Aula de Exercícios: AAS e AE

Prof. Caio Azevedo

- Em uma população com N=6, tem-se $\boldsymbol{d}=(8,2,2,11,4,7)$. Um plano AASs de tamanho n=2 é adotado.
 - a) Encontre a distribuição de \overline{Y} e mostre que $\mathcal{E}(\overline{Y}) = \mu$.
 - b) Mostre que $\mathcal{V}(\overline{Y})$ é como dada pelo Corolário 3.4.
 - c) Encontre a distribuição de S^2 , definido em (3.11). Mostre que $\mathcal{E}(S^2) = s^2$.
- Do enunciado pode-se calcular $\mu = 5,67$, $\sigma^2 = 10,89$ e $s^2 = 13,07$.

Exercício 3.1 - letra a)

Tabela: Distribuição amostral de \overline{Y} usando o plano AASs.

s	12	13	14	15	16	21	23	24	25	26	31	32	34	35	36
P(s)	1 30														
\overline{Y}	5,0	5,0	9,5	6,0	7,5	5,0	2,0	6,5	3,0	4,5	5,0	2,0	6,5	3,0	4,5

Exercício 3.1 - letra a)

Tabela: Distribuição amostral de \overline{Y} usando o plano AASs.

s	41	42	43	45	46	51	52	53	54	56	61	62	63	64	65
P(<i>s</i>)	1 30	1 30	1 30	1 30	1 30	$\frac{1}{30}$	1 30	1 30	1 30	1 30	1 30	1 30	$\frac{1}{30}$	$\frac{1}{30}$	1/30
\overline{Y}	9,5	6,5	6,5	7,5	9,0	6,0	3,0	3,0	7,5	5,5	7,5	4,5	4,5	9,0	5,5

Exercício 3.1 - letra a)

Tabela: Distribuição amostral de \overline{Y} usando o plano AASs.

Índice	1	2	3	4	5	6	7	8	9	10
	2,00	3,00	4,50	5,00	5,50	6,00	6,50	7,50	9,00	9,50
$P(\bar{y}_i)$	0,07	0,13	0,13	0,13	0,07	0,07	0,13	0,13	0,07	0,07

■ Logo, temos que $E(\overline{Y}) = \sum_{i=1}^{10} \overline{y}_i P(\overline{y}_i) = 5,67 = \mu$.

Exercício 3.1 - letra b)

Do corolário 3.4, temos que:

$$Var(\bar{Y}) = (1-f)\frac{s^2}{n} = \left(1-\frac{2}{6}\right)\frac{13,07}{2} = 4,36.$$

■ Do item a), temos que $E(\overline{Y}) = 5,67$, $\mathcal{E}(\overline{Y}^2) = \sum_{i=1}^{10} \overline{y}_i^2 P(\overline{y}_i) = 36,47$ e portanto $Var(\overline{Y}) = 36,47 - 5,67^2 = 4,36 = Var(\overline{Y})$.

Exercício 3.1 - letra c)

Tabela: Distribuição amostral de S^2 usando o plano AASs.

s	12	13	14	15	16	21	23	24	25	26	31	32	34	35	36
P(s)	1 30														
S ²	18,0	18,0	4,5	8,0	0,5	18,0	0,0	40,5	2,0	12,5	18,0	0,0	40,5	2,0	12,5

Exercício 3.1 - letra c)

Tabela: Distribuição amostral de S^2 usando o plano AASs.

s	41	42	43	45	46	51	52	53	54	56	61	62	63	64	65
P(<i>s</i>)	1 30														
S^2	4,5	40,5	40,5	24,5	8,0	8,0	2,0	2,0	24,5	4,5	0,5	12,5	12,5	8,0	4,5

Exercício 3.1 - letra c)

Tabela: Distribuição amostral de S^2 usando o plano AASs.

Índice	1	2	3	4	5	6	7	8	9
s_i^2	0,00	0,50	2,00	4,50	8,00	12,50	18,00	24,50	40,50
$P(s_i^2)$	0,07	0,07	0,13	0,13	0,13	0,13	0,13	0,07	0,13

■ Logo, temos que $E(S^2) = \sum_{i=1}^9 s_i^2 P(s_i^2) = 13,07 = s^2$.

- Considere o Exercício 3.1 agora com o plano AASc.
 - a) Encontre a distribuição de \overline{Y} e mostre que $E(\overline{Y}) = \mu$.
 - b) Encontre $Var(\overline{Y})$ diretamente e utilizando o resultado (3.9).
 - c) Suponha que uma AAS com reposição de tamanho n=10 retirada da população apresenta $\overline{y}=5,435$ e $\widetilde{s}^2=3,6$. Encontre um intervalo de confiança para μ com $\alpha=0,02$ ($\gamma=1-\alpha=0,98$).
- Do enunciado temos, novamente, que $\mu=5,67$, $\sigma^2=10,89$ e $s^2=13,07$.

Exercício 3.2 - letra a)

Tabela: Distribuição amostral de \overline{Y} usando o plano AASc.

s	11	12	13	14	15	16	21	22	23	24	25	26	31	32	33	34	35	36
P(s) <u>v</u>											$\frac{1}{36}$ 3.0							

Exercício 3.2 - letra a)

Tabela: Distribuição amostral de \overline{Y} usando o plano AASc.

- s	41	42	43	44	45	46	51	52	53	54	55	56	61	62	63	64	65	66
P(s)	1 36																	
\bar{Y}	9,5	6,5	6,5	11,0	7,5	9,0	6,0	3,0	3,0	7,5	4,0	5,5	7,5	4,5	4,5	9,0	5,5	7,0

Exercício 3.2 - letra a)

Tabela: Distribuição amostral de \overline{Y} usando o plano AASc.

Índice	1	2	3	4	5	6	7	8	9	10	11	12	13	14
\overline{y}_i	2,00	3,00	4,00	4,50	5,00	5,50	6,00	6,50	7,00	7,50	8,00	9,00	9,50	11,00
$P(\overline{y}_i)$	0,11	0,11	0,03	0,11	0,11	0,06	0,06	0,11	0,03	0,11	0,03	0,06	0,06	0,03

■ Logo, temos que $E(\overline{Y}) = \sum_{i=1}^{14} \overline{y}_i P(\overline{y}_i) = 5,67 = \mu$.

Exercício 3.2 - letra b)

Do resultado (3.9), temos que:

$$Var(\overline{Y}) = \frac{\sigma^2}{n} = \frac{10,88}{2} = 5,44.$$

■ Do item a), temos que $E(\overline{Y}) = 5,67$, $E(\overline{Y}^2) = \sum_{i=1}^{14} \overline{y}_i^2 P(\overline{y}_i) = 37,56$ e portanto $Var(\overline{Y}) = 37,56 - 5,67^2 = 5,44 = Var(\overline{Y})$.

Exercício 3.2 - letra b)

Utilizando resultados obtidos tanto para AASs quanto para AASc temos que ambos os estimadores para a média são não viesados, porém o estimador sob AASs é mais preciso (em termos de variância) do que o estimador obtido por AASc.

Exercício 3.2 - letra c)

■ Do resultado (3.17) temos que:

$$IC[\mu; 0, 98)] = \left(\overline{y} - z_{\frac{1+0.98}{2}} \sqrt{\frac{\tilde{s}^2}{n}}; \overline{y} + z_{\frac{1+0.98}{2}} \sqrt{\frac{\tilde{s}^2}{n}}\right)$$

$$= \left(5, 435 - 2, 3263 \sqrt{\frac{3.6}{10}}; 5, 435 + 2, 3263 \sqrt{\frac{3.6}{10}}\right)$$

$$= (4, 04; 6, 83)$$

- Se forem observadas 100 amostras AAS, e construídos 100 intervalos de confiança baseados nestas amostras, então, aproximadamente 98% dos intervalos devem conter μ.
- Note que o verdadeiro μ está contido no intervalo construído.

■ Uma população está dividida em 5 estratos. Os tamanhos dos estratos, médias (μ_h) e variâncias (σ_h^2) são dadas na tabela abaixo.

h	N_h	μ_{h}	σ_h^2
1	117	7,3	1,31
2	98	6,9	2,03
3	74	11,2	1,13
4	41	9,1	1,96
5	45	9,6	1,74

- a) Calcule μ e σ^2 para esta população.
 - Do enunciado temos que $N = \sum_{h=1}^{5} N_h = 375$ e $W_h = N_h/N = (0,3120;0,2613;0,1973;0,1093;0,1200).$
- Portanto, $\mu = \sum_{h=1}^{5} W_h \mu_h = 8,44$.
- Além disso, temos que $\sigma^2 = \sum_{h=1}^5 W_h \sigma_h^2 + \sum_{h=1}^5 W_h (\mu_h \mu)^2 = \sigma_d^2 + \sigma_e^2 = 1,5853 + 2,7375 = 4,32.$

- Para uma amostra de tamanho 80, determine as alocações proporcional e ótima (de Neyman).
 - Para a alocação proporcional temos que $n_h = 80 \frac{N_h}{375}$, logo $n_1 = 25$, $n_2 = 21$, $n_3 = 16$, $n_4 = 9$ e $n_5 = 9$.
 - Para a alocação ótima de Neyman temos que $n_h = 80 \frac{N_h \sigma_h}{\sum_{h=1}^5 N_h \sigma_h}$, logo $n_1 = 23$, $n_2 = 24$, $n_3 = 13$, $n_4 = 10$ e $n_5 = 10$.

- c) Compare as variâncias dos estimadores obtidos com a AASc e com a AE com alocação ótima.
 - Utilizando o resultado 4.16, temos que:

$$\textit{EPA}(\textit{AEot}) = \frac{\textit{Var}_{\textit{AEot}}(\overline{Y}_{\textit{es}})}{\textit{Var}_{\textit{AASc}}(\overline{Y})} = 1 - \frac{\sigma_e^2}{\sigma^2} - \frac{\sigma_{\textit{dp}}^2}{\sigma^2}.$$

- Dos outros itens sabemos que $\sigma_e^2 = 2,7375$ e que $\sigma^2 = 4,3228$.
- Resta calcular $\bar{\sigma} = \sum_{h=1}^{5} W_h \sigma_h = 1,2505 \text{ e}$ $\sigma_{dp}^2 = \sum_{h=1}^{5} W_h (\sigma_h - \bar{\sigma})^2 = 0,0214.$

■ Dito isso, temos que

$$EPA(AEot) = 1 - \frac{2,7375}{4,3228} - \frac{0,0214}{4,3228} = 0,3618.$$

- Que é um valor baixo, mostrando assim a vantagem do plano AEot.
- Note que esse valor baixo pode se dever a duas coisas: médias e variâncias muito diferentes em cada estrato.
- Em termos quantitativos a variância do estimador sob AASc é 1/0,3618=2,7639 vezes maior do que a variância do estimador sob AEot.

- c) Faça o mesmo para a AASc e a alocação proporcional.
 - Utilizando o resultado do começo da página 108, temos que:

$$\textit{EPA}(\textit{AEpr}) = \frac{\textit{Var}_{\textit{AEpr}}(\bar{Y}_{es})}{\textit{Var}_{\textit{AASc}}(\bar{Y})} = 1 - \frac{\sigma_e^2}{\sigma^2} = 1 - \frac{2,7375}{4,3228} = 0,3667.$$

- Que é também um valor baixo, mostrando assim a vantagem do plano AEpr também.
- Aqui esse valor baixo pode se dever a uma coisa: médias muito diferentes em cada estrato.
- Em termos quantitativos a variância do estimador sob AASc é 1/0,3667=2,7270 vezes maior do que a variância do estimador sob AEpr.

Podemos dizer então que nesse caso que há vantagem em se utilizar um plano AE em vez de um AASc. Além disso o ganho que se tem ao utilizar a alocação ótima ou a proporcional é semelhante.

Numa população dividida em 3 estratos, tem-se os seguintes pesos W_h e proporções \widetilde{p}_h obtidas com uma amostra piloto:

h	W_h	\widetilde{p}_h
1	0,5	0,52
2	0,3	0,40
3	0,2	0,60

- a) Se fôssemos usar uma amostra casual simples (AASc) de 600 elementos, qual seria a estimativa da variância da estimativa da proporção populacional?
 - Podemos obter uma estimativa para p através de $\widetilde{p}_{es} = \sum_{h=1}^{5} W_h \widetilde{p}_h = 0, 5.$
 - Portanto, considerando $\tilde{p} = p_{es}$ sob AASc temos que $Var(\hat{P}) = 0,5^2/599 = 0,0004$.

- b) Que tamanho deveria ter uma amostra estratificada proporcional para produzir a mesma variância anterior?
 - Utilizando informação da amostra piloto, fazendo $P_h = \hat{P}_h$, e através de (4.32) temos que

$$V_{es} = \sum_{h=1}^{3} \frac{W_h^2}{n_h} P_h Q_h = \sum_{h=1}^{3} \frac{W_h}{n_h} W_h P_h Q_h = \frac{1}{n} \sum_{h=1}^{3} W_h P_h Q_h = 0,0004$$

$$\implies \frac{1}{n} 0,2448 = 0,0004 \implies n = 612.$$

c) Com *n* igual ao obtido em (b), como seria a repartição ótima e qual a variância?

Através de (4.33), multiplicando e dividindo por N, temos que:

$$n_h = 612 \frac{W_h \sqrt{P_h Q_h}}{\sum_{h=1}^{3} W_h \sqrt{P_h Q_h}},$$

$$n_1 = 309,$$

$$n_2 = 182,$$

$$n_3 = 121.$$

 A variância nesse caso é similar aquela obtida para o plano AASc (0.0004).

- d) Compare os resultados e diga quais as suas conclusões.
 - Nesse caso nota-se que para um plano AASc precisaríamos de n = 600 e para um plano AE precisaríamos de n = 612 para obter a mesma precisão na estimação da proporção.
 - Ou seja, para uma certa precisão fixa, o plano AASc pode ser mais vantajoso (e menos trabalhoso na coleta) do que o plano AE.