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ABSTRACT. We formulate a truss topology optimization problem as
a bilevel programming problem and solve it by means of a leagch
type inexact restoration algorithm. We discuss detailshefimple-
mentation and show results of numerical experiments.
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1. INTRODUCTION

Bilevel programming problems model two-level hierarchisgstems
and have been studied since the seventies. In [4, 5, 6]rhistpplica-
tions, algorithms, theoretical questions and almost &lvent references
can be found.

In this paper we address the following bilevel programmingpgem:

max W(x,u)
X,S,u

st q(x,5)=0
0<x<Xxy
s>0
u:argn&in g(x,u)

(1)

s.t. u <u<uy.
wherex € R", se R. u, ue R™, andW, g andg are real functions.
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In [2] the authors studied the resolution of bilevel prognaimg prob-
lems using the Inexact Restoration (IR) algorithm introduicgld 0]. In
this paper we follow the approach for the IR algorithm introeld in [7].

The present paper is organized as follows. In Section 2, serite
the IR algorithm and discuss its application for solvingtdl problems.
In Section 3, we state and comment the truss topology opiioiz prob-
lem that will be solved. Since the resolution of bilevel desbs requires
specifications that are problem dependent, we discuss tlosethow
this IR algorithm can be adapted to our problems. In Sectiowé
present numerical experiments and we state some conctusi@ection
6.

2. THE LINE-SEARCHIR ALGORITHM
A general nonlinear programming problem can be stated as
Minimize f(2)
X

(2) st.  C(2=0
| <z<u.

wheref : R" — R andC: R" — R™,

Inexact restoration algorithms for nonlinear programnisee [8, 10])
belong to the class dkasible algorithms because they emphasize the
importance of the feasibility of an approximate solutiorney were in-
troduced to avoid the excessive computational effort thagtrbe spent
to achieve constraint fulfillment at iterations that ard sery far from
optimality, in problems with strongly nonlinear constrtain

In[7], the authors introduce a line search IR algorithm tagdtures the
essential features of the IR technique. Moreover, its cgaree theory
is straightforward and allows for considerable freedomhia ¢hoice of
implementation details.

The basic steps of the algorithm presented in [7] are shovawbas-
suming thar € [0,1), B,y, T > 0 are fixed parameterk,: [I,u] — [0, )
is a function such thalC(z)|| < h(z), and®(z, p) = f(z) + (1— p)h(2).

ALGORITHM 1
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e Step O:Initialization.

Choosd <2 <uandpp € (0,1). Setk:=0.
e Step 1:Inexact Restoration.

ComputeyX € [I,u] so that

h(y") < rh(Z),

f(y*) < f(Z) +Bh(2).

e Step 2:Penalty parameter determination.
Determinepx.1 € {2 'py, i =0,1,...} as large as possible so
that

O, ) — O Pect) < 5(1-1)(h(YY) ().

e Step 3:Computation of the search direction.
Computed® so thaty + d¥ € [I, u] and the following inequalities
hold fort € [0, ],

f(y<+td¥) < f(y*) — pt)|d¥)?

h(y*+td ) < h(y") + yt?(|d||?
e Step 4:Line search.

Determinet, € {27'i = 0,1,...} as large as possible so that the
first inequality in Step 3 holds and

1
DY+ d, Prr1) — D(Z, Prya) < S(1- r)(h(y*) — h(2).
e Step 5:Sep update
SetZ*1:=ykK+tdk andk := k+1. Go to step 1.
The equality constraints that define the feasible regiorheflilevel
problem (1) are given by
q(x,s) =0
3) u=argmin g(x, u)
s.t. u <u<uy.

At the inexact restoration step, we need to determine a ploaitis
more feasible thafx,s,u)". Forq(x,s), this is clearly stated in step 1 of
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the algorithm. However, for the low level problem

% u=argmin a(x, G)_
s.t. u <u<uy,
we have to explain carefully what we mean by a better value of

At the beginning of iteratiork, the pointz< = (XX, s uk, uf, uk)T is
available, Wherqu'l_‘ andu[‘J are estimates of the Lagrange multipliers as-
sociated with the bounds an For a fixed value of the first two variables,
we can usel as an initial point and apply an adequate minimization al-
gorithm to solve problem (4). The choice of the algorithm islgpem
dependent. For the truss topology optimization problensgmeed in
Section 3, we discuss this issue in Section 4.

The inexact restoration step of the algorithm does not redull fea-
sibility. Instead, a sufficient decrease of the feasibiityor measured
by a majorant of the norm of the constraint veaBir) given in (2) is
required. In the definition dE(z), the infeasibility related to (4) is mea-
sured by equalities in theKT optimality conditions of this minimization
problem, i.e.

q(x,s)

Ugu (X= S, U) — HL+ Hu
(U—uL)

(Uu — Uty

(5) C<Z) = C(Xa S, U, U, “U) =

The bound constraints and the non-negativeness of the hggraul-
tipliers are forced at each iteration. Other details of tige@thm, such
as the choice oh, the search direction in Step 3 and the line search in
Step 4 are problem dependent and will be presented in Settion

3. THE TRUSS TOPOLOGY PROBLEM

The simplest truss topology optimization problem condisténding
the stiffest truss for a given volume. Various formulatiafghis prob-
lem can be found in [1] and [3]. More sophisticated probleras be
generated if, for example, we include upper limits on th@ldisements
and on the stresses, or multiple loads.
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In this work, we consider the optimization of a truss subje&xternal
loads and frictionless contact supports. We restrict oatyais to a rect-
angular bidimensional domain discretized into a mesh mithny nodes.
The truss bars are generated connecting nodes from this néshset
of potentials bars is called trground structure. The size of the ground
structure depends on tloennectivity level adopted, that determines to
which other nodes each node can be connected.

If a node can only be connected to its immediate neighboes¢dim-
nectivity level, hereafter denotet, is set to one. If a node can also be
connected to the nodes in the neighborhood of its immedeitghbors,
np = 2. Generalizing this idean, can assume any value between 1 and
the maximum of{n, — 1,n, — 1}. In the latter case, the ground struc-
ture is said to be fully connected. Figure 1 shows the barsgrband
structure that connect one node to its neighbors in the NErqué for
np = 4.

FIGURE 1. The bars that connect a node to its northeast
neighbors, fon, = 4.

Oncenp is chosen, the number of potential bars of the structure is
given by

Np "p
> |Arply — 2prp(Nx+ Ny) +2(2p — Ny — ny) Zlkip] ,
p=1 =

wherer is the number of integers between 1 gnd 1 that are relatively
prime top, andk® is the i-th of these numbers.



6 ANA FRIEDLANDER AND FRANCISCO A. M. GOMES

Table 1 shows the growth of the number of bars as a functiohef t
number of nodes and the connectivity level, for a squarettre. The
number of bars of a fully connected base structure wjta ny = 100 is
30398894. Thus, for highly discretized structures, it ipamant to keep
np small.

TABLE 1. The number of bars as a functionmfandny, for
a square structure.

Ny Np
1 2 3 4 5
10 342 630 1106 1490 2090
100 39402 782104 154646 229910, 378110
1000| 3994002 7982010 15946046 23898110 39778310

3.1. The truss topology problem with frictionless contact as a bigvel
programming problem. In the topology optimization of a truss formed
by m potential bars that link potential nodes, we consider two sets of
variables: the vector of cross sectional areas of the barsR™, and
the vector of horizontal and vertical displacements of theasu € R?".
The objective is to maximize the stiffness of the structuse,minimize
the compliance, subject to volume and contact constraints.

The truss topology optimization problem with frictionlesmtact con-
ditions is stated as

1,7 _pT
rxnsaJ( W(x,u) = zu'K(x)u—P'u

st. (Tx+s=V
0<x<xy
s>0

u=argmin SUTK(X)u—

(6)

S.t.

where the vectof contains the lengths of the baks,is the upper limit

for the structure volumes s the slack variable of the volume constraint,
Xy is the vector of upper limits for the cross sectional areathefbars,

u. anduy are the lower and upper limits for the nodal displacements
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andP is the vector of nodal forces. The global stiffness malkix) is
given byK(x) = ernzl Kj(x), whereK;(x) = (TEj)xj bj bjT andbj is the j-th
column of the compatibility matri® that relates the nodal forces to the
bar forces.

The optimal solution of (6) contains only a few of the grouthdicture
bars. Therefore many components of vectare expected to vanish
near the optimum. However, to avoid numerical difficultiaattarise
when the cross sectional areas of the truss bars are allaMeeicbme
zero, it is a common practice to define a positive lower leygl for
these areas. Following this practice, we also requirext@iXmin, Xmax],
fori=1,....m

4. THE ALGORITHM OF INEXACT RESTORATION FOR TRUSS
OPTIMIZATION WITH FRICTIONLESS CONTACT

The crucial steps of Algorithm 1 are the inexact restoratibe defini-
tion of the search direction and the line search. In thisieectve show
how these steps may be efficiently computed for the bilevablem (6).

4.1. The inexact restoration step. An approximate solutioa for (6) is
said to be feasible if

C(z) =0,
ze Q

(7)

wherez = (x, s,u,u._,uU)T, Y and Ly are the Lagrange multipliers of
the lower level problem in (65 is the slack variable of the volume con-
straint,

(Tx+s-V

K(X)u—P— i+ py

My (u—u)

My (UU — U)

and

Q=zeR™ O sy uy >0, 0<x<xy, u<u<ugl
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Here,M_ andMy are the diagonal matrices containipg and Ly, re-
spectively. One may notice that the first component ) is the vol-
ume constraint, while the remaining components are theliéiggan the
KKT conditions of the lower level problem.

In the inexact restoration phase, we seek a solution thafisatthe
conditions stated at Step 1 of the algorithm. In [7] the arglsuggest
that this can be accomplished defining

8 h(z) = [C@)[| + /1T (u—uL) + i (o — )

and requiring the restored point at iteratkqry® to satisfyh(y¥) < rh(z)
and

V¥ =2 < Bh(Z").

The bounds on the variables defined®ynd the linear volume con-
straint are forced at each iteration. Therefore, the coraptax* ands<
of the restored steyf take the same values asZhThis implies that the
restoration is restricted to find a vector of nodal displagetsu® that
solves the problem
min SUTK(X)u—PTu
9 st u <u<uy

lu—ule < BH(Z)

After obtainingu®, the Lagrange multipliers are estimated and forced
to verify || R — K|l < B(Z) and || uf — = < BR(ZY).

If we define a positive lower bound for the cross sectionahsiref
the bars, (9) turns out to be a box constrained strictly compedratic
programming problem that can be easily solved.

4.2. The search direction. Algorithm 1 requires the search direction
dk - (dx,ds, dU7dHL7dHU) tO SatISfy

(10) F(y<+td¥) < f(y%) — pt)|d¥|?
and

(11) h(y*+td¥) < h(y®) + yt?||d¥||%.
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In [7], the authors show that this can be obtainedkifs the projection
of —OW(x¥,uR) onto the set of tangent directions

T ={d e R™M6 | Oc(yK)Td =0, y*+d € Q}.
In this casedX is the solution of the quadratic programming problem

min 1d"d+cld
(12) st. OC(Y)d=0
Y+deQ

where

a = [OWORWRT 0 (KPWR+P)T 0 0,

a 1 0 0 0
D2W(XuR) 0 K(xX — |
OC(y) = | 0
(9 0 0 M. (UR-u) 0 ’
0 0 —My 0 (Uy —uR)

andUR, U_ andUy are diagonal matrices containingf, u_ and uy,
respectively.

However, defininglX this way may drastically reduce the convergence
rate of the algorithm. Therefore, in our algorithm the obyecfunction
of (12) is replaced by the quadratic approximatiok\i< + dy, uR +dy),

i.e.
1
q(d) = §(yk+d)TB(yk) (< +d) +EFd+W (X, u),
where
[ 0 0 —ZWHXuR)T 0 0]
0 0 0 00
B(y<)= | —D2W(x<,uR) 0 —K(x¥) 00|,
0 0 0 00
I 0 0 0 0 0]

Since the solution of this problem may not satisfy (11), welude
a trust region constraint, so the step is recomputed wheriefals to
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verify this condition. Thus, our search direction is theusioih of

min  3(y*+d)TB(Y¥)(y*+d)+cid
st. OC(Yyd=0

Y+deQ

[dleo < D

(13)

With this strategy all the convergence results are essmni@served
as shown in [9].

The solution of (13) may be obtained using any quadratic ranmog
ming library that works with sparse matrices. However, & tioutine
requires the decomposition of a matrix formed of some or &lhe
columns of OC(y¥) or OC(y¥)TOC(yX), it is better to reorder the vari-
ables in a way that the factors generated by the decompositibre-
main very sparse. A good reordering can be obtained if wecepk by
dk = (dy ,dyy,dy, ds,dy). Moreover, a good node ordering should also
be used, in order to reduce the fill-in produced by the faz&tion of
K (XX).

Following the usual approach of IR algorithms (see [8] arl,[for
example), we also tried to defird as the solution of the nonlinear
programming problem that consists in minimizing the orajiobjective
function subject to a linearization of the constraints, i.e

max 3 (uR+dy) TK(XK+ dy) (uUR+dy) — PT (uR +dy)
s.t. OC(y)d=0

Y+deQ

1d]eo < Ay

(14)

However, the direction generated by this problem, besidegimore
difficult to obtain, did not show a better performance thaadhe com-
puted solving (13).

4.3. The line search. The backtracking scheme adopted in Algorithm
1 seems to be quite simple to code. However, to compute a estgjhl
that satisfies the condition stated at Step 4 of the algorithenneed to
evaluate the objective function at some intermediate pdt,u,) =

(XK + Ady,uUR+ Ady). This task may be costly if a naive approach is
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adopted, since it requires the computation of the stiffmeasix K(x.).
FortunatelyK varies linearly withx, so we may write

(15) K(xy) = K(X) +AK(dy).

Thus, once we have comput&ddy), we can avoid buildindg< from
scratch each tim@ is changed. Moreover, we can also reduce the cost
of obtainingW, =W (x,uy ) if we write

1

W, = E(uR+)\o|u)T(K(x'<) +AK () (UR+Ady) +PT(UR+Ady)

_ %uI[K(xk)uR—i—/\ (K () dy+-K (ch) IR+ AK (cb) )] +PT U

1
= EU];[Vl‘f’/\ (V2+Ava)]+PTu,.

Vectorvy = K(x)uR is already available, since it was used to calcu-
late W (XX, uR). Therefore, after computing vectous , v, = K (xX)d, +
K (dy)uR andvz = K (dx)dy, the objective function value may be obtained
with two saxpys and two inner products.

After determining the optimal value foX, the stiffness matrix may
also be updated using (15). To keep the roundoff errors ucmietrol,

K should be recomputed from scratch once in a while. In ourrdhgu,
this recalculation is done at each 50 iterations.

If A =1 satisfies the condition defined in Step 4, then the approach
presented here is more expensive than compwing. ) directly. How-
ever, usually the step length needs to be reduced, so it pagsrhputing
three extra matrix-vector products and a matrix update.

Finally, it must be noticed that due to the linearity of théuwoe con-
straint,x; will always satisfy this constraint whenever it is satistigd,
independently of the value a@f. This property of the problem allows us
to perform an inexact restoration based only on the nodplatiements.

5. NUMERICAL RESULTS

In this section, we show the results obtained using the algorfor
nonlinear bilevel problems presented above to optimizedpelogy of
some plane trusses supported by a frictionless contacti&giom.
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In all of the examples, the material used in the trusses ledicty
modulusE = 200000 /m?. The cross sectional areas of the bars are
required to belong to the interv).0000Im?, 4mn¥]. The parameters
used in the inexact restoration step are 0.5 andf = 10.0.

5.1. First problem. The ground structure of our first problem is shown
in Figure 2. Due to symmetry, only the right half of the frarmeonsid-
ered. The structure has 668 potential bars and 189 potewiikds. The
connectivity level is one.

Only one external vertical force of magnitudeNL3 applied at node 9.
The volume is limited to 2% of the ground structure’s volumbe foun-
dation is not parallel to the bottom line of the structurefdat, the gap
between node 91 and the foundation is equal torhi0and this distance
is linearly reduced to®m at node 181 (the bottom right node). It must
be noticed that no fixed supports are defined for the struchuteonly
the frictionless foundation that limits downward node thspments.

FIGURE 2. First problem.

The solution of the first problem is shown in Figure 3. The drus
obtained resembles the MBB beam that is usually obtainedngptiae
topology optimization problem where the lower right coro&the struc-
ture is fixed.

Increasing the connectivity level to 2, we obtain the suitetshown
in Figure 4.
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FIGURE 3. Solution of the first problem fon, = 1.

e

FIGURE 4. Solution of the first problem fom, = 2.

5.2. Second problem. The domain of the second problem is the same
of the first problem. However, an external vertical force aignitude N

is applied at node 1, instead of at node 9. The volume is ldribe2%

of the ground structure’s volume. Also, the frictionlesaridation is flat
and covers only one fourth of the ground structure basis.

A schematic representation of the problem is presentedguar€ib.
The solution obtained after applying Algorithm 1 is showrFigure 6.
Again, the truss obtained is similar to the usual MBB beam wittxed
lower right node. However, the structure is shorter, dudnéopresence
of the flat foundation.

5.3. Third problem. In the third problem, there are two external forces
applied at the lower corners of the structure. A small foickess foun-
dation prevents the downward displacement of one single médhe
structure’s basis. The volume is limited to 0,05% of the giebstruc-
ture’s volume. The connectivity level is set to 2.
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FIGURE 5. Second problem.

FIGURE 6. Solution of the second problem.

The problem is shown in Figure 7 and the solution obtaineel aip-
plying Algorithm 1 is given in Figure 8. As we can see, the uppght
border of the structure is curved, and is linked to the nodeithin con-

tact with the foundation by a group of thin bars.

It must be noticed that, due to the less stringent boundamgitions
adopted for the problems presented in this section, thimesi$ matrix

is always singular. Thus, these problems are harder to seareusual
truss topology problems. Even though, the structures showAgures

3, 4, 6 and 8 are quite reasonable.
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FIGURE 8. Solution of the third problem.

6. CONCLUSIONS

The IR approach for solving bilevel problems allows for adbfree-
dom in the choice of the method used to solve the lower leviigpa-
tion problem. For particular problems, some special n@arprogram-
ming algorithms may be devised. In this paper, we illusttate fact
dealing with a simple truss topology optimization problem.

We do not claim that the lower level strategy presented iniG@ed
is better than others. Another strategy can be used in tuisdwork. It
is worth to mention that the feasibility of the iterates candxplicitly
controlled at all iterations. We do not need to solve for iteiéis/ when
we are far from optimality. On the other hand, when we judgs e
are sufficiently near to the optimal value, we may solve thebjgms
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in Step 1 with stronger stopping criteria by taking smallalues of the
parameter. This may be important in practice if these constraints need
to be satisfied at an approximate solution.

With our approach, we were able to solve truss topology dpétion
problems with singular stiffness matrices and frictioslesntact condi-
tions. Besides, it would be easy to include other constraintthe bar
volumes, on the displacements or even on the stresses. d \atso be
possible to consider other two level formulations of thessrtopology
problem, such as the one presented in [11].
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