MI - 402 Inferência Estatística Segundo semestre de 2019 Lista de exercícios VI

Observação: Nas questões envolvendo obtenção de intervalos de confiança, considere um nível de confiança de $\gamma, \gamma \in (0,1)$. A menos que se mencione o contrário, os intervalos solicitados são bilaterais.

- 1. Resolva as questões deixadas em sala de aula.
- 2. Para cada um dos modelos probabilísticos vistos (listas, aula, provas e mini-testes) encontre:
 - a) Ao menos uma quantidade pivotal ou conjunto de quantidades pivotais (corresponden ao número de parâmetros).
 - b) Ao menos um $IC(\theta; \gamma)$ (para cada parâmetro).
 - c) Se possível, um IC de comprimento (comprimento esperado) mínimo, dentro da classe de IC's encontrada no item b).
- 3. Seja $X_1, ..., X_n$ uma amostra aleatória de X em que:

$$f_X(x;\theta) = \frac{1}{\theta^2} x e^{-\frac{x}{\theta}} \mathbb{1}_{(0,\infty)}(x), \theta > 0.$$

Considere as hipóteses $H_0: \theta = 1$ vs $H_1: \theta \neq 1$. Responda os itens:

- a) Obtenha as estatísticas da razão de verossimilhanças, de Wald e escore e suas respectivas distribuições assintóticas
- b) Para n = 30 e $\overline{x} = 2, 4$, encontre o p-valor de cada uma das estatísticas obtidas no item a). Não use computador.
- 4. É realizado um experimento para comparar dois tipos de drogas no tratamento de certa doença (tempo de cura). A droga A é ministrada em n_a pacientes e a droga B a n_b pacientes. Os resultados podem ser considerados como sendo duas amostras aleatórias independentes de duas populações exponenciais (com a parametrização adotada em classe). Responda os itens:

- a) Encontre um intervalo de confiança exato de 90% para a razão entre os tempos médios de cura dos dois tratamentos.
- b) Encontre um intervalo de confiança assintótico de 90% para a diferença entre os tempos médios de cura dos dois tratamentos.
- c) Utilize os intervalos de confiança anteriores para mostrar como testar as hipóteses

$$H_0: \theta_a = \theta_b \text{ vs } H_0: \theta_a \neq \theta_b$$

ao nível de significância de 10%, em que θ_a e θ_b são os tempos médios de cura dos tratamentos A e B, respectivamente. Mostre também como calcular o p-valor para um dado resultado amostral.

- 5. Casella, G. & Berger, R.L. (2002). Statistical Inference, exercícios: 9.3, 9.7, 9.9, 9.17.
- 6. Seja $X_1, ..., X_n$ uma a.a de $X \sim N(\theta, \theta), \theta > 0$. Dê um exemplo de quantidade pivotal e a use para encontrar um intervalo de confiança.
- 7. Considere as questões 3, 4, 5, 6 e 7 da Lista VI encontre quantidades pivotais para os parâmetros desconhecidos. Com tais q.p.'s encontre intervalos de confiança.
- 8. Seja $X_1, ..., X_n$ uma amostra aleatória de $X \sim Beta(\theta, 1)$. Responda os itens:
 - a) Encontre uma quantidade pivotal para θ .
 - b) Encontre um intervalo de confiança para θ com base na q.p. encontrada no item a).
 - c) Encontre um intervalo de confiança assintótico para θ^2 .
- 9. Seja $X_1, ..., X_n$ uma a.a de $X \sim N(\mu, \sigma^2)$. Responda os itens:
 - a) Considerando testes uniformemente mais poderosos para μ , construa intervalos de confiança unilaterais uniformemente mais acurados (ICUUMA), à esquerda e à direita, para μ . Considere σ^2 conhecido.
 - b) Repita o item a) considerando σ^2 desconhecido.
 - c) Considerando testes uniformemente mais poderosos para σ^2 , construa intervalos de confiança unilaterais uniformemente mais acurados (ICUUMA), à esquerda e à direita, para σ^2 . Considere μ conhecido.
 - d) Repita o item b) considerando μ desconhecido.

- 10. Seja $X_1, ..., X_n$ uma amostra aleatória da densidade exponencial com valor esperado θ . Encontre o intervalo de confiança unilateral para θ do tipo [0; T(X)] que seja Uniformemente Mais Acurado (UMA).
- 11. Seja uma $X1, ..., X_n$ uma amostra aleatória de X em que $F_X(x; \boldsymbol{\theta}) = \exp{-(e^{-\frac{x-\alpha}{\beta}})}, x \in (-\infty, \infty), \beta > 0, \alpha \in (-\infty, \infty)$. Considere β conhecido. Encontre uma quantidade pivotal para α baseada em Y_n (máximo) e construa um IC para $e^{-\alpha}$.