
Nonlinear programming algorithms using trust regions and

augmented Lagrangians with nonmonotone penalty

parameters

Francisco A. M. Gomes ∗ Maŕıa Cristina Maciel † José Mario Mart́ınez ‡

November 19, 1997 (Second Revision)

Abstract

A model algorithm based on the successive quadratic programming method for
solving the general nonlinear programming problem is presented. The objective func-
tion and the constraints of the problem are only required to be differentiable and their
gradients to satisfy a Lipschitz condition.

The strategy for obtaining global convergence is based on the trust region approach.
The merit function is a type of augmented Lagrangian. A new updating scheme is
introduced for the penalty parameter, by means of which monotone increase is not
necessary.

Global convergence results are proved and numerical experiments are presented.

Key words: Nonlinear programming, successive quadratic programming, trust re-
gions, augmented Lagrangians, Lipschitz conditions.

∗Department of Applied Mathematics, IMECC-UNICAMP, University of Campinas, CP 6065, 13081-
970 Campinas SP, Brazil (chico@ime.unicamp.br). This author was supported by FAPESP (Grant 90-
3724-6), FINEP and FAEP-UNICAMP.

†Department of Mathematics, Universidad Nacional del Sur, Av. Alem 1253, 8000 Bah́ıa Blanca,
Argentina (immaciel@criba.edu.ar). This author was supported by FAPESP (Grant 94-1503-3) and by
Fundación ANTORCHAS (Grant A-13219/1-000067).

‡Department of Applied Mathematics, IMECC-UNICAMP, University of Campinas, CP 6065, 13081-
970 Campinas SP, Brazil (martinez@ime.unicamp.br). This author was supported by FAPESP (Grant
90-3724-6), CNPq and FAEP-UNICAMP.

1

1 Introduction

Every minimization problem with nonlinear equality and inequality constraints can be reduced, by
means of the introduction of slack variables, to the standard form

Minimize f(x) subject to C(x) = 0, l ≤ x ≤ u. (1)

In this work, it is assumed that f : IRn → IR, C : IRn → IRm have continuous first partial
derivatives, and −∞ ≤ li < ui ≤ ∞ for all i = 1, . . . , n. All along the paper we denote

g(x) = ∇f(x)

and
A(x) = (∇C1(x), . . . ,∇Cm(x))T .

Formulation (1) is used in many successful practical algorithms for nonlinear programming, like
those based on the generalized reduced gradient (see [15, 16]) and on the augmented Lagrangian
approach (see [6, 7]).

In this paper, a general algorithm is introduced, based on successive quadratic programming
(SQP), for solving (1). The contribution of this work generalizes, in many aspects, the approach
given in [8] for equality constrained optimization. As in [8], the main model algorithm considered
here has the following characteristics:

(i) A trust region approach is used as globalization strategy.
(ii) The algorithm generates steps whose “normal” and “tangential” components satisfy mild

conditions on adequate models.
(iii) The merit function is of the augmented Lagrangian type, where a large amount of freedom

for the estimation of Lagrange multipliers is admitted.
The convergence proofs make it easier to work with a new formulation of the augmented

Lagrangian, where the “penalty parameter” θ belongs to [0, 1]. As it is well known, the classical
augmented Lagrangian is

ψ̂(x, λ, ρ) = ℓ(x, λ) + ρϕ(x),

where λ ∈ IRm, ρ > 0, ℓ(x, λ) is the Lagrangian function given by

ℓ(x, λ) = f(x) + C(x)T λ

and

ϕ(x) =
1

2
‖C(x)‖2

2.

In this work, the following merit function is defined:

ψ(x, λ, θ) = θℓ(x, λ) + (1 − θ)ϕ(x). (2)

So, the obvious relation ρ = (1 − θ)/θ can be established between θ and the classical penalty
parameter ρ, and the monotone increase of ρ corresponds to the monotone decrease of θ. In the
convergence theory presented, the monotone decrease of θ is not necessary. Instead, a nonmonotone
strategy is defined that ensures convergence and allows one to test different “degrees of nonmono-
tonicity”. In a recent paper, El-Alem [9] defined a different nonmonotone strategy for the penalty
parameter of a specific algorithm for equality constrained minimization. Nonmonotone strategies
for penalty parameters, associated to nonsmooth merit functions were proposed in [4] and [26].

An arbitrary norm is used in the definition of the trust regions. However, the ∞−norm is the
natural choice for practical implementations, since it fits well with the bounds of the problem.

2

An important feature of this theory is that, unlike the one presented in [8], second differentia-
bility of the objective function or of the constraints is not needed. Instead, a Lipschitz condition
for the gradients of these functions is used. The optimality conditions of (1) can be viewed as a
nonsmooth system of equations. Local convergence of Newton-like methods for this type of system
has been established recently. See [13, 22, 24]. The global convergence theory presented in this
work is complementary to those local analyses.

This paper is organized as follows: in Section 2 the definition of the main model algorithm is
motivated, while its precise description is given in Section 3. In Section 4 it is proved that, under
mild conditions, the algorithm is well defined. The feasibility of every limit point generated by
the algorithm is established in Section 5. In Section 6 it is proved that there exists a limit point
that is stationary for problem (1). In Section 7, numerical experiments are reported. Finally, in
Section 8, some conclusions are stated and lines for future research are suggested.

Notation

The symbol ‖ · ‖ denotes an arbitrary norm on IRn, | · | denotes the Euclidean norm of vectors
or matrices and the corresponding scalar product is denoted 〈x, y〉.

If x, y ∈ IRn, [x, y] denotes the segment that has x and y as extreme points.
The expressions N (B) and R(B) denote the null-space of a matrix B and its column space,

respectively.
In many places throughout this paper, if the simplification does not lead to confusion, some

of the arguments of a function will be omitted. For example, Q(s) will denote Q(H,x, λ, s) when
there is no ambiguity on the arguments H,x and λ.

In the convergence proofs, the O(.) notation will be frequently used. Namely, it is said that
a = O(b) (where a, b ≥ 0) if a constant c ≥ 0 (depending only on the data of the problem) exists
such that a ≤ cb. Sometimes, a ≤ O(b) will be written instead of a = O(b) to stress the meaning of
the underlying inequality. Many proofs can be more concisely written using this notation. In these
cases, it will be easy to verify that, in fact, the implicit constants only depend on the problem data.

2 Motivation

Let x ∈ IRn (l ≤ x ≤ u) and λ ∈ IRm be approximations of the solution of (1) and the op-
timal Lagrange multipliers respectively. Suppose that Q(H,x, λ, s) is a quadratic (Taylor-like)
approximation of ℓ(x + s, λ). So,

Q(H,x, λ, s) =
1

2
sT Hs + ∇ℓ(x, λ)T s + ℓ(x, λ), (3)

where H ∈ IRn×n is symmetric. A naive Newtonian procedure for finding a new, probably better,
approximation x+ ≡ x + sc of the solution of (1) involves finding the solution sc to the quadratic
program

Minimize Q(H,x, λ, s) (4)

subject to A(x)s + C(x) = 0, l ≤ x + s ≤ u. (5)

Most SQP methods for solving (1) are based on modifications of the scheme (4)–(5). Unfor-
tunately, this quadratic program can be unbounded or infeasible. Unboundedness can be avoided
by means of the introduction of a regularization (or trust-region) constraint

‖s‖ ≤ δ > 0. (6)

3

Observe that, if ‖ · ‖ = ‖ · ‖∞, (4)–(6) continues being a quadratic programming problem. The
problem of infeasibility is more serious, since the set of increments s that satisfy (5) (or (5)–(6)) can
be empty and, in this case, it is not clear how to carry out the algorithm. In this paper, the lines
of [8] are followed for defining a relaxed problem that can be solved even when the constraints of
(4)–(6) are incompatible. See [3, 5, 21, 23, 29] for related strategies. The idea consists on dividing
the iteration into two phases. First, the problem

Minimize M(x, s) subject to l ≤ x + s ≤ u, ‖s‖ ≤ 0.8δ (7)

is considered, where

M(x, s) =
1

2
|A(x)s + C(x)|2. (8)

(Observe that ∇M(x, s) = A(x)T (C(x)+A(x)s) and ∇M(x, 0) = A(x)T C(x) = ∇ϕ(x).) Secondly,
if snor is a solution of (7), the increment sc is obtained solving the feasible quadratic program

Minimize Q(H,x, λ, s) (9)

subject to A(x)s = A(x)snor, l ≤ x + s ≤ u, ‖s‖ ≤ δ. (10)

Clearly, (7)–(10) is consistent with (4)–(6), in the sense that the solution of both problems coincide
when (4)–(6) is solvable, δ is large enough and C(x) is in the column space of A(x).

Now, the exact minimization of M and Q considered in (7) and (9) can be very costly in critical
(especially large-scale) problems. Therefore, it is necessary to develop procedures for computing
(7)–(10) only in an approximate sense. Most of the description of our main model algorithm
consists in giving a precise meaning to (7) and (9) when “Minimize” is replaced by “Minimize
approximately”. The idea is that an increment snor will be considered as an approximate solution
of (7) if it produces a decrease of M(x, s) of the same order of magnitude as the decrease produced
by a “pseudo-Cauchy step” related to M(x, s).

Analogously, an increment sc will be an approximate solution of (9)–(10) if the decrease
Q(H,x, λ, sc)−Q(H,x, λ, snor) is of the same order as the decrease produced by a “pseudo-Cauchy
step” on the feasible region of this quadratic programming problem.

After the computation of the trial increment sc and the trial point x + sc, it must be decided
whether this point can be accepted as a new estimate of the solution of (1). For this purpose, the
merit function defined by (2) is used. This function is a convex combination of ℓ and ϕ, so that its
first term measures progress in optimality and the second one measures improvement of feasibility.
The merit function at the trial point involves not only x + sc and the penalty parameter θ but
also a new estimate λ + ∆λ of the Lagrange multipliers. In the theory presented here, as in [8]
for equality constrained problems, the new estimate of the vector of multipliers can be (almost)
completely arbitrary, subject only to a boundedness condition. As a result, all efficient techniques
for estimating multipliers (see [12, 27, 28], and others) can be used.

To complete the definition of the merit function ψ, we need to choose a suitable penalty
parameter related to x, sc, λ and ∆λ. To make this decision, observe that, if ‖s‖ is small enough,

C(x + s) ≈ C(x) + A(x)s, (11)

ϕ(x + s) ≈ M(x, s) (12)

and
ℓ(x + s, λ) ≈ Q(H,x, λ, s). (13)

Therefore, by (11) and (13), we have that, for small ‖s‖ and bounded ‖∆λ‖,

ℓ(x + s, λ + ∆λ) = f(x + s) + C(x + s)T (λ + ∆λ) = ℓ(x + s, λ) + C(x + s)T ∆λ

4

≈ Q(H,x, λ, s) + (C(x) + A(x)s)T ∆λ. (14)

Let us define Ared(x, λ, s,∆λ, θ), the “actual reduction” of the merit function from (x, λ) to (x +
s, λ + ∆λ), as

Ared(x, λ, s,∆λ, θ) = ψ(x, λ, θ) − ψ(x + s, λ + ∆λ, θ). (15)

By (2), (12) and (14) we have that

Ared(x, λ, s,∆λ, θ) ≈ θ[Q(H,x, λ, 0) − Q(H,x, λ, s) − (C(x) + A(x)s)T ∆λ]

+(1 − θ)[M(x, 0) − M(x, s)]. (16)

Expression (16) justifies the definition of the “predicted reduction” of the merit function from
(x, λ) to (x + s, λ + ∆λ) as

Pred(H,x, λ, s,∆λ, θ) = θ[Q(H,x, λ, 0) − Q(H,x, λ, s) − (C(x) + A(x)s)T ∆λ]

+(1 − θ)[M(x, 0) − M(x, s)]. (17)

Consequently, as usual in trust-region methods,

Ared(x, λ, s,∆λ, θ) ≈ Pred(H,x, λ, s,∆λ, θ). (18)

Now, ideally it would be necessary for the merit function at the new point to be sufficiently
smaller than its value at the current point, which means that Ared(x, λ, sc,∆λ, θ) should be suffi-
ciently larger than 0. So, by (18), it would be natural to choose the penalty parameter in such a
way that Pred(H,x, λ, sc,∆λ, θ) is sufficiently larger than 0. But, by the computation of sc, only
the second term on the definition of Pred is guaranteed to be nonnegative, and the first one is
nonnegative if the second is null. So, it is possible to choose a penalization parameter θ > 0 small
enough to ensure that

Pred(H,x, λ, sc,∆λ, θ) ≥
1

2
[M(x, 0) − M(x, s)] ≥ 0. (19)

By (18) and (19), Ared should be sufficiently positive if δ is small enough. In fact, the trial
point x + sc is accepted when

Ared(x, λ, s,∆λ, θ) ≥ 0.1Pred(H,x, λ, sc,∆λ, θ), (20)

otherwise the trust region radius δ is reduced and the process (7)–(10) is restarted. It will be
proved that, after a finite number of reductions of δ, the test (20) is fulfilled, so that a new point
x + sc can be accepted.

In the next section, the details are completed and the algorithm schematized in this section is
rigorously formulated.

3 Description of the main model algorithm

In this section, the iteration that defines our successive quadratic programming algorithm is de-
scribed. In order to improve the readibility of this description (avoiding an excessively large number
of algorithmic parameters), many of the parameters that define the specific implementation are
replaced by their recommended values, usually numbers between 0 and 1. The reader can recognize
that, whenever a number in decimal notation appears in the description of the algorithm, it can
be replaced by another number belonging to (0, 1).

5

We define Ω = {x ∈ IRn | l ≤ x ≤ u} and we say that z ∈ Ω is ϕ−stationary if it satisfies the
first order optimality conditions of

Minimize ϕ(x) subject to x ∈ Ω. (21)

A point z is said to be feasible if z ∈ Ω and C(z) = 0. As usual, a feasible point z is said to be
regular if the gradients of the active constraints at z are linearly independent.

A lower bound δmin > 0 is used for the trust region radius at the beginning of each iteration.
So, the k-th iteration begins with δ ≥ δmin. Positive constants L1 and L2 will be defined as
upper bounds for the Lagrange multiplier estimates and the norms of the Hessian approximations,
respectively.

Given the current estimate x of the solution of (1), the estimate of the Lagrange multiplier
vector λ and a symmetric matrix H (which, generally, represents an approximation of ∇2ℓ(x, λ),
at least in C2 problems), the following algorithm explains how to obtain the “next iterate” x+ and
the next estimate of the vector of Lagrange multipliers λ+.

Algorithm 3.1

Assume that x ∈ Ω, λ ∈ IRm, ‖λ‖ ≤ L1, δ ≥ δmin, H = HT ∈ IRn×n, ‖H‖ ≤ L2, θold = 1. If x
is a stationary point of (1), x is ϕ−stationary but not feasible, or if x is feasible and non-regular,
the execution of the algorithm terminates. Otherwise, the steps for obtaining the next iterate x+

are the following.

Step 0. Compute a feasible descent direction for the constraints or, if the point is feasible, for the
Lagrangian.

If x is not ϕ−stationary, compute dnor(x) ∈ IRn such that

l ≤ x + dnor(x) ≤ u (22)

and
dnor(x)T∇ϕ(x) = dnor(x)T∇M(x, 0) < 0. (23)

If x is feasible, regular, and non-stationary for the nonlinear programming problem (1), define
dnor(x) = 0, snor = snor(x, δ) = 0 and dtan(x) ∈ IRn, such that

l ≤ x + dtan(x) ≤ u,

A(x)dtan(x) = 0,

and
dtan(x)T∇ℓ(x, λ) = dtan(x)T g(x) < 0. (24)

(Observe that ∇ℓ(x, λ) − g(x) ∈ R(A(x)T).)

Step 1. Compute the decrease step for the constraints.
If x is not feasible, compute sdec

nor = sdec
nor(x, δ) ∈ IRn, the solution of

Minimize M(x, s)

subject to l ≤ x + s ≤ u, ‖s‖ ≤ 0.8δ, s = tdnor(x), t ≥ 0.

Step 2. Compute the “normal step”.

6

If x is not feasible, compute snor = snor(x, δ) ∈ IRn such that l ≤ x + snor ≤ u, ‖snor‖ ≤ 0.8δ
and

M(x, 0) − M(x, snor) ≥ 0.9[M(x, 0) − M(x, sdec
nor)]. (25)

Step 3. Compute the decrease step for the Lagrangian function on the tangent space.
If x is feasible, set dtan = dtan(H,x, λ, δ) = dtan(x) (defined at Step 0, in this case). Otherwise,

compute dtan = dtan(H,x, λ, δ) ∈ IRn such that

l ≤ x + snor + dtan ≤ u,

A(x)dtan = 0,

and

dT
tan∇Q(H,x, λ, snor) < 0. (26)

If a vector satisfying the three conditions above does not exist, define dtan = 0. Otherwise (which
includes the case where snor = 0, i.e. x is feasible), define sdec

tan = sdec
tan(H,x, λ, δ) the solution of

Minimize Q(snor + s)

subject to l ≤ x + snor + s ≤ u, ‖snor + s‖ ≤ δ, s = tdtan, t ≥ 0.

Step 4. Compute the “tangent step”.
Compute stan = stan(H,x, λ, δ) ∈ IRn such that

A(x)stan = 0, l ≤ x + snor + stan ≤ u, ‖snor + stan‖ ≤ δ, (27)

and

Q(snor) − Q(snor + stan) ≥ 0.9[Q(snor) − Q(snor + sdec
tan)]. (28)

Step 5. Compute the update of the Lagrange multipliers and the current step.
Compute ∆λ ∈ IRm such that ‖λ + ∆λ‖ ≤ L1 and define

sc = sc(H,x, λ, δ) = snor + stan.

(In practical implementations, ∆λ depends on H,x, λ, and δ.)
Step 6. Compute an adequate penalty parameter for the current step.

Choose θ = θ(H,x, λ, sc,∆λ, δ) ∈ [0, θold] such that

Pred(H,x, λ, sc,∆λ, θ) ≥ 0.5[M(x, 0) − M(x, sc)]. (29)

Set θold ← θ.

Step 7. Accept or reject the current step sc.
If

Ared(x, λ, sc,∆λ, θ) ≥ 0.1Pred(H,x, λ, sc,∆λ, θ) (30)

define

x+ = x + sc, λ+ = λ + ∆λ.

7

In this case, if k is the current iteration number, define

δk = δ, θk = θ, sk = sc, ∆λk = ∆λ (31)

and finish the iteration setting xk+1 = x+, λk+1 = λ+.
If (30) does not hold, choose a new δ belonging to [0.1δ, 0.9δ] and go to Step 1.

This completes the description of the algorithm.

Remarks.

If x is not ϕ-stationary, then M(x, 0) − M(x, sc) = M(x, 0) − M(x, snor) > 0. Thus, (29) is
always satisfied for θ = 0 and, in this case, Pred does not depend on λ,∆λ at all. It will be shown
in Sections 4 and 5 that, even with this strange choice, the algorithm is well defined and converges
to a stationary point of ϕ. However, should θ = 0 be chosen, it would not be possible to prove
convergence to stationary points of (1) because, in that case, the weight of the Lagrangian on the
merit function would be null. In fact, the choice of θ by means of Algorithm 5.1 in Section 5
excludes the possibility of the null choice. It is necessary to stress that, throughout the paper,
increasing θ across different iterations will be admitted. Nevertheless, by the choice (29), the
sequence of penalty parameters used within a single iteration must be nonincreasing.

In Section 2, it was mentioned that the requirements on the “normal step” and the “tangent
step” that are sufficient to guarantee convergence of the algorithm are that the decrease in the
corresponding quadratics produced by those steps should be of the same order as the decrease
produced by certain “Cauchy steps”. Conditions (25) and (28) state those requirements rigorously.
(Of course, 0.9 can be replaced by any other number between 0 and 1.) Clearly, sdec

nor and sdec
tan

satisfy (25) and (28) respectively, but standard choices of dnor and dtan could produce algorithms
with poor local convergence behavior when snor = sdec

nor and stan = sdec
tan are chosen.

At the beginning of each iteration, we choose δ ≥ δmin. This inequality is the only requirement
that δ must satisfy for the convergence proofs. As usual in trust-region algorithms, δ can be chosen
as a multiple of δk (safeguarded by δmin in our case) according to the quotient Ared/Pred. Clever
choices can help to improve practical performance of algorithms.

Algorithm 3.1 admits a large number of specific implementations. In particular, ∆λ can be
computed, at Step 5, using quite sophisticated procedures for estimating Lagrange multipliers.
However, even the null choice (λ,∆λ ≡ 0) is admissible from the point of view of global conver-
gence properties.

4 The algorithm is well defined

In this section, it is proved that Algorithm 3.1 is well defined. This means that, if it does not
terminate at the current point x, a new point x+ satisfying (30) can be found after repeating steps
1 to 7 a finite number of times. It is interesting to observe that the sufficient conditions that
guarantee this property are very weak. In particular, dnor and dtan are merely directions that
satisfy the angle conditions (23) and (24)-(26). Later, we will see that for obtaining convergence
of the algorithm we need stronger conditions on dnor and dtan.

For proving this property, two cases will be considered. Firstly, when the current point x ∈ Ω
is not ϕ−stationary. Secondly, when x is feasible and regular but it is not a stationary point
of (1). Observe that in the remaining cases (when x is ϕ−stationary but not feasible, x feasible
and non-regular and x stationary for (1)), the algorithm terminates. The first case is considered
in Lemma 4.1 and the second one in Lemma 4.2.

8

Lemma 4.1. Assume that x is not a stationary point of (21). Then, after a finite loop on Algo-
rithm 3.1, the next iterate x+ is obtained.

Proof. Since x is not ϕ−stationary, dnor 6= 0 is computed at Step 0 of the algorithm. We define,
for all δ > 0,

v(δ) = t(δ)dnor,

where
t(δ) = max {t > 0 | [x, x + tdnor] ⊂ Ω, and ‖tdnor‖ ≤ 0.8δ}.

Since x+dnor ∈ Ω, we have that ‖t(δ)dnor‖ = 0.8δ if δ ≤ ‖dnor‖. Define c = − 1
2dT

nor∇ϕ(x)/‖dnor‖ >

0. By elementary properties of one-dimensional quadratics, there exists δ ∈ (0, ‖dnor‖] such that,
for all δ ∈ (0, δ),

M(0) − M(v(δ)) ≥ −
1

2
dT

nor∇ϕ(x)t(δ) = c‖dnor‖t(δ) = 0.8cδ.

Therefore, by the computations at steps 1 and 2 of Algorithm 3.1, we have that

M(0) − M(snor(δ)) ≥ 0.72cδ.

Moreover, since Astan = 0, we also have that, for δ ∈ (0, δ),

M(0) − M(sc(δ)) ≥ 0.72cδ.

Therefore, by the choice of θ at Step 6, for δ ∈ (0, δ), we have that

Pred(H,x, λ, sc(δ),∆λ, θ) ≥ 0.36cδ. (32)

Now, by the differentiability of f and C, the boundedness of ‖∆λ(δ)‖ and the definition of Q,M
and Pred, we have that

lim
δ→0

|Ared(δ) − Pred(δ)|

δ
= 0. (33)

So, by (32),

lim
δ→0

∣

∣

∣

∣

Ared(δ)

Pred(δ)
− 1

∣

∣

∣

∣

= 0. (34)

This implies that, δ being small enough, the inequality (30) necessarily takes place. This proves
the desired result. 2

Lemma 4.2. Assume that x is a feasible and regular point for the nonlinear programming prob-
lem (1) where the Kuhn-Tucker conditions do not hold. Then, after a finite loop on Algorithm 3.1,
the new iterate x+ is obtained.

Proof. In this case, we have that snor = snor(δ) = 0 for all δ > 0. Since x is feasible, regular
and non-stationary, the vector dtan(x) 6= 0, computed at Step 0 of the algorithm, exists. As in
Lemma 4.1, we define, for all δ > 0,

p(δ) = t(δ)dtan,

where
t(δ) = max {t > 0 | [x, x + tdtan] ⊂ Ω, and ‖tdtan‖ ≤ δ}.

Since x + dtan ∈ Ω, we have that ‖t(δ)dtan‖ = δ whenever δ ≤ ‖dtan‖. Define, in this case,

c = −
1

2
dT

tan∇ℓ(x)/‖dtan‖ = −
1

2
dT

tang(x)/‖dtan‖ = −
1

2
dT

tan∇Q(0)/‖dtan‖ > 0.

9

Analogously to Lemma 4.1, since Q(sdec
tan) ≤ Q(p(δ)), there exists δ ∈ (0, ‖dtan‖] such that, for all

δ ∈ (0, δ),

Q(0) − Q(sdec
tan) ≥ −

1

2
dT

tan∇Q(0)t(δ) = −
1

2

dT
tan∇Q(0)

‖dtan‖
δ = cδ.

So, for all δ ∈ (0, δ̄),

Q(0) − Q(sc(δ)) ≥ Q(0) − Q(sdec
tan) ≥ 0.9cδ. (35)

Moreover, since, in this case M(0) = M(sc) = 0, C(x) = 0 and Asc = 0, we have that

Pred(H,x, λ, sc(δ),∆λ, θ) = θ[Q(0) − Q(sc(δ))] ≥ 0.5[M(0) − M(sc)]

for all δ ∈ (0, δ), θ ∈ [0, 1]. This means that θ is not decreased through any sequence of possible
decreases of δ in the algorithmic loop. Therefore, by (35),

Pred(H,x, λ, sc(δ),∆λ, θ) ≥ 0.9θ′cδ, (36)

for all δ ∈ (0, δ), where θ′ is the value of θ that satisfies (29) at the beginning of the loop. The
equality (33) follows as in Lemma 4.1 and, therefore, (34) follows from (33) and (36). As in
Lemma 4.1, the desired result follows from (34). 2

5 Every limit point is ϕ−stationary

In Section 4, it was shown that Algorithm 3.1 terminates at the k−th iteration only in the following
situations:

(a) xk is ϕ−stationary but not feasible;
(b) xk is feasible and non-regular;
(c) xk is feasible and stationary for the nonlinear programming problem (1).
In this section and in the next one, the behavior of infinite sequences defined by the algorithm

is investigated. Some additional assumptions will be introduced as soon as they are necessary. The
first one states that dnor(x), at Step 0 of Algorithm 3.1, must be chosen as a continuous function
of the current point.

A1. Continuity Assumption on dnor. For all x ∈ Ω, the mapping dnor is continuous at x.

A possible choice that satisfies Assumption A1 is

dnor(x) = P (x − γ∇ϕ(x)) − x, (37)

where P is the orthogonal projection on Ω and γ > 0 is a fixed scaling parameter. The continuity
of dnor follows, in this case, from the continuity of ∇ϕ and P . The parameter γ can be important
to make the units of x compatible with those of ∇ϕ in very badly scaled problems.

Assumption A1 is still very weak, and it is interesting to observe that, together with the angle
condition (23) (and Assumptions A2 and A3 stated later), it suffices to guarantee convergence to
ϕ−stationary points. In Section 6, we will see that, for obtaining convergence to critical points of
the nonlinear programming problem, we need further assumptions on dnor and dtan.

In Lemma 5.1, it is proved that, in the neighborhood of a point which is not ϕ−stationary, the
predicted decrease of the merit function is proportional to the trust region radius δ.

10

Lemma 5.1. Assume that x∗ ∈ Ω is not ϕ−stationary and that Assumption A1 holds. Then,
there exist ε1, δ

′
1, c1 > 0 such that for all x ∈ Ω, ‖x − x∗‖ ≤ ε1, if Algorithm 3.1 is applied to x

and (29) is satisfied, the predicted reduction satisfies

Pred(x, θ, δ) ≥ c1 min {δ, δ′1}.

Proof. Since x∗ is not ϕ−stationary, we have that

dnor(x∗)
T∇ϕ(x∗) < 0.

So, by the continuity of dnor(x) and ∇ϕ(x), there exists ε1 > 0 such that, whenever x ∈ Ω and
‖x − x∗‖ ≤ ε1,

2‖dnor(x∗)‖ ≥ ‖dnor(x)‖ ≥
‖dnor(x∗)‖

2
> 0 (38)

and
dnor(x)T∇M(x, 0) ≡ dnor(x)T∇ϕ(x) ≤ 0.5dnor(x∗)

T∇ϕ(x∗) < 0. (39)

By the continuity of A(x), |A(x)T A(x)| is bounded for ‖x− x∗‖ ≤ ε1. So, by (39) and elementary
properties of one-dimensional quadratics there exists t1 ∈ (0, 1) such that

M(x, 0) − M(x, tdnor(x)) ≥ −0.25dnor(x∗)
T∇ϕ(x∗)t > 0 (40)

whenever ‖x − x∗‖ ≤ ε1, t ∈ (0, t1].
Define

δ′1 =
t1‖dnor(x∗)‖

2
.

If 0 < δ ≤ δ′1 and ‖x − x∗‖ ≤ ε1 we have, from (38), that

δ

2‖dnor(x)‖
≤

δ′1
‖dnor(x∗)‖

< t1.

Therefore, by (38) and (40),

M(x, 0) − M(x,
δ

2‖dnor(x)‖
dnor(x)) ≥

−0.25dnor(x∗)
T∇ϕ(x∗)δ

2‖dnor(x)‖

≥
−0.25dnor(x∗)

T∇ϕ(x∗)δ

4‖dnor(x∗)‖
.

Since ‖ δ
2‖dnor(x)‖dnor(x)‖ ≤ 0.8δ, it follows that

M(x, 0) − M(x, sc(x, δ)) ≥ 0.9[M(x, 0) − M(x, sdec
nor(x, δ))]

≥
−0.05625dnor(x∗)

T∇ϕ(x∗)

‖dnor(x∗)‖
δ. (41)

If δ > δ′1, the definition of sdec
nor implies that

[M(x, 0) − M(x, sdec
nor(x, δ))] ≥ [M(x, 0) − M(x, sdec

nor(x, δ′1))].

Since (41) holds for δ = δ′1, it follows that

M(x, 0) − M(x, sc(x, δ)) ≥ 0.9[M(x, 0) − M(x, sdec
nor(x, δ′1))]

11

≥
−0.05625dnor(x∗)

T∇ϕ(x∗)

‖dnor(x∗)‖
δ′1. (42)

The desired result follows from (41), (42) and (29) by taking

c1 =
−0.028125dnor(x∗)

T∇ϕ(x∗)

‖dnor(x∗)‖
.

2

The following assumption replaces second derivative assumptions generally used in trust-region-
SQP algorithms. It will be used to ensure that the predicted reduction of the merit function is a
second-order approximation of the actual reduction.

A2. Bounded variation assumption. For all x, y ∈ Ω,

‖∇f(x) −∇f(y)‖ ≤ O(‖x − y‖), (43)

and
‖A(x) − A(y)‖ ≤ O(‖x − y‖). (44)

The Lipschitz conditions (43) and (44) imply that, for all x, y ∈ Ω,

|f(y) − f(x) −∇f(x)T (y − x)| ≤ O(‖y − x‖2) (45)

and
‖C(y) − C(x) − A(x)(y − x)‖ ≤ O(‖y − x‖2). (46)

The following Lemma states that, in a neighborhood of a non-ϕ−stationary point, the crite-
rion of acceptance of a trial step will be satisfied if the trust region radius is smaller than a fixed
quantity δ′2.

Lemma 5.2. Assume that x∗ is not ϕ−stationary and that Assumptions A1 and A2 hold. Then,
there exist ε2, δ

′
2 > 0 such that for all x ∈ Ω, ‖x − x∗‖ ≤ ε2, δ ≤ δ′2, if Algorithm 3.1 is applied to

x and (29) is satisfied, the following inequality holds:

Ared(x, λ, sc(δ),∆λ(δ), θ) ≥ 0.1Pred(H,x, λ, sc(δ),∆λ(δ), θ).

Proof. By (45), (46) and the boundedness of ∆λ,

|Ared(x, λ, sc(δ),∆λ(δ), θ) − Pred(H,x, λ, sc(δ),∆λ(δ), θ)| ≤ O(‖sc(δ)‖
2) ≤ O(δ2).

Therefore, by Lemma 5.1,

∣

∣

∣

∣

Ared(x, λ, sc(δ),∆λ(δ), θ)

Pred(H,x, λ, sc(δ),∆λ(δ), θ)
− 1

∣

∣

∣

∣

≤ O(δ)

and the required result follows from this inequality. 2

In the following Lemma, it will be proved that, if the sequence generated by Algorithm 3.1 ad-
mits a limit point which is not ϕ−stationary, the actual reduction of the merit function is bounded

12

away from zero.

Lemma 5.3. Suppose that x∗ is not ϕ−stationary and that Assumptions A1 and A2 hold. Let K1

be an infinite set of indices such that
lim

k∈K1

xk = x∗.

Then {δk, k ∈ K1} is bounded away from 0. Moreover, there exists c2 > 0 such that for large
enough k ∈ K1,

Ared(xk, λk, sk,∆λk, θk) ≥ c2.

Proof. If k ∈ K1 is large enough, we have that ‖xk − x∗‖ ≤ ε2, where ε2 is defined in Lemma 5.2.
By the criterion of acceptance of the trust region radius δ given in Algorithm 3.1, and Lemma 5.2,
it is easy to see that, when ‖xk −x∗‖ ≤ ε2, rejected steps smaller than δ′2 cannot occur. Therefore,
δk is bounded away from zero. Now, by Lemmas 5.1 and 5.2,

Ared(xk, λk, sk,∆λk, θk) ≥ 0.1Pred(Hk, xk, λk, sk,∆λk, θk) ≥ 0.1c1 min {δk, δ′1},

and the required result follows from this inequality since δk is bounded away from zero. 2

The fact proved in Lemma 5.3 is related to unboundedness of the merit function as far as,
assymptotically, the merit function used at all the iterations does not change. In the following
algorithm, a specific choice of the penalization parameter is given with the aim of assuring that,
essentially, the merit function will not change if k is large enough.

Algorithm 5.1

This algorithm has exactly the same steps as Algorithm 3.1, with a specific choice of θ at Step 6
of the k−th iteration.

The parameter θ that satisfies (29) is chosen according to

θmin
k = min {1, θ0, . . . , θk−1},

θlarge
k = (1 +

N

(k + 1)1.1
)θmin

k , (47)

where N ≥ 0 is a number that reflects the “degree of non-monotonicity” desired for the penalty
parameter. Let us define

θsup = θsup(x, δ) = sup {θ ∈ [0, 1] | Pred(H,x, λ, sc,∆λ, θ) ≥ 0.5[M(x, 0) − M(x, sc)]}.

If δ is the first trust region radius tested at the current iteration, define

θ′ = θ′(x, δ) = θlarge
k . (48)

Otherwise, set
θ′ = θ′(x, δ) = θ(x, δ′), (49)

where δ′ is the trust region radius tested immediately before δ at the current iteration.
Finally, the value of θ that satisfies (29) is given by

θ = θ(x, δ) = min {θsup, θ′}. (50)

13

The assymptotic stability of θk is proved in the following lemma.

Lemma 5.4. Assume that Algorithm 5.1 generates an infinite sequence {xk}. Then, the sequence
{θk} is convergent.

Proof. The sequence {θmin
k } is nonincreasing and bounded below, so it is convergent. Moreover,

{θlarge
k } converges to the same limit, since |θmin

k −θlarge
k | → 0. But, by the choice of θ, we have that

θk ≤ θlarge
k , and, by the definition of θmin

k , we have that θmin
k+1 ≤ θk. Therefore, {θk} is enclosed

between two sequences ({θmin
k+1} and {θlarge

k }) that have the same limit. So, {θk} is convergent. 2

The following assumption makes the unboundedness of the merit function used in Algorithm 5.1
impossible.

A3. Compactness assumption. The sequence {xk} generated by Algorithm 5.1 is bounded.

The compactness assumption is quite natural when dealing with bound constrained problems,
because the sequence {xk} is obviously bounded if the bounds l and u are finite (Ω is compact).
By the boundedness of ‖Hk‖ and λk, it follows that ℓ(xk, λ), ϕ(xk) and ψ(xk, λ, θ) are bounded.

Theorem 5.5. Let {xk} be the (infinite) sequence generated by Algorithm 5.1 and assume that
Assumptions A1, A2 and A3 hold. Then, every limit point of {xk} is ϕ−stationary.

Proof. Suppose that x∗ ∈ Ω is a limit point of {xk} and that it is not ϕ−stationary. Let us write,
for simplicity,

ℓk = ℓ(xk, λk), ϕk = ϕ(xk), ψk = ψ(xk, λk, θk)

for all k ∈ IN . Then, for all k ∈ IN we have that

ψk+1 = θk+1ℓk+1 + (1 − θk+1)ϕk+1

= θk+1ℓk+1 + (1 − θk+1)ϕk+1 − [θkℓk+1 + (1 − θk)ϕk+1] + [θkℓk+1 + (1 − θk)ϕk+1]

= (θk+1 − θk)ℓk+1 + (θk − θk+1)ϕk+1 + [θkℓk+1 + (1 − θk)ϕk+1]

= (θk − θk+1)(ϕk+1 − ℓk+1) + [θkℓk + (1 − θk)ϕk] − βk

= (θk − θk+1)(ϕk+1 − ℓk+1) + ψk − βk, (51)

where βk ≡ Ared(xkλk, sk,∆λk, θk) ≥ 0 for all k ∈ IN and, by Lemma 5.3, βk ≥ c2 > 0 for an
infinite set of indices. Now, by the choice of θ at Algorithm 5.1, we have that

θk − θk+1 +
θkN

(k + 1)1.1
≥ 0 (52)

for all k ∈ IN . By the compactness assumption, there exists an upper bound c > 0 such that

|ϕk − ℓk| ≤ c

for all k ∈ IN . Therefore, by (51) and (52),

ψk+1 = (θk − θk+1 +
θkN

(k + 1)1.1
)(ϕk+1 − ℓk+1) + ψk − βk −

θkN

(k + 1)1.1
(ϕk+1 − ℓk+1)

≤ (θk − θk+1 +
θkN

(k + 1)1.1
)c + ψk − βk +

θkN

(k + 1)1.1
c

14

= (θk − θk+1)c + ψk − βk + 2
θkN

(k + 1)1.1
c.

Writing the inequality above for k = 0, 1, 2, . . . and adding the inequations, we obtain

ψk ≤ (θ0 − θk)c +

k−1
∑

j=0

2θjcN

(j + 1)1.1
−

k−1
∑

j=0

βj + ψ0 ≤ 2c +

k−1
∑

j=0

2cN

(j + 1)1.1
−

k−1
∑

j=0

βj + ψ0 (53)

for all k ∈ IN . Since the series
∑∞

j=0
2cN

(j+1)1.1 is convergent and βk > 0 for all k, (53) implies that

ψk is unbounded below, thus contradicting the compactness assumption. 2

6 The algorithm finds a critical point

In this section, it will be proved that, under suitable assumptions, there exists a limit point of the
model algorithm that is a stationary point of (1).

In Algorithm 6.1, a specific choice for the tangent direction dtan will be made. The idea is
that this step should also be a continuous function of the current point, as it is in the case of dnor.
Roughly speaking, if dtan is continuous and snor is small, the decreasing properties of the quadratic
model of the Lagrangian on the tangent space will hold for points that are close to feasibility (see
Lemmas 6.1 and 6.2). Consequently, the freedom of the choice of snor must be restricted by im-
posing that the size of this vector must be of the same order as ‖C(x)‖.

A4. First algorithmic assumption. The choice of snor at Step 2 of Algorithm 3.1 is such that

‖snor(x, δ)‖ ≤ O(‖C(x)‖). (54)

It will be seen later that (54) holds for natural choices of snor.

Algorithm 6.1

This is a particular case of Algorithm 5.1, where the choice of dtan at steps 0 and 3 of the
algorithm is the following:

dtan = Px(−η∇Q(snor)), (55)

where Px(z) is the orthogonal projection of z on the set

T ≡ {y ∈ N (A(x)) | l ≤ x + snor + y ≤ u}

and η > 0 is a fixed scaling parameter.

The positive parameter η makes the scaling of x compatible with that of ∇Q. As in the def-
inition (37) of dnor, dtan can be interpreted as the minimizer of a simple quadratic model of the
Lagrangian on the tangent set T . So, the angle conditions (24) and (26) are satisfied by this choice
of dtan. The problem of finding the projection dtan tends to be easier if η is small.

In the proof of Lemma 6.1 two technical propositions are used. The proof of the first one is
straightforward.

Proposition 1. Define, for all z ∈ IRn, P (z) the orthogonal projection of z on the polytope given
by Ax = b, a1 ≤ x ≤ a2. Assume that z1 − z2 ∈ R(AT). Then P (z1) = P (z2).

15

Proposition 2. For all A ∈ IR(m+ν)×n, b ∈ IRm+ν , y ∈ IRn, let us define Φ(A, b, y) the orthogonal
projection of y on the polyhedron defined by

〈ai, z〉 ≤ bi, i = 1, . . . ,m,

〈ai, z〉 = bi, i = m + 1, . . . ,m + ν,

where aT
1 , . . . , aT

m+ν are the rows of A, b = (b1, . . . , bm+ν)T . Let Ā = (āT
1 , . . . , āT

m+ν)T , b̄ =
(b̄1, . . . , b̄m+ν)T , ȳ ∈ IRn be such that z̄ = Φ(Ā, b̄, ȳ),

〈āi, z̄〉 = b̄i for i ∈ {1, . . . , p} ∪ {m + 1, . . . ,m + ν},

〈āi, z̄〉 < b̄i for i ∈ {p + 1, . . . ,m}

and suppose that the vectors {āi, i ∈ {1, . . . , p} ∪ {m + 1, . . . ,m + ν}} are linearly independent.
Then, Φ is continuous at (Ā, b̄, ȳ).

Proof. To shorten the proof, let us consider the case ν = 0. The extension to ν > 0 is straightfor-
ward. By the Kuhn-Tucker conditions there exist λ1, . . . , λp ≥ 0 such that

ȳ − z̄ = λ̄1ā1 + . . . + λ̄pāp,

〈āi, z̄〉 = b̄i, i = 1, . . . , p,

〈āi, z̄〉 < b̄i, i = p + 1, . . . ,m. (56)

It follows that z̄ is also the projection of ȳ on the polyhedron defined by

P ≡ {z ∈ IRn | 〈āi, z〉 ≤ b̄i, i = 1, . . . , p}.

Assume that (Ak, bk, yk) → (Ā, b̄, ȳ), and define

P̄k ≡ {z ∈ IRn | 〈ak
i , z〉 ≤ bk

i , i = 1, . . . ,m},

Pk ≡ {z ∈ IRn | 〈ak
i , z〉 ≤ bk

i , i = 1, . . . , p}.

Let us call z̄k the projection of yk on P̄k. Our objective is to prove that z̄k → z̄.
Let zk be the projection of yk on Pk. So, for all k = 0, 1, 2, . . . there exist Ik ⊂ {1, . . . , p},

λk
1 , . . . , λk

p ≥ 0 such that

yk − zk =

p
∑

i=1

λk
i ak

i ,

〈ak
i , zk〉 ≤ bk

i , i = 1, . . . , p,

〈ak
i , zk〉 = bk

i for i ∈ Ik, λk
i = 0 if i /∈ Ik.

Clearly, there exist only a finite number of different subsets Ik (say {I1, . . . , Iq}) that are repeated
for infinitely many indices k. Let us consider the subsequences that correspond to each of them,
say {yk, Ak, bk, zk}k∈Kj

, j = 1, . . . , q. If Ij ∈ {I1, . . . , Iq}, Kj ∈ {K1, . . . ,Kq}, we have, for all
k ∈ Kj ,

yk − zk =
∑

i∈Ij

λk
i ak

i , 〈ak
i , zk〉 = bk

i for i ∈ Ij , (57)

λk
i ≥ 0 for all i ∈ Ij , (58)

〈ak
i , zk〉 ≤ bk

i for i = 1, . . . , p. (59)

16

Without loss of generality, assume that Ij = {1, . . . , r}. Define Ak
r as the matrix whose rows are

the first r rows of Ak, and b̃k
r = (bk

1 , . . . , bk
r)T . By (57), (zk, λk) solves the (n + r) × (n + r) linear

system

[

I (Ak
r)T

Ak
r 0

] [

z
λ

]

=

[

yk

b̃k
r

]

By the linear independence of the first p rows of Ā and the convergence of Ak, we have that,
for k large enough, the matrix of this linear system is nonsingular and converges to an invertible
matrix. Therefore, there exists (z, λ) such that

lim
k∈Kj

zk = z and lim
k∈Kj

λk = λ.

Taking limits in (57), (58) and (59), we see that z satisfies the Kuhn-Tucker conditions for the
projection of ȳ on P , so z = z̄. Since this reasoning holds for each of the subsequences defined by
K1, . . . ,Kq, we have that

lim
k→∞

zk = z̄. (60)

So, by (56), for large enough k we have that

〈ak
i , zk〉 < bk

i if i > p. (61)

By (57), (58), (59) and (61), zk is the projection of yk on P̄k, that is zk = z̄k. So, by (60), z̄k → z̄
and the proof is complete. 2

In Lemma 6.1 it is proved that, in a neighborhood of a feasible, regular and non-stationary
point x∗, the directional derivative of the quadratic model of the Lagrangian along dtan is bounded
away from zero.

Lemma 6.1. Assume that the infinite sequence {xk} is generated by Algorithm 6.1 and that
Assumption A4 holds. Suppose that the subsequence {xk}k∈K1

converges to the feasible and regular
point x∗ ∈ Ω, which is not a stationary point of (1). Then, there exist k1, c1 > 0, such that, for all
x ∈ {xk | k ∈ K1, k ≥ k1},

−∇Q(snor(x, δ))T dtan(H,x, λ, δ) ≥ c1. (62)

Moreover, ‖dtan(H,x, λ, δ)‖ is bounded and bounded away from 0 for x ∈ {xk | k ∈ K1, k ≥ k1}.

Proof. For all x ∈ {xk} we have that

dtan(H,x, λ, δ) = Px(−η∇Q(snor(x, δ))) = Px(−η[Hsnor(x, δ) + ∇ℓ(x)]).

By the contractive property of the orthogonal projection (see, for example, [30]),

|Px(−η[Hsnor(x, δ) + ∇ℓ(x)]) − Px(−η∇ℓ(x))| ≤ η|H||snor(x, δ)|.

So, by Assumption A4, and the boundedness of |H|, we have that

|dtan(H,x, λ, δ) − Px(−η∇ℓ(x))| ≤ O(‖C(x)‖).

Now, by Proposition 1, Px(−η∇ℓ(x)) = Px(−ηg(x)). Therefore,

|dtan(H,x, λ, δ) − Px(−ηg(x))| ≤ O(‖C(x)‖). (63)

17

So, by the continuity of g(x) and the convergence of {xk}k∈K1
,

|g(x)T Px(−ηg(x)) − g(x)T dtan(H,x, λ, δ)| ≤ O(‖C(x)‖) for k ∈ K1. (64)

Observe that, for all k ∈ K1, Px(−ηg(x)) is the solution of

Minimize | − ηg(x) − z|2 subject to A(x)z = 0, l ≤ x + snor + z ≤ u.

Let us define Px∗
(−ηg(x∗)) the solution of

Minimize | − ηg(x∗) − z|2 subject to A(x∗)z = 0, l ≤ x∗ + z ≤ u. (65)

Since x∗ is not a stationary point of (1) and x∗ is regular, it follows that 0 is not a solution of (65).
So, Px∗

(−ηg(x∗)) 6= 0. Moreover, since 0 is a feasible point of (65), we have that

| − ηg(x∗) − Px∗
(−ηg(x∗))|

2 < | − ηg(x∗)|
2,

which implies that g(x∗)
T Px∗

(−ηg(x∗)) < 0.
By Proposition 2, Px(−ηg(x)) is a continuous function of x and snor for all regular x. So, there

exist c′1, c
′
2, c

′
3 > 0 and k′ ∈ IN such that, for all x ∈ {xk | k ∈ K1, k ≥ k′},

c′1 ≤ ‖Px(−ηg(x))‖ ≤ c′2 and g(x)T Px(−ηg(x)) ≤ −c′3. (66)

Now, by (63), (64), (66), the continuity of C(x) and the feasibility of x∗, there exists k′′ ≥ k′

such that, whenever x ∈ {xk | k ∈ K1, k ≥ k′′},

c′1
2

≤ ‖dtan(H,x, λ, δ)‖ ≤ 2c′2 and g(x)T dtan(H,x, λ, δ) ≤ −
c′3
2

.

So, ‖dtan(H,x, λ, δ)‖ is bounded and bounded away from zero for x ∈ {xk | k ∈ K1, k ≥ k′′}.
Finally, since dtan ∈ N (A(x)), by Assumption A4 and the boundedness of ‖dtan‖ and |H|, we
have, for x ∈ {xk | k ∈ K1, k ≥ k′′},

∇Q(snor)
T dtan = (Hsnor + ∇ℓ(x))T dtan

= g(x)T dtan + dT
tanHsnor ≤ −

c′3
2

+ O(‖C(x)‖).

So, (62) follows defining c1 = c′3/4 and k1 ≥ k′′ such that O(‖C(xk)‖) ≤ c′3/4 whenever k ∈
K1, k ≥ k1. 2

The following Lemma 6.2 complements Lemma 6.1, showing that, in a neighborhood of a feasi-
ble, regular and nonstationary point, the decrease of the quadratic model of the Lagrangian (from
snor to sc) is proportional to the trust region radius δ.

Lemma 6.2. Assume, as in Lemma 6.1, that the infinite sequence {xk} is generated by Algorithm
6.1, Assumption A4 holds and the subsequence {xk}k∈K1

converges to the feasible and regular point
x∗ ∈ Ω, which is not a stationary point of (1). Then, there exist c2 > 0, k2 ≥ k1, δ′ ∈ (0, δmin)
such that, when x ∈ {xk | k ∈ K1, k ≥ k2}, the quadratic model of the Lagrangian satisfies

Q(x, snor(x, δ)) − Q(x, sc(x, δ)) ≥ c2 min {δ, δ′}. (67)

Proof. By Step 4 of Algorithm 6.1, we have:

Q(snor) − Q(sc) = Q(snor) − Q(snor + stan) ≥ 0.9[Q(snor) − Q(snor + sdec
tan)]. (68)

18

Now, writing sdec
tan = tdtan, we obtain:

Q(snor) − Q(snor + sdec
tan) = −

1

2
(sdec

tan)T Hsdec
tan −∇Q(snor)

T sdec
tan

= −
1

2
t2dT

tanHdtan − t∇Q(snor)
T dtan.

Suppose that dT
tanHdtan ≤ 0. By Lemma 6.1, there exists k1 ∈ IN such that when k ∈ K1, k ≥

k1,
Q(snor) − Q(snor + sdec

tan) ≥ −tsup∇Q(snor)
T dtan ≥ tsupc1 (69)

where
tsup = sup {τ ≥ 0 | l ≤ x + snor + τdtan ≤ u, and ‖snor + τdtan‖ ≤ δ}. (70)

By the definition of dtan in Algorithm 6.1, we have that

l ≤ x + snor + dtan ≤ u.

So, we have that tsup ≥ t1, where

t1 = sup {τ ∈ [0, 1] | ‖snor + τdtan‖ ≤ δ}.

Therefore, either t1 = 1 or ‖snor + t1dtan‖ = δ. In the second case, since ‖snor‖ ≤ 0.8δ, we have
that t1‖dtan‖ ≥ 0.2δ. Therefore, either tsup ≥ 1 or tsup ≥ 0.2δ/‖dtan‖. By Lemma 6.1, there exists
c > 0 such that ‖dtan‖ ≤ c when x ∈ {xk | k ∈ K1, k ≥ k1}. Consequently,

tsup ≥ min {1, 0.2δ/c} = (0.2/c) min {c/0.2, δ}.

So, by (69), we have that

Q(snor) − Q(snor + sdec
tan) ≥ 0.2(c1/c) min {c/0.2, δ} (71)

when x ∈ {xk | k ∈ K1, k ≥ k1}.
If dT

tanHdtan > 0, and sdec
tan = tsupdtan, where tsup is defined as in (70), an elementary property

of one-dimensional quadratics shows that

Q(snor) − Q(snor + sdec
tan) ≥ −

tsup

2
∇Q(snor)

T dtan.

Thus, following the same arguments as in the case dT
tanHdtan ≤ 0, we prove that

Q(snor) − Q(snor + sdec
tan) ≥ 0.1(c1/c) min {c/0.2, δ} (72)

when x ∈ {xk | k ∈ K1, k ≥ k1}.
Finally, we only need to consider the case where

dT
tanHdtan > 0, sdec

tan = tdtan and t < tsup.

In this case, t is the unconstrained minimizer of Q(snor + tdtan). So,

t = −
∇Q(snor)

T dtan

dT
tanHdtan

,

and

Q(snor) − Q(snor + sdec
tan) = −

1

2
t∇Q(snor)

T dtan.

19

Now, by Lemma 6.1, ‖dtan‖ and ‖H‖ are bounded for x ∈ {xk | k ∈ K1, k ≥ k1}. So,

t ≥ c1/c′,

where c′ is a uniform bound of dT
tanHdtan. Therefore, in this case, we have that

Q(snor) − Q(snor + sdec
tan) ≥ c2

1/(2c′). (73)

By (71), (72) and (73), we obtain that, when x ∈ {xk | k ∈ K1, k ≥ k1},

Q(snor) − Q(snor + sdec
tan) ≥ 0.1(c1/c) min {c/0.2, 5cc1/c′, δ}

= 0.1c1/c min { min {c/0.2, 5cc1/c′}, δ}.

Therefore, by (68), the desired result follows taking k2 ≥ k1,

c2 = 0.09c1/c and δ′ = min {δmin, 5c, 5cc1/c′}.

2

Lemma 6.3 concerns the decrease of the quadratic model of the Lagrangian, not from snor to
sc (as in Lemma 6.2) but from 0 to sc. In fact, in Lemma 6.2 it was proved that the decrease
from snor to sc is proportional to δ. Now, it must be taken into account that an increase from 0
to snor can occur. The idea is to prove that, when ‖C(x)‖ is less than some multiple of δ, that
possible increase is negligible and, so, the decrease on the quadratic model of the Lagrangian is
proportional to δ, even considering the terms that depend on ∆λ. As a consequence, since the first
term of the convex combination that defines Pred is sufficiently positive, it will not be necessary
to decrease the penalty parameter within this region.

Lemma 6.3. Assume that the hypotheses of Lemmas 6.1 and 6.2 hold. Then, there exist α, c3, k3 >
0 such that, when x ∈ {xk | k ∈ K1, k ≥ k3}, and ‖C(x)‖ ≤ αδ,

[Q(x, 0) − Q(x, sc(x, δ))] − (A(x)sc(x, δ) + C(x))T ∆λ ≥ c3 min {δ, δ′}

and
θsup(x, δ) = 1,

where θsup(x, δ) is defined in Algorithm 5.1 and δ′ is defined in Lemma 6.2.

Proof. By Lemma 6.2, Assumption A4, the continuity of C(x), the convergence of {xk}k∈K1
and

the boundedness of ‖λk‖ and ‖∆λk‖, we have that

[Q(0) − Q(sc)] − (Asc + C(x))T ∆λ

≥ Q(snor) − Q(sc) − |Q(0) − Q(snor)| − |Asc + C(x)||∆λ|

≥ Q(snor) − Q(sc) − |Q(0) − Q(snor)| − |C(x)||∆λ|

≥ c2 min {δ, δ′} − O(‖C(x)‖), (74)

if x ∈ {xk | k ∈ K1, k ≥ k2}, where c2 and δ′ are defined in Lemma 6.2. Clearly, the first part of
the thesis follows from this inequality by means of an adequate choice of α. But, by Assumption A4,
M(0) − M(sc) = M(0) − M(snor) ≤ O(‖C(x)‖), so

Pred(x, 1, δ) − 0.5(M(x, 0) − M(x, sc)) ≥ c3 min {δ, δ′} − O(‖C(x)‖).

20

Therefore, choosing α in a proper way, we prove the second part of the thesis. 2

In Lemma 6.4, an additional consequence of the existence of a feasible, regular and non-
stationary limit point of {xk} is derived. Roughly speaking, if θk is bounded away from zero,
it is possible to construct a sequence of actual reductions that is also bounded away from zero.
This causes a violation of the compactness assumption. Therefore, under the assumptions of Lem-
mas 6.1–6.3, it can be concluded that θk → 0.

Lemma 6.4. Assume that the hypotheses of Lemmas 6.1–6.3 and, in addition, that Assumptions
A1, A2 and A3 hold. Then

lim
k→∞

θk = 0.

Proof. Suppose, by contradiction, that the sequence {θk} does not converge to 0. Since, by

Lemma 5.4, {θk} is convergent, there exists k4 ≥ k3, θ̂ > 0 such that

θk ≥ θ̂

for k ≥ k4. Assume now that x ∈ {xk | k ∈ K1, k ≥ k4}. Since M(x, 0) − M(x, sc) ≥ 0, we have
that

Pred(x, θ, δ) ≥ θ[Q(x, 0) − Q(x, sc(x, δ)) − (A(x)sc(x, δ) + C(x))T ∆λ)].

So, by Lemma 6.2, Assumption A4 and the continuity of C(x) and A(x), if x ∈ {xk | k ∈ K1, k ≥
k4} we have, as in (74), that

Pred(x, θ, δ) ≥ θc2 min {δ, δ′} − O(‖C(x)‖).

Now, by (48)–(50), the sequence of penalty parameters θ effectively used to test the acceptance
criterion (30) within a single iteration is nonincreasing. So, for each (θ, δ) effectively used to test
(30) at the iteration which corresponds to x, we have that

Pred(x, θ, δ) ≥ θ̂c2 min {δ, δ′} − O(‖C(x)‖). (75)

On the other hand, by the bounded variation Assumption A2, and the boundedness of H,

|Ared(x, θ, δ) − Pred(x, θ, δ)| ≤ O(δ2).

Therefore, there exists δ̃ ∈ (0, δ′) ⊂ (0, δmin) such that, whenever δ ∈ (0, δ̃) and x ∈ {xk | k ∈
K1, k ≥ k4},

|Ared(x, θ, δ) − Pred(x, θ, δ)| ≤ θ̂c2δ̃/40.

Let k5 ≥ k4 be such that for all x ∈ {xk | k ∈ K1, k ≥ k5},

O(‖C(x)‖) ≤ c2θ̂δ̃/20,

where O(‖C(x)‖) is the function considered in (75). If x ∈ {xk | k ∈ K1, k ≥ k5} we have that,
for all (θ, δ) effectively used to test (30) at the iteration which corresponds to x,

Pred(x, θ, δ) ≥ θ̂c2 min {δ, δ′} − θ̂c2δ̃/20.

If, in addition, δ ∈ [δ̃/10, δ̃),

Pred(x, θ, δ) ≥ θ̂c2δ̃/10 − θ̂c2δ̃/20 = θ̂c2δ̃/20.

21

So, for all δ ∈ [δ̃/10, δ̃), x ∈ {xk | k ∈ K1, k ≥ k5},

|Ared(x, θ, δ) − Pred(x, θ, δ)|

Pred(x, θ, δ)
≤ 0.5.

This means that for some δ ∈ [δ̃/10, δ̃) the stepsize must be accepted at Step 7 of Algorithm 3.1.
Therefore δk is bounded away from 0 for k ∈ K1, k ≥ k5. So,

Ared(xk, θk, δk) ≥ 0.1Pred(xk, θk, δk)

and, by (75), the right-hand side of the former inequality is bounded away from 0 for k ∈ K1, k ≥ k5.
Therefore, by the argument used in Theorem 5.5 and the convergence of {θk}, it follows that the
merit function ψ(xk, λk, θk) is unbounded. This contradicts the compactness Assumption A3.
Thus, the lemma is proved. 2

At this point, it is useful to visualize the plane (‖C(x)‖, δ) as divided by the line ‖C(x)‖ = αδ.
The pairs (‖C(x)‖, δ) such that ‖C(x)‖ ≤ αδ, can be thought as belonging to the “good zone” of
the plane. In Lemma 6.3 it was shown that, within this zone, the first term of the convex combi-
nation Pred is positive and proportional to δ. Moreover, it was proved that when ‖C(x)‖ ≤ αδ,
the corresponding θsup is equal to 1, therefore there is no need for the penalty parameter to be
decreased. In Lemma 6.5 it will be proved that, although it is possible that the penalty param-
eter needs to be decreased “in the bad zone”, it will always remain larger than a multiple of δ.
To prove that property, an additional assumption on the decrease M(x, 0)−M(x, snor) is necessary.

A5. Second algorithmic assumption. For each feasible and regular x∗ ∈ Ω, there exist
c4, ε0 > 0 such that, whenever ‖C(x)‖ ≥ αδ,

[M(x, 0) − M(x, snor(x, δ))] ≥ c4δ‖C(x)‖, (76)

if Algorithm 6.1 is applied to x, and ‖x − x∗‖ ≤ ε0.

Remark on the choice of the normal step.

Before continuing the convergence proof, let us show that a choice of snor that satisfies As-
sumptions A4 and A5 is possible. In a neighborhood of a feasible and regular x∗ ∈ Ω, there exists
vnor(x) ∈ IRn such that

‖vnor(x)‖ ≤ O(‖C(x)‖), l ≤ x + vnor(x) ≤ u

and
A(x)vnor(x) + C(x) = 0. (77)

(A possible choice of vnor(x) comes from selecting m “basic” variables [x]i such that li < [x]i < ui

and the corresponding columns of A(x) form a nonsingular m × m matrix B(x). This is possible
at x∗ due to the regularity assumption, and in a neighborhood of x∗ by continuity. The vector
vnor(x) is formed by the components of −B(x)−1C(x) at the proper m positions with zeroes at
the remaining n − m positions. Of course, other choices are possible.) Then, snor(x, δ) is chosen
according to the following rules:

(a) If ‖vnor(x)‖ ≤ 0.8δ, take snor(x, δ) = vnor(x). In this case, Assumption A5 follows from
(77), since M(x, 0) − M(x, vnor(x)) = (1/2)|C(x)|2.

(b) If ‖vnor(x)‖ > 0.8δ, define

ṽnor(x, δ) =
0.8δ

‖vnor(x)‖
vnor(x)

22

and choose

snor(x, δ)) = ṽnor(x, δ)) if M(x, ṽnor(x, δ)) ≤ M(x, sdec
nor(x, δ)), (78)

and
snor(x, δ)) = sdec

nor(x, δ)) otherwise. (79)

If we compute dnor(x) by (37), Assumption A4 is satisfied by this choice. Observe that

M(x, 0) − M(x, ṽnor(x, δ)) ≥
0.8δ

‖vnor(x)‖
M(x, 0) =

0.4δ

‖vnor(x)‖
|C(x)|2.

But ‖vnor(x)‖ ≤ O(‖C(x)‖), so

M(x, 0) − M(x, ṽnor(x, δ)) ≥ 0.4δO(|C(x)|).

Therefore, Assumption A5 follows from (78)-(79).

Lemma 6.5. Assume that the hypotheses of Lemmas 6.1-6.3 and Assumption A5 hold. If
x ∈ {xk | k ∈ K1, k ≥ k3} and ‖C(x)‖ ≥ αδ, then δ/θsup(x, δ) is uniformly bounded.

Proof. When θsup(x, δ) 6= 1, a trivial calculation shows that

θsup(x, δ) =
M(0) − M(snor)

2[M(0) − M(snor) − Q(0) + Q(sc) + (Asc + C(x))T ∆λ]
.

So, by Assumptions A4 and A5, if x ∈ {xk | k ≥ k3, k ∈ K1} and ‖x − x∗‖ ≤ ε0, we have that

1

2θsup(x, δ)
= 1 +

Q(sc) − Q(snor)

M(0) − M(snor)
+

Q(snor) − Q(0) + [Asc + C(x)]T ∆λ

M(0) − M(snor)

≤ 1 +
|Q(0) − Q(snor) − (Asc + C(x))T ∆λ|

M(0) − M(snor)
≤ 1 +

O(‖C(x)‖)

c4‖C(x)‖δ
≤ 1 + O(1/δ).

Therefore, δ/θsup(x, δ) is bounded. 2

The following lemma is crucial. In Lemma 6.3, we proved that θ does not need to be decreased
in the “good zone”. However, it could be possible that many iterations enter into the bad zone,
through successive decreases of δ. In Lemma 6.6 we prove that, at most we enter into the bad zone
only once at each iteration. That is, for k large enough, the first trust region radius δ tried within
the bad zone will necessarily be accepted. For this reason, θ will not be excessively decreased. The
proof of the lemma requires a careful analysis of the first-order approximations of C and f .

Lemma 6.6. Assume that the hypotheses of Lemmas 6.1–6.3 and Assumptions A2 and A5 hold.
Then, there exist k6 ≥ k3, θ̃ ∈ (0, 1] such that, when x ∈ {xk | k ∈ K1, k ≥ k6}, ‖C(x)‖ ≥ αδ
and θ ≤ θ̃ satisfies (29), then

Ared(x, θ, δ) ≥ 0.1Pred(x, θ, δ).

Proof. By the bounded variation Assumption A2, we have that

Ared(x, θ, δ) = θ[ℓ(x, λ) − ℓ(x + sc(δ), λ + ∆λ)] + (1 − θ)[ϕ(x) − ϕ(x + sc(δ))]

= θ[Q(x, 0) − Q(x, sc(δ) − (C(x) + A(x)sc(δ))
T ∆λ + O(δ2)]

23

+(1 − θ)[|C(x)|2 − |C(x + sc(δ))|
2]/2.

But, by (46),

|C(x)|2 − |C(x + sc)|
2 = −sT

c A(x)T A(x)sc − 2sT
c A(x)T C(x) + ‖C(x)‖O(δ2) + O(δ3)

= 2(M(x, 0) − M(x, sc)) + ‖C(x)‖O(δ2) + O(δ3).

So,

Ared(x, θ, δ)

= θ[Q(x, 0) − Q(x, sc(δ)) − (C(x) + Asc(δ))
T ∆λ + O(δ2)]

+(1 − θ)[M(x, 0) − M(x, sc(δ)) + ‖C(x)‖O(δ2) + O(δ3)]

= Pred(x, θ, δ) + θO(δ2) + (1 − θ)[‖C(x)‖O(δ2) + O(δ3)]. (80)

Therefore, when ‖C(x)‖ ≥ αδ,

|Ared(x, θ, δ) − Pred(x, θ, δ)| ≤ θ‖C(x)‖O(δ) + ‖C(x)‖O(δ2). (81)

But, since θ satisfies (29), Assumption A5 implies that, for large enough k ∈ K1,

Pred(x, θ, δ) ≥ 0.5[M(x, 0) − M(x, sc)] ≥
c4

2
‖C(x)‖δ.

So, δ‖C(x)‖/Pred(x, θ, δ) is uniformly bounded. Therefore, dividing both terms of (81) by Pred(x, θ, δ),
we have that

∣

∣

∣

∣

Ared(x, θ, δ)

Pred(x, θ, δ)
− 1

∣

∣

∣

∣

≤ O(θ) + O(δ) ≤ O(θ) + O(‖C(x)‖/α).

The desired result follows from this inequality. 2

In the following Lemma it is proved that, if all the limit points of the sequence generated by the
algorithm are feasible and regular, one of them is necessarily stationary. Observe that the previous
results on this section were obtained under the assumption that there exists a subsequence that
converges to a feasible, regular and non-stationary point. The technique used in Lemma 6.7 con-
sists of showing that, when those hypotheses hold, an additional sequence that necessarily converge
to a stationary point can be constructed.

Lemma 6.7. Let {xk} be an infinite sequence generated by Algorithm 6.1. Assume that all the
limit points of {xk} are feasible and regular and that Assumptions A1–A5 hold. Then there exists
a limit point of the sequence {xk} that is a stationary point of (1).

Proof. By the Compactness Assumption A3, there exists a convergent subsequence {xk}k∈K0
. If

the limit of this subsequence is a stationary point of (1), we are done. Otherwise, the hypotheses
of Lemma 6.4 hold (with K1 = K0), so limk→∞ θk = 0. Therefore, again by Assumption A3, there
exists k7 ∈ IN such that 1 + N/(k7 + 1)1.1 ≤ 2 (N is defined in (47)) and K1, an infinite subset of
{k7, k7 + 1, k7 + 2, . . .} such that {xk}k∈K1

is convergent (say, limk∈K1
xk = x∗),

lim
k∈K1

θsup(xk, δk) = 0 (82)

and, by (48)–(50),

θsup(xk, δk) ≤ θ′(xk, δk) ≤ θlarge
k (83)

24

for all k ∈ K1, where δk is one of the trust region radii tested at iteration k. In fact, the second
inequality of (83) always holds by (48)–(49), while the first must hold for an infinite set of indices
(otherwise, by (50), θsup could not tend to 0).

By the hypothesis of the lemma, x∗ is regular. Again, if x∗ is a stationary point of (1) the
result is proved. Otherwise, the hypotheses of Lemmas 6.1–6.6 hold for {xk}k∈K1

. Without loss
of generality, we can asume that k ≥ k6 ≥ k3,

θsup(xk, δk) ≤ θ̃/2 < 1 and θk ≤ θ̃/2 (84)

for all k ∈ K1, where k3 is defined in Lemma 6.3 and k6 is defined in Lemma 6.6. By Lemma 6.3,
θsup(xk, δ) = 1 whenever k ∈ K1 and ‖C(xk)‖ ≤ αδ. So, by (82) and (84),

‖C(xk)‖ > αδk (85)

for all k ∈ K1. Therefore, since ‖C(xk)‖ → 0,

lim
k∈K1

δk = 0. (86)

Assume, without loss of generality, that

δk ≤ 0.1δ′ < 0.1δmin (87)

for all k ∈ K1, where δ′ is defined in Lemma 6.2 and used in Lemma 6.3. By (87), δk cannot

be the first trust region radius tried at iteration k. Let us call δ̂k the trust region radius tried at
iteration k immediately before δk. Let us call θ̂k the penalty parameter associated to that rejected
step. Since k7 ≥ N , by (84) and the choice of the penalty parameter at Algorithm 5.1, we have

that θ̂k ≤ θ̃ for all k ∈ K1. Therefore, Lemma 6.6 can be applied, giving

‖C(xk)‖ < αδ̂k for all k ∈ K1. (88)

Moreover, since δk ∈ [0.1δ̂k, 0.9δ̂k], (87) implies that

δ̂k ≤ 10δk ≤ δ′ < δmin for all k ∈ K1. (89)

Now, by (48)–(50), (82) and Lemma 6.3, we have

θ̂k = min {θ′(xk, δ̂k), θsup(xk, δ̂k)} = θ′(xk, δ̂k)

≥ min {θ′(xkδ̂k), θsup(xk, δk)} = θsup(xk, δk) (90)

for all k ∈ K1. Now, by Lemma 6.3, (89) and the definition of Pred,

Pred(xk, θ̂k, δ̂k) ≥ θ̂kc3δ̂k. (91)

Moreover, repeating the arguments that lead to (80), we obtain

|Ared(xk, θ̂k, δ̂k) − Pred(xk, θ̂k, δ̂k)| ≤ θ̂kO(δ̂2
k) + (1 − θ̂k)[‖C(xk)‖O(δ̂2

k) + O(δ̂3
k)] (92)

for all k ∈ K1. So, by (91) and (92),

|Ared(xk, θ̂k, δ̂k) − Pred(xk, θ̂k, δ̂k)|

Pred(xk, θ̂k, δ̂k)
≤

|Ared(xk, θ̂k, δ̂k) − Pred(xk, θ̂k, δ̂k)|/θ̂k

c3δ̂k

25

≤
O(δ̂2

k) + 1−θ̂k

θ̂k

[‖C(xk)‖O(δ̂2
k) + O(δ̂3

k)]

c3δ̂k

= O(δ̂k) + (1 − θ̂k)[‖C(xk)‖O(δ̂k) + O(δ̂2
k)]/θ̂k (93)

for all k ∈ K1.
Now, by Lemma 6.5 and (85), δk/θsup(xk, δk) is bounded for k ∈ K1. So, by (89) and (90),

O(δ̂k)/θ̂k is also bounded for k ∈ K1. Finally, by (86), (89) and the feasibility of x∗, the right-hand
side of (93) tends to 0 for k ∈ K1. This implies that for k large enough, the acceptance criterion

(30) is satisfied with the trust region radius δ̂k. This is a contradiction, since we had assumed that

the trust region radius δ̂k was rejected. 2

Theorem 6.8 condenses the results proved in Sections 5 and 6.

Theorem 6.8. Let {xk} be an infinite sequence generated by Algorithm 6.1. Suppose that As-
sumptions A1–A5 hold. Then, all the limit points of {xk} are ϕ−stationary. Moreover, if all the
limit points of {xk} are feasible and regular, there exists a limit point x∗ that is a stationary point
of the nonlinear programming problem (1). In particular, if all the ϕ−stationary points are feasible
and regular, there exists a subsequence of {xk} that converges to a feasible, regular and stationary
point of (1).

Proof. This result follows directly from Theorem 5.5 and Lemma 6.7. 2

7 Numerical experiments

In this section, a specific implementation of Algorithm 6.1 is described. A FORTRAN (double
precision arithmetic) code was written corresponding to this implementation. No claim whatsoever
is made here with regards taking the best decisions with respect to all the degrees of freedom
that characterize the main model algorithm. However, it will be interesting to show that even
a preliminary numerical implementation produces reliable results in a number of test problems.
Some parameters (δmin, L1, γ, η) of the main model algorithm are dimensional and should be
chosen, in practical cases, according to the scaling of the problem. However, the same values of
these parameters were used in all of the tests, in order to establish a common basis for comparison.
The parameters and specific procedures used are given below.

(i) If some Lagrange multiplier estimate λ is such that ‖λ‖∞ > L1, it is projected on the box
‖λ‖∞ ≤ L1, where L1 = 104.

(ii) The lower bound for the trust region radius is chosen as δmin = 10−4. The initial δ at the
first iteration of the algorithm is 103.

(iii) The vector dnor is chosen as in (37) with γ = 10−3. The “normal step” snor is computed as
an approximate minimizer of M(x, s) on the box l ≤ x+s ≤ u, ‖s‖∞ ≤ 0.8δ. For this computation
the algorithm described in [11], with modifications introduced in [1], is used. In addition to (25),
a convergence criterion for this procedure is that the projected gradient at the final point should
be less than a fraction of 10−4 of the projected gradient at s = 0. Preconditioners are not used as
auxiliary tools for the conjugate gradient iterations used in this algorithm. However, systems with
less than 100 variables are solved using (sparse) Cholesky factorizations.

(iv) The well-known software MINOS 5.4 [18] is used as an active-set quadratic programming
solver to find the tangent step stan by means of the approximate minimization of Q(snor + s)
subject to the constraints (27). ∆λ is chosen as the vector of estimates of multipliers given by

26

MINOS for this quadratic program. The solution found (allowing a maximum of 200 MINOS-
iterations) is accepted as tangent step when the inequality (67) holds with c2 = 10−6, δ′ = 1. Only
in the very improbable case that this inequality is not satisfied is it necessary to proceed to the
computation of dtan as in (55) with η = 10−3. The computation of dtan involves an easy strictly
convex quadratic programming problem which can also be solved using MINOS 5.4. Obviously,
this algorithmic trick does not affect the convergence proofs.

(v) It can be assumed that, for all x ∈ IRn there exists a sequence xj → x such that {∇2f(xj)}
and {∇2Ci(x

j)} exist and are convergent for all i = 1, . . . ,m. Consequently, given the current
point x, the Hessian Lagrangian approximations are chosen as

H = lim
j→∞

[∇2f(xj) +

m
∑

i=1

λi∇
2Ci(x

j)]. (94)

Of course, when x is a point at which second derivatives exist, H is the true Hessian of the
Lagrangian.

(vi) The trust region radius is updated according to rules similar than those described in [6],
with the safeguards δ ≥ δmin at the beginning of the iteration and “new δ”∈ [0.1δ, 0.9δ] when (30)
is not satisfied.

(vii) After the computation of snor for a given δ, (54) and (76) are controlled in the following
way. If ‖C(xk)‖∞ ≤ 0.1, the inequalities

‖snor(x, δ)‖∞ ≤ 104‖C(xk)‖∞ and M(x, 0) − M(x, snor) ≥ 10−6 min{δ, 1} ‖C(xk)‖∞ (95)

are tested. If the inequalities (95) do not hold, snor is computed as in the Remark that follows
Assumption A5. In all of the performed tests this change was never necessary.

(viii) The intermediate penalty parameter θ′ is chosen using (48) when δ ≥ δmin, and using
(49) when δ < δmin. This apparent modification of Algorithm 5.1 was motivated by preliminary
numerical experiments. However, it is easy to observe that it does not represent a real alteration
of the model algorithm, since it can always be interpreted that the first trust-region radius tried
at iteration k is the last one which is greater than δmin. (The only constraint for the initial
trust-region radius at each iteration is that it must be greater than δmin.) So, only when the
trust-region radius is less than δmin, it is necessary to decrease the penalty parameter, as required
by the convergence theory.

(viii) The algorithm terminates when

a) ‖xk+1 − xk‖∞ ≤ max {10−6, 10−6‖xk‖∞} or

b) ‖C(xk)‖∞ ≤ 10−6 and |Qk(0) − Qk(sc) − ∆λT
k (A(xk)sc + C(xk))| ≤ 10−8.

7.1 Experiments with C2-problems

The first set of test problems (solved using a SUN SPARC-station 2+) was taken from the data
base CUTE [2]. A total of 45 constrained optimization problems were selected, where the analytic
second derivatives of the functions are available. The selection of problems was made trying to
cover from small to relatively large problems, with a wide scope of non-linearity. The initial points
and initial estimates of Lagrange multipliers were the ones given by CUTE.

For comparison, the test problems were also solved by the well-known code LANCELOT [6],
with the option BANDSOLVER-PRECONDITIONER-CG-SOLVER (semibandwidth=5).

The numerical results are given in Table 1. The following abbreviations are used

m : number of constraints.

n : number of variables.

27

NF : number of evaluations of f (also, number of iterations of LANCELOT).

NG : number of gradient evaluations (also, number of iterations of the new algorithm).

ET : execution time in seconds.

N : degree of nonmonotonicity of the penalty parameter θ, according to (47).

In preliminary experiments, the new algorithm was tested using the following values for N (see
Algorithm 5.1): 0, 102, 104, 106. When N = 0 the strategy for θ is monotone, which corresponds
to a monotone increase of the classical penalty parameter ρ. When N grows, larger values of θ
have the chance of being accepted in the test (29). In the table, only the results for N = 0 and
N = 106 are shown.

28

Problem LANCELOT New (N = 0) New (N = 106)
name m n NF , NG ET NF , NG ET NF , NG ET
AUG2D 100 220 18 , 19 4.64 3 , 3 6.15 3 , 3 6.02
CATENARY 32 99 103 , 92 10.07 153 , 136 218.16 125 , 102 150.86
CLNLBEAM 200 303 129 , 125 133.05 6 , 6 34.47 6 , 6 34.50
CORKSCRW 350 506 185 , 183 2067.50 30 , 26 437.70 32 , 26 426.33
COSHFUN 20 81 292 , 242 21.72 51 , 27 14.63 39 , 27 10.01
DISC2 23 35 97 , 80 2.92 (**) 74 , 56 4.92 (**) 74 , 56 4.75
DIXCHLNV 50 100 192 , 193 82.75 15 , 14 168.69 15 , 14 142.38
DTOC1NA 196 298 11 , 12 5.14 12 , 12 249.72 12 , 12 157.70
DTOC2 396 598 36 , 37 28.26 7 , 6 322.76 7 , 6 199.31
DTOC4 998 1499 18 , 19 24.34 5 , 5 891.43 5 , 5 706.78
EIGENACO 55 110 26 , 26 5.11 2 , 1 0.38 2 , 1 0.39
EIGMAXA 101 101 7 , 8 1.08 5 , 4 1.03 5 , 4 1.03
EXPFITC 502 507 85 , 86 75.05 14 , 14 23.54 14 , 14 23.67
HAGER1 100 201 6 , 7 0.96 2 , 1 4.52 2 , 1 4.44
HAGER2 100 201 8 , 9 1.38 2 , 1 4.12 2 , 1 4.12
HALDMADS 42 48 67 , 63 4.61 19 , 14 2.91 12 , 10 1.42
HIMMELBI 12 112 42 , 43 7.69 10 , 9 4.96 10 , 9 4.96
HIMMELBK 14 24 200 , 168 12.42 6 , 6 0.97 6 , 6 0.98
HS108 13 22 26 , 23 0.58 20 , 14 0.94 18 , 14 0.83
HS114 11 18 893 , 773 9.41 12 , 10 0.49 12 , 10 0.48
HS116 14 27 2606 , 2327 67.57 245 , 177 11.60 52 , 44 3.32
HVYCRASH 150 204 256 , 223 48.03 53 , 39 217.89 52 , 39 230.20
HYDROELL 1008 2017 136 , 137 1262.44 11 , 10 96.37 11 , 10 96.14
LAUNCH 28 44 (*) 3000 , 2971 682.99 3 , 1 0.45 3 , 1 0.48
LEAKNET 153 156 1097 , 1088 1538.48 164 , 164 97.42 164 , 164 97.42
MADSSCHJ 98 149 1221 , 1052 1081.00 10 , 8 15.59 10 , 8 15.48
MANNE 200 500 10 , 12 3.72 4 , 4 11.37 4 , 4 11.59
MINMAXBD 20 25 609 , 504 17.33 209 , 169 10.71 165 , 136 8.72
MOSARQP1 30 930 10 , 11 19.28 4 , 3 59.32 4 , 3 59.25
NGONE 323 373 (*) 3000 , 2700 2119.43 41 , 33 106.56 23 , 20 71.54
OET2 1002 1005 69 , 63 139.12 8 , 6 34.05 7 , 7 20.51
OPTCTRL3 80 122 46 , 47 2.96 5 , 5 3.74 5 , 5 3.75
ORTHREGA 256 517 177 , 165 73.47 141 , 129 2414.87 33 , 30 511.51
ORTHREGD 50 103 450 , 380 32.79 11 , 9 9.46 11 , 9 9.45
PENTAGON 15 21 44 , 45 0.86 6 , 5 0.27 6 , 5 0.25
PRODPL0 29 69 42 , 39 2.48 12 , 9 2.18 15 , 13 2.49
PT 501 503 43 , 44 16.20 3 , 2 1.89 3 , 2 2.00
QPCBLEND 74 114 304 , 306 237.93 2 , 1 1.46 2 , 1 1.59
READING1 100 202 691 , 629 160.29 9 , 7 8.86 9 , 7 8.87
SSEBNLN 96 218 36 , 37 9.22 (**) 5 , 3 4.48 28 , 26 29.02
SVANBERG 100 200 76 , 66 34.03 10 , 9 21.44 10 , 9 21.33
TFI1 1001 1004 197 , 168 148.53 13 , 11 22.00 14 , 11 22.57
TFI3 5001 5004 44 , 44 491.16 4 , 3 34.15 4 , 3 34.03
TRAINF 202 408 76 , 77 59.68 5 , 5 36.21 5 , 5 36.27
UBH1 60 99 49 , 50 2.32 4 , 3 1.78 4 , 3 1.78

Table 1: First set of numerical results.

29

The symbol (*) indicates that Lancelot failed to achieve the solution in 3000 iterations. In the
cases marked (**), the new algorithm converged to a nonfeasible point (stationary point of ϕ(x)).
In all the other cases both algorithms arrived at the same solution.

From Table 1, it can be observed that, when the execution time is considered, the new algorithm
with N = 0 outperforms Lancelot for 28 problems out of 45 (including the two cases where Lancelot
failed to attain the solution). A comparison on the number of function evaluations taken by both
algorithms shows that Lancelot was beaten in 41 cases.

For N = 106, the new algorithm has shown a slightly better performance. Although being
faster than Lancelot in only 27 cases, it failed to find a feasible solution for just one problem.
Moreover, it spent less time and took less iterations than the algorithm with N = 0 in many
occasions.

Table 2 summarizes the performance of the new algorithm. The values that appear in columns
2 through 5 indicate how many times each algorithm has outperformed the other. The first number
on each column corresponds to the execution time, while the number in parenthesis refers to the
comparision on the number of function evaluations.

compared performance Lancelot New (N = 0) Lancelot New (N = 106)
more than 10 times better 5 (0) 9 (16) 3 (0) 10 (17)
from 2 to 10 times better 6 (0) 9 (20) 8 (0) 11 (20)
from 1.1 to 2 times better 3 (1) 8 (3) 4 (1) 4 (3)
almost indistiguishable 1 (1) 1 (1) 2 (1) 2 (1)
failures in obtaining the solution 2 2 2 1

Table 2: A summary of the results.

7.2 Experiments without second derivatives

For the experiments presented in this section, the objective function is not twice differentiable
everywhere. Consider the problem of estimating a solution of the differential equation

−y′′ + ey = F (t), t ∈ [0, 2π], (96)

that fits a set of noisy observations (t1, y1), . . . , (tm, ym). (In the experiments, F (t) = sin (t) +

e sin (t), so sin (t) is a particular solution of (96).) Problems of this type, although much more
complicated, arise, for example, in numerical weather forecasting [19]. Dividing [0, 2π] into ndiv
equally spaced intervals, defining h = 1/ndiv, and discretizing (96) using central differences, the
unknown variables of the problem turn out to be the values of y at the grid points ih, i =
0, 1, 2, . . . , ndiv, denoted by xi+1 ≡ y(ih). So, using the a priori knowledge −1 ≤ y(t) ≤ 1 for all
t, the constraints of the problem are

−xi−1 + 2xi + xi+1

h2
+ exi = F ((i − 1)h), i = 2, . . . , ndiv, (97)

and
−1 ≤ xi ≤ 1, i = 1, ndiv + 1. (98)

Assume that the observed ti are grid points, say

t1 = j1h, . . . , tm = jmh.

The objective function of the problem will be

f(x) = f(y(0h), y(1h), . . . , y(ndiv h)) =

m
∑

ν=1

φ(|y(jνh) − yν |), (99)

30

where φ is a measure of the deviation of the theoretical y with respect to the observed one. Usually,
φ(t) = t2 is used. However, if some observations are subject to large errors (outliers), a deviation
function less subject to extreme values is needed. The deviation function used in the experiments
of this section is defined by φ(z) = z2 if z ≤ 0.25, and φ(z) = 0.5(z − 0.25) + 0.0625 otherwise. So,
the objective function f has no second derivatives at points where the argument of φ is 0.25.

The experiments with this problem were designed in the following way:

(a) First, m and p (m < p) were chosen (the number of observed data and the number of
outliers).

(b) The values of m equally spaced grid points ti and p equally space outliers were chosen.

(c) For each “normal” ti, the observed yi was chosen randomly in [sin (ti)−0.1, sin (ti)+0.1].

(d) For each outlier, the observed yi was chosen randomly in [sin (ti) − 0.4, sin (ti) + 0.4].

A total of 14 problems were tested. The results are given in the following tables, for different
values of the monotonicity index N . The number of iterations and the number of functional
evaluations used to attain convergence are reported, as well as the sup−norm of the difference
between the final computed y and the “true solution” sin (t). In the experiments reported in
Table 2, true Hessian-Lagrangian approximations in the sense of (94) are used. In Table 3, Hk

is the null n × n matrix for all k. So, the experiments reported in this table correspond to the
behavior of an approximate sequential linear programming method.

m p N = 0 N = 102 N = 106

100 0 6, 6, 4.E-4 6, 7, 4.E-4 6, 7, 4.E-4
5 6, 6, 4.E-4 6, 7, 4.E-4 6, 7, 4.E-4
10 6, 6, 3.E-2 5, 6, 3.E-2 5, 6, 3.E-2

60 0 6, 6, 4.E-4 6, 6, 4.E-4 6, 6, 4.E-4
3 6, 6, 1.E-2 6, 6, 1.E-2 6, 6, 1.E-2
6 5, 6, 3.E-2 5, 6, 3.E-2 5, 6, 3.E-2

40 0 7, 7, 1.E-2 7, 7, 1.E-2 7, 7, 1.E-2
2 7, 7, 3.E-2 7, 7, 3.E-2 7, 7, 3.E-2
4 4, 5, 2.E-2 4, 5, 2.E-2 4, 5, 2.E-2

20 0 5, 5, 4.E-4 5, 5, 4.E-4 5, 5, 4.E-4
1 5, 5, 4.E-4 5, 5, 4.E-4 5, 5, 4.E-4
2 6, 6, 3.E-2 6, 6, 3.E-2 6, 6, 3.E-2

10 0 5, 5, 4.E-4 5, 5, 4.E-4 5, 5, 4.E-4
1 6, 8, 4.E-4 7, 7, 4.E-4 7, 7, 4.E-4

Table 2: Second set of numerical results. True Hessian-Lagrangian.

31

m p N = 0 N = 102 N = 106

100 0 7, 7, 4.E-4 7, 7, 4.E-4 7, 7, 4.E-4
5 7, 7, 4.E-4 7, 7, 4.E-4 7, 7, 4.E-4
10 14, 37, 3.E-2 10, 29, 3.E-2 9, 28, 3.E-2

60 0 6, 7, 4.E-4 6, 7, 4.E-4 6, 7, 4.E-4
3 12, 33, 1.E-2 12, 33, 1.E-2 12, 33, 1.E-2
6 10, 29, 3.E-2 10, 29, 3.E-2 10, 29, 3.E-2

40 0 11, 30, 1.E-2 11, 30, 1.E-2 11, 30, 1.E-2
2 10, 29, 3.E-2 11, 32, 3.E-2 11, 32, 3.E-2
4 10, 29, 3.E-2 10, 29, 3.E-2 10, 29, 3.E-2

20 0 6, 6, 4.E-4 6, 6, 4.E-4 6, 6, 4.E-4
1 7, 7, 4.E-4 7, 7, 4.E-4 7, 7, 4.E-4
2 8, 26, 3.E-2 8, 26, 3.E-2 8, 26, 3.E-2

10 0 6, 7, 4.E-4 6, 7, 4.E-4 6, 7, 4.E-4
1 6, 7, 4.E-4 6, 7, 4.E-4 6, 7, 4.E-4

Table 3: Second set of numerical results. Null Hessian approximation.

The aim of these experiments is only to show that the algorithm works well even for problems
without second derivatives. Unfortunately, the number of problems is not sufficient to permit an
analysis of the influence of the monotonicity parameter N .

8 Final remarks

To the best of our knowledge, the method introduced in this paper is the first algorithm for general
nonlinear programming (in the form (1)) with the following characteristics:

(a) the method is a globalized sequential quadratic programming algorithm;
(b) it uses trust regions as a globalization strategy;
(c) the merit function is an augmented Lagrangian (thus, it is differentiable);
(d) the estimates of the Lagrange multipliers are arbitrary;
(e) the behavior of the penalty parameter is not monotone;
(f) the steps on the normal and on the tangent spaces obey mild conditions;
(g) second derivatives of the objective function and constraints are not necessary.
All these features are valuable for the development of practical algorithms. Sequential quadratic

programming is the most natural extension of Newton’s method to constrained optimization and
the trust-region approach allows one to deal consistently with infeasibility of quadratic subprob-
lems. The possibility of using arbitrary estimates of Lagrange multipliers permits one to take
advantage of well-known procedures to compute clever estimates that fit well with the augmented
Lagrangian as a merit function. The nonmonotonicity feature tends to avoid the inheritance of
unnecessary extreme values of penalty parameters from the first few iterations. Finally, mild con-
ditions for the normal and the tangent step open the possibility of many useful implementations
for large-scale problems.

It was proved that the method is globally convergent under suitable conditions on the problem.
In fact, the compactness Assumption A3 holds if Ω is bounded, the feasibility of limit points is
guaranteed if all the stationary points of (21) are feasible and the optimality of a limit point
depends only on the regularity of feasible points.

A particular version of the model algorithm introduced in this paper was implemented. Among
the many decisions that are necessary for a practical implementation, some reasonable ones were
taken according to common sense and algorithmic availability. No claim is made with respect to

32

have taken the best choices concerning parameters and internal procedures. In fact, the numerical
experiments presented here have two main objectives: the first is to proceed to a preliminary
evaluation of the nonmonotone strategy for the penalty parameter against the monotone one. It
seemed that in most cases both strategies are essentially equivalent, but in some critical cases the
nonmonotone strategy is clearly the best. For example, in the problem SSEBNLN the algorithm
with monotone penalty parameter converges to a stationary nonfeasible point of (21), while the
nonmonotone algorithm converges to a solution. This is due to a premature decrease of the
penalty parameter at the first iterations which produces a merit function with excessive weight of
the feasibility term. In other problems (for example, ORTHREGA) this phenomenon only caused a
clear loss of efficiency of the monotone strategy. The second objective of the numerical experiments
was to test the reliability of the new algorithm, by means of its comparison with a well established
software for nonlinear programming. There was no intention here to draw strong conclusions
regarding this comparison, but only to test if the set of ideas introduced in this paper deserve
future development and further implementations. In these experiments it was corroborated that
the new algorithm obtains the same solutions as the particular version of LANCELOT tested here
does, and that the computer time used for finding these solutions is, in general, quite affordable.

Finally, since the existence of second derivatives is not necessary for the definition or the
convergence of the algorithm, some tests were performed concerning problems where the objective
function is not twice differentiable.

Among the possible lines for continuation of this work, the development of a local convergence
analysis can be cited. It can be conjectured that, when the Lagrange multipliers are properly
estimated, under suitable local conditions, the first δ tried at each iteration must be accepted. So,
if second derivatives exist and true Hessians are used, quadratic convergence should be obtained
and, if quasi-Newton approximations of the Hessians are used, superlinear convergence should take
place. See, for example, [20]. As it was mentioned in the introduction, local convergence studies of
SQP methods for problems without second derivatives are available ([13, 24, 25]). So, the objective
of forthcoming local proofs will be to show that, with proper choices of the Lagrange multiplier
estimates, the initial trial step is accepted in a neighborhood of the solution (that is, the method
does not suffer from the so called “Maratos effect” [10]).

It should also be interesting to extend the method in order to consider constraints of type
hi(x) ≤ 0 directly (without the introduction of slack variables). The implementation of a particu-
lar case of the general method, using alternative iterative linear algebra procedures for solving the
subproblems, should also be very relevant in order to accomplish the solution of very large-scale
problems.

Acknowledgements

We are indebted to two referees and to Annick Sartenaer for their very careful reading of our
paper.

References

[1] R. H. Bielschowsky, A. Friedlander, F. A. M. Gomes, J. M. Mart́ınez and M. Raydan,
“An adaptive algorithm for bound constrained quadratic minimization”, Technical Report,
Department of Applied Mathematics, University of Campinas, Brazil, 1995.

[2] I. Bongartz, A. R. Conn, N. Gould and Ph. L. Toint, “Constrained and unconstrained testing
environment”, ACM Transactions on Mathematical Software 21 (1995) 123-160.

33

[3] M. R. Celis, J. E. Dennis and R. A. Tapia, “A trust-region strategy for nonlinear equality
constrained optimization”, in Numerical Optimization, edited by P. Boggs, R. Byrd and R.
Schnabel, SIAM Publications, Philadelphia, Pennsylvania (1985) 71-82.

[4] J. V. Burke, “A sequential quadratic programming method for potentially infeasible mathe-
matical programs”, Journal of Mathematical Analysis and Applications 138 (1989) 111-144.

[5] R. Byrd and E. Omojokun, “Robust trust-region methods for nonlinearly constrained opti-
mization”, Contributed presentation at the First SIAM Conference on Optimization, Hous-
ton, Texas, 1987.

[6] A. R. Conn, N. I. M. Gould and Ph. L. Toint, LANCELOT: a Fortran package for large-
scale nonlinear optimization (Release A), Springer Series in Computational Mathematics 17
(1992), Springer Verlag, Heidelberg, Berlin, New York.

[7] A. R. Conn, N. I. M. Gould and Ph. L. Toint, “A globally convergent augmented Lagrangian
algorithm for optimization with general constraints and simple bounds”, SIAM Journal on

Numerical Analysis 28 (1991), 545 - 572.

[8] J. E. Dennis, M. El-Alem and M. C. Maciel, “A global convergence theory for general trust-
region-based algorithms for equality constrained optimization”, to appear in SIAM Journal
on Optimization.

[9] M. El-Alem, “A robust trust region algorithm with a nonmonotonic penalty parameter
scheme for constrained optimization”, SIAM Journal on Optimization 5 (1995), 348-378.

[10] R. Fletcher, Practical methods for optimization, John Wiley & Sons, Chichester, 1987.

[11] A. Friedlander and J. M. Mart́ınez, “On the maximization of a concave quadratic function
with box constraints”, SIAM Journal on Optimization 4 (1994) 177-192.

[12] P. E. Gill, W. Murray and M. H. Wright, “Some theoretical properties of an Augmented
Lagrangian merit function”, in: P.M. Pardalos, ed. Advances in Optimization and Parallel
Computing (Elsevier, Amsterdam, 1992) pp. 127-143.

[13] J. Han and D. Sun, “Superlinear convergence of approximate Newton methods for LC1

optimization problems without strict complementarity”, to appear in Recent Advances in
Nonsmooth Optimization, edited by D. -Z. Du, L. Qi and R. S. Womersley, World Scientific
Publishers, 1995.

[14] W. Hock and K. Schittkowski, Test examples for nonlinear programming codes, Lecture
Notes in Economics and Mathematical Systems 187, Springer Verlag, Berlin (1981).

[15] L. S. Lasdon, “Reduced gradient methods”, in Nonlinear Optimization 1981, edited by M.
J. D. Powell, Academic Press, New York, 1982, 235-242.

[16] D. Luenberger, Linear and nonlinear programming, Addison-Wesley, New York, 1986.

[17] G. P. McCormick, Nonlinear programming: theory, algorithms and applications, John Wiley
& Sons, New York, 1983.

[18] R. B. Murtagh and M. A. Saunders, “Large-scale linearly constrained optimization”, Math-
ematical Programming 14 (1978) 41-72.

[19] J. Nocedal, “Algorithms for large-scale unconstrained optimization”, invited lecture at
the First Pan-american Workshop on Computational and Applied Mathematics, Caracas,
Venezuela, January 1993.

34

[20] J. Nocedal and M. L. Overton, “Projected Hessian updating algorithms for nonlinearly con-
strained optimization”, SIAM Journal on Numerical Analysis 22 (1985) 821-850.

[21] E. Omojokun, “Trust-region strategies for optimization with nonlinear equality and inequal-
ity constraints”, PhD Thesis, Department of Computer Science, University of Colorado,
Boulder, Colorado, 1989.

[22] J-S Pang and L. Qi, “Nonsmooth equations, motivation and algorithms”, SIAM Journal on
Optimization 3 (1993) 443-465.

[23] M. J. D. Powell and Y. Yuan, “A trust-region algorithm for equality constrained optimiza-
tion”, Mathematical Programming 49 (1991) 190-211.

[24] L. Qi, “Superlinearly convergent approximate Newton methods for LC1 optimization prob-
lems”, to appear in Mathematical Programming (1995).

[25] L. Qi and H. Jiang, “Karush-Kuhn-Tucker equations and convergence analysis of Newton
methods and quasi-Newton methods for solving these equations”, Applied Mathematics Re-
port 95/5, University of South Wales, 1994.

[26] M. Sahba, “Globally convergent algorithm for nonlinearly constrained optimization”, Journal
of Optimization Theory and Applications 52 (1987) 291-309.

[27] R. A. Tapia, “Quasi-Newton methods for equality constrained optimization: equivalence of
existing methods and a new implementation”, in Nonlinear Programming 3, edited by O. L.
Mangasarian, R. R. Meyer and S. M. Robinson, Academic Press, New York (1978), 125-164.

[28] R. A. Tapia, “Diagonalized multiplier methods and quasi-Newton methods for constrained
optimization”, Journal of Optimization Theory and Applications 22 (1977) 135-194.

[29] A. Vardi, “A trust-region algorithm for equality constrained optimization: convergence prop-
erties and implementation”, SIAM Journal on Numerical Analysis 22 (1985) 575-591.

[30] E. H. Zarantonello, “Projections on convex sets in Hilbert space and spectral theory”, in
Contributions to nonlinear functional analysis, edited by E. H. Zarantonello, Academic Press,
New York (1971), 237-424.

35

