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1 Introduction

Our aim is to solve nonlinear programming problems in the general form

min f(x)
s.t. h(x) = 0,

l ≤ x ≤ u,
(1)

where f : IRn → IR and h : IRn → IRm are smooth functions (C1 or C2) and m ≤ n.
Components of vectors l and u might be −∞ or +∞.

There are basically three approaches for solving general problems like (1): (i) main-
tain feasibility, trying to deal with the nonlinear constraints (elimination and feasible
direction methods), (ii) incorporate the constraints into the objective function (pe-
nalization methods), and (iii) linearize the feasible set and build a (quadratic) model
to the objective function. It is in the latter category that the sequential quadratic
programming (SQP) methods fit.

Extension of Newton’s method for constrained optimization, the SQP approach
is considered one of the most effective methods for nonlinearly constrained opti-
mization. The steps are generated by the solution of quadratic subproblems. It can
be used within both line search and trust-region globalization frameworks, and it
is appropriate for small or large problems. Recent researches point at a particular
interest towards SQP methods, from a theoretical perspective [15, 21, 33, 39, 45],
in the large-scale scenario [7, 8, 23, 27, 31, 41, 43] and in applications like control,
dynamic systems, among others [16, 22, 28, 30, 32, 40, 44].

In [25], the authors propose a model algorithm based on the SQP method for
solving (1). The strategy for obtaining global convergence is based on the trust-
region approach, using an augmented Lagrangian merit function and a non monotone
updating scheme for the penalty parameter.

Here we focus on the quadratic subproblems of the algorithm introduced in [25],
that are recast as equivalent bound-constrained problems without any additional
parameter. An essential ingredient to the equivalency is convexity, which guides
the choices for the Hessian of the quadratic model. Two possibilities are addressed,
namely a quasi-Newton approximation to the Hessian of the augmented Lagrangian
function and a quasi-Newton reduced Hessian. Numerical experiments illustrate the
performance of these choices for a small set of problems.

This paper is structured as follows: Section 2 contains the SQP algorithm, to-
gether with the used notation and assumptions. Section 3 presents the equivalence
result that will turn the quadratic subproblems into bound-constrained ones. The
subproblems of the SQP algorithm are defined in Section 4, together with specific
details on finding the required directions or steps, mostly approximate solutions of
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the stated subproblems. The choices for the Hessian of the quadratic model are
detailed in Section 5. Section 6 contains the description of the numerical experi-
ments, and their results. Conclusions and ideas for future research are presented in
Section 7.

2 The SQP algorithm

For the reader’s convenience, in this section we recall the algorithm proposed in [25],
herein denoted Algorithm GMM. First, some notation should be specified, together
with the main ingredients used in the algorithm. We denote the derivatives by

g(x) = ∇f(x) and (h′(x))T = (∇h1(x) · · · ∇hm(x)) ∈ IRn×m,

and, the original bound-constrained set by Ω = {x ∈ IRn | l ≤ x ≤ u}.
The merit function is

Φ(x, λ, θ) = θ`(x, λ) + (1− θ)ϕ(x), (2)

where θ ∈ [0, 1] is given, λ ∈ IRm, `(x, λ) is the Lagrangian function

`(x, λ) = f(x) + h(x)Tλ

and

ϕ(x) =
1

2
‖h(x)‖2

2.

We say that z ∈ Ω is ϕ-stationary if it satisfies the first order optimality condi-
tions of

minϕ(x) s.t. x ∈ Ω.

A point z is feasible if z ∈ Ω and h(z) = 0. A feasible point z is regular if the
gradients of the active constraints at z are linearly independent.

The quadratic approximation to `(x+ s, λ) is

Q(s) ≡ Q(B, x, λ, s) =
1

2
sTBs+∇x`(x, λ)

T s+ `(x, λ), (3)

where B ∈ IRn×n is a symmetric matrix.
The actual reduction and the predicted reduction of the merit function from (x, λ)

to (x+ s, λ+∆λ) are given, respectively, by

Ared(x, λ, s,∆λ, θ) = θ[`(x, λ)− `(x+ s, λ+∆λ)] + (1− θ)[ϕ(x)− ϕ(x+ s)] (4)
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and

Pred(x, λ, s,∆λ, θ) = θ
[
Q(0)−Q(s)− [h′(x)s+ h(x)]T∆λ

]
+

+(1− θ)
[

1
2
‖h(x)‖2

2 −
1
2
‖h′(x)s+ h(x)‖2

2

]
.

(5)

Given xk, an estimate of the solution to (1), λk, an estimate of the Lagrange
multipliers of (1) and a symmetric matrix Bk, the algorithm that follows describes
the steps to obtain the next iterate xk+1 and the next estimate of the vector of
Lagrange multipliers λk+1.

There are some parameters that should be commented. At the beginning of each
iteration, a lower bound ∆min > 0 to the trust-region radius is used, so the iteration
begins with ∆ ≥ ∆min. There are also upper bounds L1 and L2 to the norm of
the Lagrange multiplier estimates and to the norm of the Hessian of the quadratic
model, respectively. Finally, the value N > 0 defines the non monotonicity of the
penalty parameter.

2.1 Algorithm GMM

Let xk ∈ Ω, λk ∈ IRm, ‖λk‖ ≤ L1, ∆ ≥ ∆min, Bk = BT
k ∈ IRn×n, ‖Bk‖ ≤ L2 and

N ≥ 0. If xk is a stationary point of (1), xk is ϕ-stationary but not feasible, or if
xk is feasible but not regular, then the algorithm stops. Otherwise, the steps for
obtaining the next iterate are the following:
Step 0. Compute a feasible descent direction for the constraints.

If xk is not ϕ-stationary, compute dnor ∈ IRn such that

l ≤ xk + dnor(xk) ≤ u, (6)

and
dnor(xk)

T∇ϕ(xk) < 0. (7)

If xk is feasible, regular and non-stationary for problem (1), then define dnor(xk) = 0
and snor = snor(xk,∆) = 0.
Step 1. Compute the decrease step for the constraints.

If xk is not feasible, compute sdec
nor = sdec

nor(xk,∆) ∈ IRn by solving

min 1
2
‖h′(xk)s+ h(xk)‖

2
2

s.t. ‖s‖ ≤ 0.8∆
l ≤ xk + s ≤ u

s = tdnor(xk), t ≥ 0.

Step 2. Compute the normal step.
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If xk is not feasible, compute snor = snor(xk,∆) ∈ IRn such that

l ≤ xk + snor ≤ u, ‖snor‖ ≤ 0.8∆

and

‖h(xk)‖
2
2 − ‖h

′(xk)snor + h(xk)‖
2
2 ≥ 0.9

(
‖h(xk)‖

2
2 − ‖h

′(xk)s
dec
nor + h(xk)‖

2
2

)
. (8)

Step 3. Compute the decrease step for the Lagrangian function on the tangent
space.

If xk is feasible, set dtan = dtan(Bk, xk, λk,∆) = dtan(xk). Otherwise, compute
dtan(xk) = dtan(Bk, xk, λk,∆) ∈ IRn such that

l ≤ xk + snor + dtan(xk) ≤ u, (9)

h′(xk)dtan(xk) = 0 (10)

and
dtan(xk)

T∇Q(Bk, xk, λk, snor) < 0. (11)

If a vector satisfying (9)-(11) does not exist, define dtan = 0. Otherwise (which
includes the case snor = 0, i.e. xk feasible), define sdec

tan = sdec
tan(Bk, xk, λk,∆) the

solution of
min Qk(snor + s)
s.t. ‖snor + s‖ ≤ ∆

l ≤ xk + snor + s ≤ u
s = tdtan(xk), t ≥ 0,

where Qk(s) ≡ Q(Bk, xk, λk, s).
Step 4. Compute the tangent step.

Compute stan = stan(Bk, xk, λk,∆) ∈ IRn such that

h′(xk)stan = 0; l ≤ xk + snor + stan ≤ u; ‖snor + stan‖ ≤ ∆ (12)

and
Qk(snor)−Qk(snor + stan) ≥ 0.9[Qk(snor)−Qk(snor + sdec

tan)]. (13)

Step 5. Compute the update of the Lagrange multipliers and the current step.
Compute ∆λ ∈ IRm such that ‖λk +∆λ‖ ≤ L1 and define

sc = sc(Bk, xk, λk,∆) = snor + stan.

Step 6. Compute the penalty parameter θ ∈ [0, 1].
Compute θmin

k , θlarge
k , θsup

k such that
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if k = 0 then θmin
k = 1, otherwise θmin

k = min{1, θ0, · · · , θk−1};

θlarge
k =

[
1 + N

(k+1)1.1

]
θmin

k ;

θ
sup

k = min

{
1,

1

2
‖h(xk)‖

2

2
− 1

2
‖h′(xk)sc + h(xk)‖

2

2

2[Qk(sc)−Qk(0) + [h′(xk)sc + h(xk)]T∆λ+
1

2
‖h(xk)‖22 −

1

2
‖h′(xk)sc + h(xk)‖22]

}
.

If ∆ is the first trust-region radius tested at the current iteration, define

θ′ = θ′(xk,∆) = θlarge
k .

Otherwise, set
θ′ = θ′(xk,∆) = θ(xk,∆

′),

where ∆′ is the trust-region radius tested immediately before ∆ at the current
iteration.

Set θ = min{θsup
k , θ′}.

Step 7. Accept or reject the current step sc.
If

Ared(xk, λk, sc,∆λ, θ) ≥ 0.1Pred(xk, λk, sc,∆λ, θ) (14)

define
xk+1 = xk + sc, λk+1 = λk +∆λ, θk = θ.

Otherwise, choose new ∆ ∈ [0.1∆, 0.9∆] and go to step 1.
It was proved in [25] that the Algorithm GMM is well defined under conditions

(7), (8) and (11). In other words, if it does not terminate at the current point, the
next iterate satisfying (14) will be found after repeating steps 1-7 a finite number
of times.

As far as global convergence is concerned, assuming continuity of the direction
dnor at step 0 with respect to the current point, bounded variation of the first
derivatives, and compactness of the generated sequence, it was proved in [25] that
every limit point of Algorithm GMM is ϕ-stationary. Furthermore, under two suit-
able algorithmic assumptions, the authors have proved that there exists a limit point
of Algorithm GMM that is a stationary point of (1).

3 An equivalence result

There are many efficient algorithms available to the solution of bound-constrained
minimization problems, like trust-region methods [12, 13, 18] and spectral-projected-
gradient-based methods [6], among others.
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Moreover, an approach for minimizing linearly constrained convex problems by
means of an equivalent reformulation was proposed in [17]. The equivalent problem
is nonconvex, bound-constrained, and under mild assumptions, its stationary points
are global minimizers. This equivalent approach has given rise to several reformula-
tions in different contexts of complementarity, variational inequalities, mathematical
problems with equilibrium constraints, etc. (see [1, 2, 3, 4, 19, 20]).

Here we apply the aforementioned equivalence result to the quadratic subprob-
lems of the Algorithm GMM. To this purpose, let us consider the general quadratic
programming problem

min 1
2
xTBx+ gTx

s.t. Ax = c,
l̄ ≤ x ≤ ū,

(15)

where B = BT ∈ IRn×n, A ∈ IRm×n, g, x, l̄, ū ∈ IRn, c ∈ IRm, and define the set
W = {x ∈ IRn | Ax = c, l̄ ≤ x ≤ ū}. The first-order optimality conditions of (15)
motivate the definition of problem

min Λ(x, v, z, w)
s.t. l̄ ≤ x ≤ ū, v ∈ IRm, z ≥ 0, w ≥ 0

(16)

where

Λ(x, yv, z, w) = 1
2

(
‖Bx+ g + ATv − z + w‖2

2 + ‖Ax− c‖2
2

+
(
(x− l̄)T z

)2
+
(
(ū− x)Tw

)2
)
.

The objective function of problem (16) is not convex and typical algorithms for
bound-constrained minimization are convergent to stationary points, not necessar-
ily global minimizers. However, under the hypothesis that (15) is convex, the result
stated below guarantees that finding stationary points of (16) is equivalent to solv-
ing (15).

Theorem 1 If the feasible set W is nonempty and bounded, and the Hessian matrix
B is positive semidefinite then problem (16) admits at least one stationary point and
every stationary point (x∗, v∗, z∗, w∗) of (16) is such that Λ(x∗, v∗, z∗, w∗) = 0.

Proof: It is a slight adaptation of the proof of Theorem 2.1 of [17] (cf. [42]).

It is worth mentioning that the hypothesis of boundedness ofW can be removed
due to the quadratic nature of the objective function of problem (15). This follows
from Theorem 2 of [3].
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4 Subproblems of the Algorithm GMM

In this section we address the quadratic subproblems of Algorithm GMM by means
of the equivalence result stated in Theorem 1.

At step 0, to compute dnor satisfying (6)-(7), it is enough to set dnor = y∗ − xk,
where y∗ is the solution to

min 1
2
‖xk − α∇ϕ(xk)− y‖2

2

s.t. l ≤ y ≤ u,
(17)

with α > 0 a fixed parameter. Problem (17) is quite simple, and its solution can be
easily computed by projecting xk − α∇ϕ(xk) on the box {y ∈ IRn | l ≤ y ≤ u}.

At step 2, to compute snor satisfying (8), we set snor = s̃, where s̃ is an approx-
imate solution to

min 1
2
‖h′(xk)s+ h(xk)‖

2
2

s.t. ‖s‖∞ ≤ 0.8∆
l ≤ xk + s ≤ u

(18)

that verifies inequality (8). Problem (18) consists of minimizing a bound-constrained
quadratic and any algorithm that computes an approximate solution to this problem
can be used (e.g. [5, 6, 18]).

At step 3, to obtain dtan such that conditions (9)-(11) hold we set dtan = d̄,
where d̄ is the solution to

min 1
2
‖η∇Qk(snor) + d‖2

2

s.t. h′(xk)d = 0
l ≤ xk + snor + d ≤ u,

(19)

with fixed η > 0. Since the objective function of problem (19) is a convex quadratic
and 0 ∈ IRn is feasible for this problem, its solution d̄ will be found by solving the
following equivalent problem, as guaranteed by Theorem 1,

min Λ̄(d, v, z, w)
s.t. l ≤ xk + snor + d ≤ u, v ∈ IRm, z ≥ 0, w ≥ 0,

(20)

where

Λ̄(d, v, z, w) = 1
2

(
‖d+ η∇Qk(snor) + h′(xk)

Tv − z + w‖2
2 + ‖h

′(xk)d‖
2
2

+
(
(d+ xk + snor − l)T z

)2
+
(
(u− d− xk − snor)

Tw
)2
)
.
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Finally, let us analyze step 4. To obtain stan satisfying (12)-(13), we consider
the approximate solution to problem

min Qk(s)
s.t. h′(xk)s = 0

‖snor + s‖∞ ≤ ∆
l ≤ xk + snor + s ≤ u,

(21)

that verifies (13). The feasible set of problem (21) is nonempty (0 ∈ IRn is feasible)
and bounded. Moreover, ‖snor+s‖∞ ≤ ∆ and l ≤ xk+snor+s ≤ u can be rewritten
as l̄ ≤ s ≤ ū, where the components of l̄ and ū are respectively

l̄i ≡ max{−∆− (snor)i, li − (xk)i − (snor)i} (22)

and
ūi ≡ min{∆− (snor)i, ui − (xk)i − (snor)i}, (23)

where i = 1, . . . , n. The equivalent formulation is

min Λ̃(s, v, z, w)
s.t. l̄ ≤ s ≤ ū, v ∈ IRm, z ≥ 0, w ≥ 0,

(24)

where

Λ̃(s, v, z, w) = 1
2

(
‖Bks+∇x`(xk, λk) + h′(xk)

Tv − z + w‖2
2 + ‖h

′(xk)s‖
2
2

+
(
(s− l̄)T z

)2
+
(
(ū− s)Tw

)2
)
.

In order to apply the result established by Theorem 1, it is necessary that matrix
Bk be positive semidefinite. This requirement will be addressed in detail in the next
section.

5 Choices for the Hessian of the quadratic model

Let us consider first, for simplicity, the equality-constrained optimization problem

min f(x)
s.t. h(x) = 0.

(25)

The equivalence between SQP and Newton’s method applied to the optimal-
ity conditions of (25) is based on the choice of matrix Bk as the Hessian of the
Lagrangian, that is,

∇2
xx`(xk, λk) = ∇

2
xxf(xk) +

m∑

i=1

[λk]i∇
2
xxhi(xk). (26)
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In spite of the good local properties of this choice, that often produces fast
progress when the iterates are far from the solution (see e.g. [26, 35]), the reasons
for not adopting Bk = ∇2

xx`(xk, λk) are twofold. First, the Hessian of the Lagrangian
is made up of second derivatives of the objective function and constraints, which
may not be easy to compute. Second, in general, this matrix may not be positive
definite along the generated sequences {xk}, {λk}, not even on the constraint null
space. Therefore, alternative choices for Bk should be devised.

5.1 Quasi-Newton approximations to the Hessian of the aug-

mented Lagrangian

Although model (3) is a quadratic approximation to the Lagrangian, it might be
that Bk = ∇2

xx`(xk, λk) has negative eigenvalues and, thus, model (3) with this
choice will not be convex. To overcome this difficulty and, at the same time, take
advantage of the related second-order optimality condition, we shall consider the
Hessian of the merit function (2):

∇2
xxΦ(x, λ, θ) = θ∇2

xx`(x, λ) + (1− θ)

(
m∑

i=1

hi(x)∇
2
xxhi(x) + h′(x)Th′(x)

)
. (27)

Using the change of variables ρ = (1− θ)/θ for the penalty parameter, the merit
function (2) can be seen as the usual augmented Lagrangian. The classic theory of
augmented Lagrangian ensures that, at a minimizer (x∗, λ∗) of (1) satisfying second-
order sufficiency conditions, matrix (27) becomes

∇2
xxΦ(x∗, λ∗, θ) = θ∇2

xx`(x∗, λ∗) + (1− θ)h′(x∗)
Th′(x∗), (28)

which is positive definite for θ ∈ (0, θ∗) (see, e.g. [34, chap. 13]). Therefore, we
could use directly (27) as the Hessian of the quadratic model (3), or a quasi-Newton
approximation to it.

A popular quasi-Newton formula is the BFGS one, for which the update is given
by

Bk+1 = Bk −
Bksks

T
k Bk

sT
k Bksk

+
yky

T
k

sT
k yk

, (29)

where sk = xk+1 − xk and yk = ∇xΦ(xk+1, λk+1, θ) − ∇xΦ(xk, λk+1, θ) (see [37,
p. 542]).

If Bk is positive definite, as in the unconstrained case, the curvature condition
sT

k yk > 0 ensures that Bk+1 is positive definite as well. However, it might be that sk

10



and yk do not satisfy this condition. An alternative, so-called damped BFGS, was
proposed by Powell [38] and consists of replacing yk by

ȳk = νyk + (1− ν)Bksk, (30)

where

ν =





1, sT
k yk ≥ 0.2sT

k Bksk

0.8sT
k Bksk

sT
k Bksk − sT

k yk

, sT
k yk < 0.2sT

k Bksk.
(31)

It is worth mentioning that the choice (27), or a quasi-Newton approximation
to it, are not free from difficulties. The threshold value θ∗ for which matrix (28) is
positive definite depends on bounds on the second derivatives of the problem, usually
not known. A too small choice of θ might result in the domination of the last term
of (28), whereas if θ is too large, the Hessian of the augmented Lagrangian may not
be positive definite. As a consequence, the curvature condition at the corresponding
quasi-Newton approximation Bk may not be satisfied.

A variant to Powell’s approach (30)-(31) is suggested by Nocedal and Wright [37,
p. 542], and comes from the fact that near the solution there is a maximum value
for θ that guarantees uniform positiveness of sT

k yk. It rests upon the relationship

yk = ∇xΦ(xk+1, λk+1, θ)−∇xΦ(xk, λk+1, θ)

= θy`
k + (1− θ)h′(xk+1)

Th(xk+1),

where y`
k = ∇x`(xk+1, λk+1)−∇x`(xk, λk), as long as the first-order update for the

Lagrange multipliers is used θλk+1 = θλk + (1− θ)h(xk). Thus, the idea is to select
θ adaptively to satisfy a positivity criterion upon the curvature condition whenever
yk is used in the update (29).

5.2 Quasi-Newton reduced-Hessian approximations

In the previous approach we adopted full matrices Bk ∈ IRn×n. Now we will consider
approximations to the reduced-Hessian of the Lagrangian, namely,

ZT
k ∇

2
xx`(xk, λk)Zk, (32)

where the columns of matrix Zk ∈ IRn×p span the null space of h′(xk). Procedures
for computing a smoothly varying sequence of null-space matrices Zk are described
in [10, 24]. Convergence results for reduced-Hessian quasi-Newton methods have
been proved in [9].
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The Hessian (32) has smaller dimension than (27) and, under the standard as-
sumptions, is positive definite in a neighborhood of the solution.

To use matrix (32) in problem (21) we will proceed as follows. Assuming that
h′(xk) has full rank m, and that matrix Zk ∈ IRn×(n−m) has been determined, the
change of variables s = Zkv, v ∈ IRn−m turns (21) into

min 1
2
vTZT

k ∇
2
xx`(xk, λk)Zkv + vTZT

k ∇x`(xk, λk) + `(xk, λk)

s.t. ‖snor + Zkv‖∞ ≤ ∆

l ≤ xk + snor + Zkv ≤ u.

(33)

The feasible set of (33) can be rewritten as

l̄ ≤ Zkv ≤ ū, (34)

where the components of the bounds l̄ and ū are given, respectively, by (22) and
(23), so that we have a quadratic problem with linear inequality constraints. Adding
slacks to (34), it becomes




Zkv ≤ ū

Zkv ≥ l̄
⇒




Zkv + w = ū

0 ≤ w ≤ ū− l̄,

where w ∈ IRn. Thus, (33) can be rewritten as

min 1
2
vTZT

k ∇
2
xx`(xk, λk)Zkv + vTZT

k ∇x`(xk, λk) + `(xk, λk)

s.t.
(
Zk I

)(v
w

)
= ū

0 ≤ w ≤ ū− l̄.

(35)

Problem (35) has 2n − m variables, n linear equality constraints and n simple
bounds. Besides, it is convex in a neighborhood of a minimizer, its feasible set is
nonempty (observe that Zkv = 0 is feasible to (33) and l̄ ≤ 0 ≤ ū ≤ ū − l̄) and,
by the equivalence between (33) and (35), the feasible set of (35) is also bounded.
Therefore, Theorem 1 can be applied to (35), and the equivalent formulation is given
by

min Λ̃R(v, w, z̄, w̄)
s.t. v ∈ IRn−m, 0 ≤ w ≤ ū− l̄, z̄ ≥ 0, w̄ ≥ 0,

(36)

where

Λ̃R(v, w, z̄, w̄) = 1
2

(
‖ZT

k ∇
2
xx`(xk, λk)Zkv + ZT

k ∇x`(xk, λk) + ZT
k (z̄ − w̄)‖2

2

+‖Zkv + w − ū‖2
2 +

(
wT z̄

)2
+
(
(ū− l̄ − w)T w̄

)2
)
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Next we provide the expressions to approximate the Hessian (32) in the quasi-
Newton context. Denoting the approximation matrix by Mk ≈ ZT

k ∇
2
xx`(xk, λk)Zk

and following [37, p.553], its BFGS update is given by

Mk+1 = Mk −
Mkŝkŝ

T
k Mk

ŝT
k Mkŝk

+
ŷkŷ

T
k

ŝT
k ŷk

, (37)

with ŝk = v∗k, where vector v∗k is the solution to (33), and

ŷk = ZT
k (∇x`(xk+1, λk+1)−∇x`(xk, λk+1)) . (38)

There are other possibilities for defining vector ŷk with similar properties, such as

ŷk = ZT
k (∇f(xk+1)−∇f(xk)) , (39)

or
ŷk = ZT

k

(
∇f(xk + Zkv

∗
k) + h′(xk)

Tλk −∇f(xk)
)
. (40)

Choice (40) was inspired in [11] and consists of a projected updating scheme along
the tangent space of the constraints, whenever used together with the least-squares
update for the Lagrange multiplier vector, namely

λk+1 =
(
h′(xk+1)h

′(xk+1)
T
)−1

h′(xk+1)∇f(xk+1). (41)

As before, in case the curvature condition ŝT
k ŷk > 0 does not hold, some safeguard

should be adopted, like the damped BFGS update. A common practical strategy is
to skip the update, that is, set Mk+1 = Mk whenever ŝT

k ŷk ≤ 0.

6 Numerical experiments

In this section, we present some preliminary numerical results for the reformulation
of the GMM algorithm proposed above. Some implementation details deliberately
suppressed when the algorithm was presented are listed below.

• Quacan, a subroutine for solving bound-constrained quadratic problems (see
[5]), is used to compute snor as in (18).

• In our numerical tests, dtan, the decrease step for the Lagrangian function
on the tangen space, was never actually computed. The tangent step stan is
obtained by solving problem (36) by means of a bound-constrained noncon-
vex minimization algorithm based on [18]. This algorithm, developed at the
University of Campinas, is available as a subroutine called Box. As the initial
values for problem (36) we use (v0, w0, z̄0, w̄0) = (0, ū− l̄, 0, 0).
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• At each iteration of the Box algorithm, a quadratic approximation of the objec-
tive function is minimized. The approximate solution of the resulting bound-
constrained nonconvex quadratic problem is given by Quacan.

• Instead of using stan = Zkv, we define stan = ū − w, due to the second term
from the objective function of problem (36).

• One of the most time consuming steps of the new algorithm is the computation
of matrix Zk. A reasonable alternative for generating this matrix, based on
the LU-factorization, is described below.

Denoting A = h′(xk) and writing A in the form A = [B N ], where B is
invertible, Z is given by

Z =

[
−B−1N

I

]
.

Since it is not trivial to select the columns of A that will form matrix B
and the computation of B−1 is impractical, we use the umfpack [14] routine
to compute an LU factorization of A, with row and column permutations.
Therefore, writing PAP̃ T = LU , we have

Z = P̃ T

[
−U−1

1 U2

I

]
.

• To compute vector ŷk, the following reformulation of (40) is used:

ŷk = ZT
k (∇f(xk + Zkv

∗
k) +∇`(xk)− 2∇f(xk)) .

• Instead of using (41), we use

λk+1 =
(
h′(xk+1)(I − I?)h

′(xk+1)
T
)−1

h′(xk+1)∇f(xk+1),

where I? is the diagonal matrix with Iii = 1 if [xk+1]i = `i or [xk+1]i = ui, and
Iii = 0 otherwise.

To analyze the performence of the new algorithm, a set of 22 very small problems
extracted from the Hock and Schittkowski test library [29] was used. A FORTRAN
implementation of the GST algorithm was build to compare it to the original GMM
method. The results are presented in table 1.

Table 1 shows the total number of outer iterations required by the GST algo-
rithm, and the number of Box and Quacan iterations used to compute the tangent
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Problem GST iterations GMM iterations
Name n m Outer Box Quacan Outer Minos
HS6 2 1 15 55 211 9 19
HS7 2 1 24 82 316 7 12
HS10 2 1 10 54 460 13 22
HS11 2 1 8 48 395 6 11
HS22 2 2 6 33 224 4 8
HS26 3 1 17 99 550 13 36
HS28 3 1 7 30 157 1 3
HS36 3 1 2 10 67 1 6
HS37 3 2 8 35 178 4 12
HS41 4 1 6 26 172 (*) 1 3
HS47 5 3 39 311 2945 15 58
HS49 5 2 34 724 13624 16 80
HS53 5 3 20 122 1173 1 4
HS54 6 1 (*) 2 5 33 12 77
HS60 3 1 13 66 289 7 20
HS63 3 2 8 41 195 13 32
HS74 4 5 6 61 425 4 8
HS107 9 6 (*) 13 917 28653 5 24
HS111 10 3 9 224 9467 12 154
HS112 10 3 10 283 8886 12 137
HS113 10 8 (*) 15 1764 152818 5 68
HS119 16 8 (*) 14 4958 135398 7 81

Table 1: Comparison between GST and GMM.

steps. For the GMM code, the number of outer iterations and the number of Minos
[36] iterations required to compute stan are given. The symbol (*) indicates that the
algorithm failed to attain the correct value for the objective function. The number
of variables and constraints are provided in columns n and m, respectively.

The time spent by both algorithms was omitted here due to the fact that the
GMM algorithm uses true Hessians, whereas the GST algorithm approximates the
Hessians using a BFGS formula, so the values would not be comparable.

It can be noticed from the table that the number of outer iterations spent by
the GST algorithm is not unreasonably greater than the GMM figures, especially
if we take in account that it uses a quasi-Newton Hessian approximation. On the
other hand, the Box routine usually takes too much iterations to solve the tangent
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problem. Besides, Quacan also has to struggle to compute each step of the Box

algorithm.
This bad behavior of the GST algorithm is related to the presence of the comple-

mentarity terms
(
wT z̄

)2
and

(
(ū− l̄ − w)T w̄

)2
in the objective function of problem

(36).

7 Final remarks

The results presented in the last section suggest that, although theoretically con-
vergent, the new algorithm cannot rival the performance of the GMM algorithm.

We also implemented the quasi-Newton approximation to the Hessian of the
augmented Lagrangian (depicted in section 5.1) and several different strategies for
computing ∆λ and ŷk, but the results were worse than those shown in table 1.
Therefore, the performance of the original GMM algorithm seems to be unbeatable
by an algorithm that uses a bound constrained method to solve the tangent sub-
problem.

Acknowledgments. We are indebted to R. Andreani and J. M. Mart́ınez for their
helpful comments.
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