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ABSTRACT. We formulate a truss topology optimization problem as
a bilevel programming problem and solve it by means of a line search
type inexact restoration algorithm. We discuss details of the imple-
mentation and show results of numerical experiments.
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1. INTRODUCTION

Bilevel programming problems model two-level hierarchicalsystems
and have been studied since the seventies. In [4, 5, 6], history, applica-
tions, algorithms, theoretical questions and almost all relevant references
can be found.

In this paper we address the following bilevel programming problem:

(1)

max
x,s,u

W (x,u)

s.t. q(x,s) = 0
0≤ x ≤ xU

s ≥ 0
u = argmin

ū
g(x, ū)

s.t. uL ≤ ū ≤ uU .

wherex ∈ R
n, s ∈ R. u, ū ∈ R

m, andW, q andg are real functions.

This work was supported by PRONEX-Optimization (PRONEX-CNPq/FAPERJ E-
26/171.164/2003-APQ1), FAPESP (Grant 06/53768-0) and CNPq.
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In [2] the authors studied the resolution of bilevel programmimg prob-
lems using the Inexact Restoration (IR) algorithm introducedin [10]. In
this paper we follow the approach for the IR algorithm introduced in [7].

The present paper is organized as follows. In Section 2, we describe
the IR algorithm and discuss its application for solving bilevel problems.
In Section 3, we state and comment the truss topology optimization prob-
lem that will be solved. Since the resolution of bilevel problems requires
specifications that are problem dependent, we discuss in section 4 how
this IR algorithm can be adapted to our problems. In Section 5, we
present numerical experiments and we state some conclusions in Section
6.

2. THE LINE-SEARCH IR ALGORITHM

A general nonlinear programming problem can be stated as

(2)

Minimize
x

f (z)

s.t. C(z) = 0
l ≤ z ≤ u.

where f : R
n → R andC : R

n → R
m.

Inexact restoration algorithms for nonlinear programming(see [8, 10])
belong to the class offeasible algorithms because they emphasize the
importance of the feasibility of an approximate solution. They were in-
troduced to avoid the excessive computational effort that must be spent
to achieve constraint fulfillment at iterations that are still very far from
optimality, in problems with strongly nonlinear constraints.

In [7], the authors introduce a line search IR algorithm thatcaptures the
essential features of the IR technique. Moreover, its convergence theory
is straightforward and allows for considerable freedom in the choice of
implementation details.

The basic steps of the algorithm presented in [7] are shown below, as-
suming thatr ∈ [0,1), β ,γ,τ > 0 are fixed parameters,h : [l,u] → [0,∞)

is a function such that‖C(z)‖ ≤ h(z), andΦ(z, p) = f (z)+(1− p)h(z).

ALGORITHM 1
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• Step 0:Initialization.
Choosel ≤ z0 ≤ u andp0 ∈ (0,1). Setk := 0.

• Step 1:Inexact Restoration.
Computeyk ∈ [l,u] so that

h(yk) ≤ rh(zk),

f (yk) ≤ f (zk)+βh(zk).

• Step 2:Penalty parameter determination.
Determinepk+1 ∈ {2−i pk, i = 0,1, . . .} as large as possible so
that

Φ(yk, pk+1)−Φ(zk, pk+1) ≤
1
2
(1− r)(h(yk)−h(zk)).

• Step 3:Computation of the search direction.
Computedk so thatyk +dk ∈ [l,u] and the following inequalities
hold for t ∈ [0,τ],

f (yk + tdk) ≤ f (yk)− γt‖dk‖2

h(yk + tdk) ≤ h(yk)+ γt2‖dk‖2

• Step 4:Line search.
Determinetk ∈ {2−ii = 0,1, . . .} as large as possible so that the
first inequality in Step 3 holds and

Φ(yk + tkdk, pk+1)−Φ(zk, pk+1) ≤
1
2
(1− r)(h(yk)−h(zk)).

• Step 5:Step update
Setzk+1 := yk + tdk andk := k +1. Go to step 1.

The equality constraints that define the feasible region of the bilevel
problem (1) are given by

(3)

q(x,s) = 0
u = argmin

ū
g(x, ū)

s.t. uL ≤ ū ≤ uU .

At the inexact restoration step, we need to determine a pointthat is
more feasible than(x,s,u)T . Forq(x,s), this is clearly stated in step 1 of
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the algorithm. However, for the low level problem

(4)
u = argmin

ū
g(x, ū)

s.t. uL ≤ ū ≤ uU ,

we have to explain carefully what we mean by a better value ofu.
At the beginning of iterationk, the pointzk = (xk,sk,uk,µk

L,µk
U)T is

available, whereµk
L andµk

U are estimates of the Lagrange multipliers as-
sociated with the bounds on ¯u. For a fixed value of the first two variables,
we can useuk as an initial point and apply an adequate minimization al-
gorithm to solve problem (4). The choice of the algorithm is problem
dependent. For the truss topology optimization problem presented in
Section 3, we discuss this issue in Section 4.

The inexact restoration step of the algorithm does not require full fea-
sibility. Instead, a sufficient decrease of the feasibilityerror measured
by a majorant of the norm of the constraint vectorC(z) given in (2) is
required. In the definition ofC(z), the infeasibility related to (4) is mea-
sured by equalities in theKKT optimality conditions of this minimization
problem, i.e.

(5) C(z) = C(x,s,u,µL,µU) =











q(x,s)
∇gu(x,s,u)−µL + µU

(u−uL)µL

(uU −u)µU











.

The bound constraints and the non-negativeness of the Lagrange mul-
tipliers are forced at each iteration. Other details of the algorithm, such
as the choice ofh, the search direction in Step 3 and the line search in
Step 4 are problem dependent and will be presented in Section4.

3. THE TRUSS TOPOLOGY PROBLEM

The simplest truss topology optimization problem consistsin finding
the stiffest truss for a given volume. Various formulationsof this prob-
lem can be found in [1] and [3]. More sophisticated problems can be
generated if, for example, we include upper limits on the displacements
and on the stresses, or multiple loads.
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In this work, we consider the optimization of a truss subjectto external
loads and frictionless contact supports. We restrict our analysis to a rect-
angular bidimensional domain discretized into a mesh withnx×ny nodes.
The truss bars are generated connecting nodes from this mesh. The set
of potentials bars is called theground structure. The size of the ground
structure depends on theconnectivity level adopted, that determines to
which other nodes each node can be connected.

If a node can only be connected to its immediate neighbors, the con-
nectivity level, hereafter denotednp, is set to one. If a node can also be
connected to the nodes in the neighborhood of its immediate neighbors,
np = 2. Generalizing this idea,np can assume any value between 1 and
the maximum of{nx − 1,ny − 1}. In the latter case, the ground struc-
ture is said to be fully connected. Figure 1 shows the bars of aground
structure that connect one node to its neighbors in the NE quadrant for
np = 4.

FIGURE 1. The bars that connect a node to its northeast
neighbors, fornp = 4.

Oncenp is chosen, the number of potential bars of the structure is
given by

nb = 4nxny −3nx −3ny +2+

np

∑
p=1

[

4rpnxny −2prp(nx +ny)+2(2p−nx −ny)
rp

∑
i=1

kp
i

]

,

whererp is the number of integers between 1 andp−1 that are relatively
prime top, andkp

i is the i-th of these numbers.
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Table 1 shows the growth of the number of bars as a function of the
number of nodes and the connectivity level, for a square structure. The
number of bars of a fully connected base structure withnx = ny = 100 is
30398894. Thus, for highly discretized structures, it is important to keep
np small.

TABLE 1. The number of bars as a function ofnx andnp, for
a square structure.

nx np

1 2 3 4 5
10 342 630 1106 1490 2090

100 39402 78210 154646 229910 378110
1000 3994002 7982010 15946046 23898110 39778310

3.1. The truss topology problem with frictionless contact as a bilevel
programming problem. In the topology optimization of a truss formed
by m potential bars that linkn potential nodes, we consider two sets of
variables: the vector of cross sectional areas of the bars,x ∈ R

m, and
the vector of horizontal and vertical displacements of the nodes,u ∈R

2n.
The objective is to maximize the stiffness of the structure,i.e. minimize
the compliance, subject to volume and contact constraints.

The truss topology optimization problem with frictionlesscontact con-
ditions is stated as

(6)

max
x,s,u

W (x,u) = 1
2uT K(x)u−PT u

s.t. ℓT x+ s = V
0≤ x ≤ xU

s ≥ 0
u = argmin

ū
1
2ūT K(x)ū−PT ū

s.t. uL ≤ ū ≤ uU .

where the vectorℓ contains the lengths of the bars,V is the upper limit
for the structure volume,s is the slack variable of the volume constraint,
xU is the vector of upper limits for the cross sectional areas ofthe bars,
uL and uU are the lower and upper limits for the nodal displacements
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andP is the vector of nodal forces. The global stiffness matrixK(x) is
given byK(x) = ∑m

j=1K j(x), whereK j(x) = ( E
ℓ j

)x jb jbT
j andb j is the j-th

column of the compatibility matrixB that relates the nodal forces to the
bar forces.

The optimal solution of (6) contains only a few of the ground structure
bars. Therefore many components of vectorx are expected to vanish
near the optimum. However, to avoid numerical difficulties that arise
when the cross sectional areas of the truss bars are allowed to become
zero, it is a common practice to define a positive lower levelxmin for
these areas. Following this practice, we also require thatxi ∈ [xmin,xmax],
for i = 1, . . . ,m.

4. THE ALGORITHM OF INEXACT RESTORATION FOR TRUSS

OPTIMIZATION WITH FRICTIONLESS CONTACT

The crucial steps of Algorithm 1 are the inexact restoration, the defini-
tion of the search direction and the line search. In this section, we show
how these steps may be efficiently computed for the bilevel problem (6).

4.1. The inexact restoration step.An approximate solutionz for (6) is
said to be feasible if

(7)
C(z) = 0,

z ∈ Ω

wherez = (x,s,u,µL,µU)T , µL andµU are the Lagrange multipliers of
the lower level problem in (6),s is the slack variable of the volume con-
straint,

C(z) =











ℓT x+ s−V
K(x)u−P−µL + µU

ML(u−uL)

MU(uU −u)











,

and

Ω = z ∈ R
m+1+6n | s,µL,µU ≥ 0, 0≤ x ≤ xU , uL ≤ u ≤ uU}.
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Here,ML andMU are the diagonal matrices containingµL andµU , re-
spectively. One may notice that the first component ofC(z) is the vol-
ume constraint, while the remaining components are the equalities in the
KKT conditions of the lower level problem.

In the inexact restoration phase, we seek a solution that satisfies the
conditions stated at Step 1 of the algorithm. In [7] the authors suggest
that this can be accomplished defining

(8) h(z) = ‖C(z)‖+
√

µT
l (u−uL)+ µT

u (uU −u)

and requiring the restored point at iterationk, yk to satisfyh(yk)≤ rh(zk)

and

‖yk − zk‖ ≤ βh(zk).

The bounds on the variables defined byΩ and the linear volume con-
straint are forced at each iteration. Therefore, the componentsxk andsk

of the restored stepyk take the same values as inzk.This implies that the
restoration is restricted to find a vector of nodal displacementsuR that
solves the problem

(9)

min
u

1
2uT K(xk)u−PT u

s.t. uL ≤ u ≤ uU

‖u−uk‖∞ ≤ βh(zk)

After obtaininguR, the Lagrange multipliers are estimated and forced
to verify ‖µR

L −µk
L‖∞ ≤ βh(zk) and‖µR

U −µk
U‖∞ ≤ βh(zk).

If we define a positive lower bound for the cross sectional areas of
the bars, (9) turns out to be a box constrained strictly convex quadratic
programming problem that can be easily solved.

4.2. The search direction. Algorithm 1 requires the search direction
dk = (dx,ds,du,dµL ,dµU ) to satisfy

(10) f (yk + tdk) ≤ f (yk)− γt‖dk‖2

and

(11) h(yk + tdk) ≤ h(yk)+ γt2‖dk‖2.
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In [7], the authors show that this can be obtained ifdk is the projection
of −∇W (xk,uR) onto the set of tangent directions

T = {d ∈ R
m+1+6n | ∇C(yk)T d = 0, yk +d ∈ Ω}.

In this case,dk is the solution of the quadratic programming problem

(12)
min 1

2dT d + c̄T
k d

s.t. ∇C(yk)d = 0
yk +d ∈ Ω

where

c̄T
k = [∇xW (xR,uR)T 0 (K(xR)uR +P)T 0 0],

∇C(yk) =











ℓT 1 0 0 0
∇2

xuW (xk,uR) 0 K(xk) −I I
0 0 ML (UR −UL) 0
0 0 −MU 0 (UU −uR)











,

andUR, UL andUU are diagonal matrices containinguR, uL and uU ,
respectively.

However, definingdk this way may drastically reduce the convergence
rate of the algorithm. Therefore, in our algorithm the objective function
of (12) is replaced by the quadratic approximation ofW (xk +dx,uR +du),
i.e.

q(d) =
1
2
(yk +d)T B(yk)(yk +d)+ c̄T

k d +W (xk,uR),

where

B(yk) =















0 0 −∇2
xuW (xk,uR)T 0 0

0 0 0 0 0
−∇2

xuW (xk,uR) 0 −K(xk) 0 0
0 0 0 0 0
0 0 0 0 0















,

Since the solution of this problem may not satisfy (11), we include
a trust region constraint, so the step is recomputed whenever it fails to
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verify this condition. Thus, our search direction is the solution of

(13)

min 1
2(yk +d)T B(yk)(yk +d)+ c̄T

k d
s.t. ∇C(yk)d = 0

yk +d ∈ Ω
‖d‖∞ ≤ ∆k

With this strategy all the convergence results are essentially preserved
as shown in [9].

The solution of (13) may be obtained using any quadratic program-
ming library that works with sparse matrices. However, if the routine
requires the decomposition of a matrix formed of some or all of the
columns of∇C(yk) or ∇C(yk)T ∇C(yk), it is better to reorder the vari-
ables in a way that the factors generated by the decomposition will re-
main very sparse. A good reordering can be obtained if we replacedk by
d̄k = (dµL ,dµU ,du,ds,dx). Moreover, a good node ordering should also
be used, in order to reduce the fill-in produced by the factorization of
K(xk).

Following the usual approach of IR algorithms (see [8] and [10], for
example), we also tried to definedk as the solution of the nonlinear
programming problem that consists in minimizing the original objective
function subject to a linearization of the constraints, i.e.

(14)

max 1
2(uR +du)

T K(xk +dx)(uR +du)−PT (uR +du)

s.t. ∇C(yk)d = 0
yk +d ∈ Ω
‖d‖∞ ≤ ∆k

However, the direction generated by this problem, besides being more
difficult to obtain, did not show a better performance than the one com-
puted solving (13).

4.3. The line search. The backtracking scheme adopted in Algorithm
1 seems to be quite simple to code. However, to compute a step length
that satisfies the condition stated at Step 4 of the algorithm, we need to
evaluate the objective function at some intermediate points (x+,u+) =

(xk + λdx,uR + λdu). This task may be costly if a naive approach is
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adopted, since it requires the computation of the stiffnessmatrix K(x+).
Fortunately,K varies linearly withx, so we may write

(15) K(x+) = K(xk)+λK(dx).

Thus, once we have computedK(dx), we can avoid buildingK from
scratch each timeλ is changed. Moreover, we can also reduce the cost
of obtainingW+ = W (x+,u+) if we write

W+ =
1
2
(uR +λdu)

T (K(xk)+λK(dx))(u
R +λdu)+PT (uR +λdu)

=
1
2

uT
+[K(xk)uR+λ (K(xk)du+K(dx)u

R+λK(dx)du)]+PT u+

=
1
2

uT
+[v1 +λ (v2 +λv3)]+PT u+.

Vector v1 = K(xk)uR is already available, since it was used to calcu-
lateW (xk,uR). Therefore, after computing vectorsu+, v2 = K(xk)du +

K(dx)uR andv3 = K(dx)du, the objective function value may be obtained
with two saxpys and two inner products.

After determining the optimal value forλ , the stiffness matrix may
also be updated using (15). To keep the roundoff errors undercontrol,
K should be recomputed from scratch once in a while. In our algorithm,
this recalculation is done at each 50 iterations.

If λ = 1 satisfies the condition defined in Step 4, then the approach
presented here is more expensive than computingK(x+) directly. How-
ever, usually the step length needs to be reduced, so it pays for computing
three extra matrix-vector products and a matrix update.

Finally, it must be noticed that due to the linearity of the volume con-
straint,x+ will always satisfy this constraint whenever it is satisfiedby xk,
independently of the value ofλ . This property of the problem allows us
to perform an inexact restoration based only on the nodal displacements.

5. NUMERICAL RESULTS

In this section, we show the results obtained using the algorithm for
nonlinear bilevel problems presented above to optimize thetopology of
some plane trusses supported by a frictionless contact foundation.
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In all of the examples, the material used in the trusses has elasticity
modulusE = 200000N/mm2. The cross sectional areas of the bars are
required to belong to the interval[0.00001mm2, 4mm2]. The parameters
used in the inexact restoration step arer = 0.5 andβ = 10.0.

5.1. First problem. The ground structure of our first problem is shown
in Figure 2. Due to symmetry, only the right half of the frame is consid-
ered. The structure has 668 potential bars and 189 potentialnodes. The
connectivity level is one.

Only one external vertical force of magnitude 10N is applied at node 9.
The volume is limited to 2% of the ground structure’s volume.The foun-
dation is not parallel to the bottom line of the structure. Infact, the gap
between node 91 and the foundation is equal to 10mm, and this distance
is linearly reduced to 0mm at node 181 (the bottom right node). It must
be noticed that no fixed supports are defined for the structure, but only
the frictionless foundation that limits downward node displacements.

FIGURE 2. First problem.

The solution of the first problem is shown in Figure 3. The truss
obtained resembles the MBB beam that is usually obtained solving the
topology optimization problem where the lower right cornerof the struc-
ture is fixed.

Increasing the connectivity level to 2, we obtain the structure shown
in Figure 4.
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FIGURE 3. Solution of the first problem fornp = 1.

FIGURE 4. Solution of the first problem fornp = 2.

5.2. Second problem.The domain of the second problem is the same
of the first problem. However, an external vertical force of magnitude 1N
is applied at node 1, instead of at node 9. The volume is limited to 2%
of the ground structure’s volume. Also, the frictionless foundation is flat
and covers only one fourth of the ground structure basis.

A schematic representation of the problem is presented in Figure 5.
The solution obtained after applying Algorithm 1 is shown inFigure 6.
Again, the truss obtained is similar to the usual MBB beam witha fixed
lower right node. However, the structure is shorter, due to the presence
of the flat foundation.

5.3. Third problem. In the third problem, there are two external forces
applied at the lower corners of the structure. A small frictionless foun-
dation prevents the downward displacement of one single node of the
structure’s basis. The volume is limited to 0,05% of the ground struc-
ture’s volume. The connectivity level is set to 2.
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FIGURE 5. Second problem.

FIGURE 6. Solution of the second problem.

The problem is shown in Figure 7 and the solution obtained after ap-
plying Algorithm 1 is given in Figure 8. As we can see, the upper right
border of the structure is curved, and is linked to the node that is in con-
tact with the foundation by a group of thin bars.

It must be noticed that, due to the less stringent boundary conditions
adopted for the problems presented in this section, the stiffness matrix
is always singular. Thus, these problems are harder to solvethan usual
truss topology problems. Even though, the structures shownin Figures
3, 4, 6 and 8 are quite reasonable.
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FIGURE 7. Third problem.

FIGURE 8. Solution of the third problem.

6. CONCLUSIONS

The IR approach for solving bilevel problems allows for a lotof free-
dom in the choice of the method used to solve the lower level optimiza-
tion problem. For particular problems, some special nonlinear program-
ming algorithms may be devised. In this paper, we illustratethis fact
dealing with a simple truss topology optimization problem.

We do not claim that the lower level strategy presented in Section 4
is better than others. Another strategy can be used in this framework. It
is worth to mention that the feasibility of the iterates can be explicitly
controlled at all iterations. We do not need to solve for feasibility when
we are far from optimality. On the other hand, when we judge that we
are sufficiently near to the optimal value, we may solve the problems
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in Step 1 with stronger stopping criteria by taking smaller values of the
parameterr. This may be important in practice if these constraints need
to be satisfied at an approximate solution.

With our approach, we were able to solve truss topology optimization
problems with singular stiffness matrices and frictionless contact condi-
tions. Besides, it would be easy to include other constraintson the bar
volumes, on the displacements or even on the stresses. It would also be
possible to consider other two level formulations of the truss topology
problem, such as the one presented in [11].
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