
=

V

r σ̂2
,

e proceder da mesma forma anterior (M = 0).

(exerćıcio) Podemos provar que, sob H0,

Q ∼ F(r ,n−p), p = ncol(X )
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Introdução e hipóteses mais gerais

(Cont.) e, sob H1,

Q ∼ F(r ,n−p,δ), δ =
1

σ2
(Cβ − M)′

(
C (X ′X )

−1 C ′
)−1

(Cβ − M) .

Caso M = 0, então, sob H1

Q ∼ F(r ,n−p,δ), δ =
1

σ2
(Cβ)′

(
C (X ′X )

−1 C ′
)−1

(Cβ) .
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Introdução e hipóteses mais gerais

Ideia para provar o resultado. Prove que:

Q =
V /r

σ̂2/σ2

Depois, utilize (provando) o fato de que

V = (Y − AM)′ B (Y − AM)

SQR = (Y − AM)′ (I − H) (Y − AM) .

(cont. no próximo slide)
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Introdução e hipóteses mais gerais

(cont.) em que

A = XC ′(CC ′)−1

B =
1

σ2
X (X ′X )−1C ′[C (X ′X )−1C ′]−1C (X ′X )

−1 X ′.

Assim, deve-se também verificar a ortogonalidade entre

BΣ
I − H
σ2

,

em que Σ = σ2I .
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TCM (Testes de Comparação Múltipla)

Entretanto, existem outros testes que servem para realizar

comparações espećıficas (não tão gerais quanto as comparações de

tipo Cβ = M).

Veremos alguns desses testes.

Uma preocupação (dado que podem existir muitas comparações de

interesse) é controlar o ńıvel de significância geral (considerando-se

todos os testes).
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TCM (Testes de Comparação Múltipla)

No caso de comparações do tipo Cβ é aconselhável usar, em cada

teste, um α∗ = α/m, em que α é o ńıvel de significância usado para

os testes da tabela ANOVA e m é o número total de comparações de

interesse.

O processo acima é chamado de controle de Bonferroni.

Os testes que veremos controlam, cada um à sua maneira, o ńıvel de

significância global.
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TCM

Vamos nos concentrar no PCA com um único fator (embora os

desenvolvimentos possam ser estendidos para outras planejamentos).

Primeiramente, lembremos o conceito de contraste.

Um vetor

C(1×p) = [c1 c2 ... cp],

é dito ser um contraste se

k∑
i=1

nici = 0.
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TCM

No caso de experimentos balanceados, basta que

k∑
i=1

ci = 0.

Uma matriz C(q×p) é dita ser uma matriz de contrastes se suas

linhas forem contrastes.
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TCM

Lembrando: temos µ1, µ2, ..., µk médias e supomos que o teste F

relativo à ANOVA rejeitou a igualdade simultânea das médias

(embora isto não seja imprescind́ıvel).

Nosso interesse então é testar hipóteses do tipo

H0 : C(1×k)µ(k×1) = 0 vs H1 : C(1×k)µ(k×1) ̸= 0

em que µ = (µ1, µ2, ..., µk)
′.
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TCM

Defina, para um dado C , o parâmetro

γ = Cµ =
k∑

i=1

ciµi .

Um estimador natural para γ é

γ̂ =
k∑

i=1

ciY i ,

em que

Y i =
1

ni

ni∑
j=1

Yij ,

(estimador de ḿınimos quadrados do modelo completo).
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TCM

Portanto, tem-se que

V(γ̂) = σ2
k∑

i=1

c2i
ni

.

Se o experimento for balanceado, temos que

V(γ̂) = σ2

n

k∑
i=1

c2i ,

onde n é o número de unidades experimentais em cada tratamento.

Um estimador para variância de γ̂ é dado por

V̂(γ̂) = σ̂2
k∑

i=1

c2i
ni

.
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TCM

Dessa forma, temos que

γ̂ − γ√
V̂(γ̂)

∼ t(n−k).

Assim,

IC [γ; 1− α] =

[
γ̂ − t(α/2,n−k)

√
V̂(γ̂); γ̂ + t(α/2,n−k)

√
V̂(γ̂)

]
,

seria um IC com cc γ.
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TCM

Portanto, podemos construir intervalos de confiança para contrastes

de interesse e utilizá-los para avaliar a veracidade das hipóteses em

questão.

Seja D = (d1, d2, ..., dk)
′ um outro contraste.

Dizemos que C e D são contrastes ortogonais se

k∑
i=1

nicidi = 0.
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TCM

(cont.) No caso de um experimento balanceado, basta que

k∑
i=1

cidi = 0.

Em geral, para um conjunto de k tratamentos, podemos definir

diversos contrastes (ortogonais) entre si, que representem hipóteses

de interesse.

Retomemos o exemplo 2 (dados de absorbância).
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Descrição do Exemplo 2

Quanto maior a absorbância, melhor o solvente.

Unidade experimental: 10 gramas de polpa do fruto de baguaçú.

Casualização: a partir de 1 kg de polpa, foram sendo retiradas

amostras de 10 gramas, onde foram aplicados os tratamentos, numa

ordem aleatória.

Experimento balanceado : mesmo número de observações (unidades

experimentais) por ńıvel do fator.

Lembrando: tratamentos 1,2,3, 4 e 5, representam respectivamente

os tipos de solvente E50, EAW, MAW, E70, M1M.
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Descrição do Exemplo 2

Hipóteses de interesse:

H0 : 2µ1 + 2µ2 + 2µ4 = 3µ3 + 3µ5

H0 : µ1 + µ2 = 2µ4

H0 : µ1 = µ2

H0 : µ3 = µ5
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Descrição do Exemplo 2

Implicam nos seguintes contrastes

C1 =
[
2 2− 3 2 −3

]
C2 =

[
1 1 0 −2 0

]
C3 =

[
1 −1 0 0 0

]
C4 =

[
0 0 1 0 −1

]
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Método de Scheffé para comparação de contrastes

Considere um conjunto de m contrastes de interesse dados por

γu = c1uµ1 + c2uµ2 + ...+ ckuµk , u = 1, ...,m.

Os respectivos estimadores são dados por:

γ̂u = δu = c1uY 1 + c2uY 2 + ...+ ckuY k , u = 1, ...,m.
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Método de Scheffé para comparação de contrastes

O erro-padrão associado ao u-ésimo estimador, é dado por

Sδu =

√√√√QMR
k∑

i=1

c2iu
ni

,

lembrando que

QMR = Quadrado médio residual = σ̂2.
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Método de Scheffé para comparação de contrastes (cont.)

Scheffé estabeleceu um valor cŕıtico para o teste, da seguinte forma:

Rejeita-se H0 se

|δu| > Sα,u = Sδu

√
(k − 1)Fα,k−1,n−k .

em que α é o ńıvel de significância apropriado e

P(F > Fα,k−1,n−k) = α,F ∼ F(k−1,n−k).

Scheffé provou que a probabilidade do erro do tipo I para cada um

dos testes não ultrapassa α.
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Aplicando no exemplo

As estimativas dos contrastes 1 e 2 são dadas por:

δ1 = 1, 488; δ2 = −0, 109.

respectivamente, e os respectivos erros-padrão, são dados por

Sδ1 = 0, 061;Sδ2 = 0, 110.

Assim, dado que para α = 0, 05, temos que

F(0,05,4,20) = 2, 866.
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Aplicando no exemplo

Os valores cŕıticos para cada teste, são dados por:

S0,05,1 = 0, 209;S0,05,2 = 0, 094.

Portanto, |δ1| > 0, 209 e |δ2| < 0, 094.

Assim, rejeita-se a primeira hipótese e não se rejeita a segunda.
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Utilizando o R

O teste de Scheffé também permite comparar médias par a par,

dado que todas essas comparações estão relacionadas à contrastes.

O procedimento é similar ao anterior.

Existe uma pacote no R chamado agricolae que permite fazer

comparações desse tipo, usando o método de Scheffé e outros que

veremos.

Vamos utilizá-lo em nosso exemplo.

Em geral, na sáıda das funções do pacote agricolae que executam

TCM, letras iguais indicam que as médias populacionais não são

estatisticamente diferentes.
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Teste de Scheffe no R

ranova<-aov(mabsor~solvfac)

rsch<-scheffe.test(ranova,"solvfac",group=TRUE)
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Resultado da aplicação do teste de Scheffe

tratamento Média Grupo n erro-padrão

E70 0,61 a 5 0,01

EAW 0,57 ab 5 0,01

E50 0,54 b 5 0,01

MAW 0,45 c 5 0,01

M1M 0,20 d 5 0,01
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Testes espećıficos para comparação de pares de médias

Apesar do teste de Scheffé também permite comparação de médias

duas a duas, ele tende a ser muito conservativo (rejeita igualdades

entre as médias menos do que deveria).

Veremos outros testes: Tukey, LSD de Fisher, Duncan e Dunnet.

As hipóteses são

H0 : µi = µj vs H1 : µi ̸= µj ,∀i , j .
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Teste de Tukey

O teste de Tukey faz uso de percentis da distribuição da seguinte

estat́ıstica

Q =
Ymax − Ymin√

QMR/n
, (1)

em que n é o tamanho amostral para cada tratamento.

Se o experimento for desbalanceado, pode-ser usar uma média

aritmética dos tamanhos amostrais.
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Teste de Tukey

Além disso Ymax é a maior média amostral e Ymin é a menor média

amostral.

O ńıvel de significância global (considerando todos os testes) é

exatamente igual à α.
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Teste de Tukey (cont.)

Rejeita-se H0, para um dado α, se

|Y i − Y j | > Tα,

em que Y i média amostral do i-ésimo tratamento e

Tα =
qα(k , f )√

2

√
QMR

(
1

ni
+

1

nj

)
f é o número de graus de liberdade do reśıduo e qα(k, f ) é o quantil

de ordem α da distribuição da estat́ıstica (1)
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Teste de Tukey no R

ranova<-aov(mabsor~solvfac)

rtuk<-HSD.test(ranova,"solvfac",group=TRUE)
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Resultado da aplicação do teste de Tukey

tratamento Média Grupo n erro-padrão

E70 0,61 a 5 0,01

EAW 0,57 ab 5 0,01

E50 0,54 b 5 0,01

MAW 0,45 c 5 0,01

M1M 0,20 d 5 0,01
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Teste LSD de Fisher

O teste LSD (“Least significance difference”) de Fisher, baseia-se na

seguinte estat́ıstica

T =
Y i − Y j√

QMR
(

1
ni
+ 1

nj

) .
Rejeita-se H0 se

|Y i − Y j | > t(α/2,n−k)

√
QMR

(
1

ni
+

1

nj

)
,

em que P(T > t(α/2,n−k)) = α/2,T ∼ t(n−k)
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Teste LSD de Fisher no R

ranova<-aov(mabsor~solvfac)

rlsd<-LSD.test(ranova,"solvfac",group=TRUE)
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Resultado da aplicação do teste LSD

Tratamento média grupo n erro-padrão LIIC LSIC

E70 0,61 a 5 0,01 0,59 0,62

EAW 0,57 b 5 0,01 0,55 0,58

E50 0,54 b 5 0,01 0,51 0,56

MAW 0,45 c 5 0,02 0,41 0,48

M1M 0,20 d 5 0,01 0,17 0,22
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Teste de Duncan

No teste de Duncan as médias amostrais são dispostas de modo

crescente e para cada uma delas é calculado um erro-padrão:

SY i
=

√
QMR/nh, nh =

k∑k
i=1 n

−1
i

.

Obtem-se quantis tabelados por Duncan, denotados por

rα(p, f ), p = 2, 3, ..., k , em que α é o ńıvel de significância e f são

os graus de liberdade do reśıduo.

Calcula-se Rp = rα(p, f )SY i
, p = 2, 3, .., k

Compara-se, então a maior média com a menor (tal diferença é

comparada com Rk).
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Teste de Duncan (cont.)

Depois, compara-se a maior média com a segunda menor (tal

diferença é comparada com Rk−1).

Continua-se o processo acima até que todas as médias tenham sido

comparadas com a maior.

Depois, compara-se a segunda maior com a menor (tal diferença é

comparada com Rk−1).

Repete-se o processo até que todas as
k(k − 1)

2
diferenças tenham

sido consideradas.
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Teste de Duncan (cont.)

Se a diferença observada for maior que R(.) rejeita-se H0.

Para evitar-se contradições, duas médias não serão consideradas

diferentes, se elas estiverem entre duas outras médias que não foram

consideradas diferentes.
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Teste de Duncan no R

ranova<-aov(mabsor~solvfac)

rdun<-duncan.test(ranova,"solvfac",group=TRUE)
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Resultado da aplicação do teste de Duncan

tratamento Média Grupo n erro-padrão

E70 0,61 a 5 0,01

EAW 0,57 b 5 0,01

E50 0,54 b 5 0,01

MAW 0,45 c 5 0,02

M1M 0,20 d 5 0,01
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Teste de Dunnett (comparação com um tratamento

controle)

Seja µr , r ∈ {1, 2, ..., k} a média correspondente ao tratamento

controle.

As hipóteses de interesse são:

H0 : µi = µr vs µi ̸= µr ,∀i ̸= r .

Rejeita-se H0 se

|Y i − Y j | > dα(k − 1, f )

√
QMR

(
1

ni
+

1

nr

)
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Teste de Dunnett (cont.)

(cont.) em que a constante dα(k − 1, f ) corresponde à valores

tabelados por Dunnet, para um dado ńıvel de significância α e graus

de liberdade para o reśıduo f .

Neste caso, pode-se usar o pacote multcomp.

Rejeita-se H0 se

|Y i − Y j | > dα(k − 1, f )

√
QMR

(
1

ni
+

1

nr

)
em que a constante dα(k − 1, f ) corresponde à valores tabelados por

Dunnet, para um dado ńıvel de significância α e graus de liberdade

para o reśıduo f .
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Teste de Duncan no R

ranova<-aov(mabsor~solvfac)

rdun<-duncan.test(ranova,"solvfac",group=TRUE)
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Teste de Dunnet no R

ranova<-aov(mabsor~solvfac)

rdunn<- glht(ranova, linfct=mcp(solvfac="Dunnett"))
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Resultado da aplicação do teste de Dunnet

Hipótese Estimativa Erro-padrão Estat́ıstica pvalor

E70 - E50 = 0 0,07 0,02 4,30 0,001

EAW - E50 = 0 0,03 0,02 1,73 0,279

M1M - E50 = 0 -0,34 0,02 -21,48 < 0,001

MAW - E50 = 0 -0,09 0,02 -5,62 < 0,001
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