|
|
Livro-texto do curso:
GOLUB, Gene & VAN LOAN, Charles F. Matrix computations. 3. ed. Baltimore, Johns Hopkins University, 1996.
Livros auxiliares:
STEWART, G. W. Matrix algorithms, vol. 1: basic decompositions. Philadelphia, SIAM, 1998. STEWART, G. W. Matrix algorithms, vol. 2: eigesystems. Philadelphia, SIAM, 2001. DEMMEL, J. Applied numerical linear algebra. Philadelphia, SIAM, 1997. SAAD, Y. Iterative methods for sparse linear systems. 2.ed. Philadelphia, SIAM, 2003. GREENBAUM, A. Iterative methods for solving linear systems. Philadelphia, SIAM, 1997. BJÖRCK, A. Numerical methods for least squares problems. Philadelphia, SIAM, 1996. TREFETHEN, L. N. & BAU III, D. Numerical linear algebra. Philadelphia, SIAM, 1997. HIGHAM, N. J. Accuracy ans stability of numerical algorithms. 2.ed. Philadelphia, SIAM, 2002. PARLETT, B. N. The symmetric eigenvalue problem. Philadelphia, SIAM, 1997. WATKINS, D. S. The matrix eigenvalue problem: GR and Krylov subspace methods. Philadelphia, SIAM, 2007. WATKINS, D. S. Fundamentals of matrix computations. New York, Wiley, 2002. MEYER, C. D. Matrix analysis and Applied linear algebra. Philadelphia, SIAM, 2000.
|
|