
A sequential quadratic programming algorithm

that combines merit function and filter ideas

FRANCISCO A. M. GOMES∗

Department of Applied Mathematics, IMECC

Universidade Estadual de Campinas

13081-970, Campinas, São Paulo, Brasil.

E-mail: chico@ime.unicamp.br

Abstract

A sequential quadratic programming algorithm for solving nonlinear programming problems is
presented. The new feature of the algorithm is related to the definition of the merit function. Instead
of using one penalty parameter per iteration and increasing it as the algorithm progresses, we suggest
that a new point is to be accepted if it stays sufficiently below the piecewise linear function defined by
some previous iterates on the (f, ‖C‖2

2)-space. Therefore, the penalty parameter is allowed to decrease
between successive iterations. Besides, one need not to decide how to update the penalty parameter.
This approach resembles the filter method introduced by Fletcher and Leyffer [Math. Program., 91
(2001), pp. 239–269], but it is less tolerant since a merit function is still used. Numerical comparison
with standard methods shows that this strategy is promising.

Mathematical subject classification: 65K05, 90C55, 90C30, 90C26.

Key words: sequential quadratic programming, merit functions, filter methods.

1 Introduction

In this paper we are concerned with the problem

minimize f(x)

subject to C(x) = 0 (1)

l ≤ x ≤ u

where f : IRn → IR is a C2 nonlinear function, C : IRn → IRm represents a set of C2 nonlinear constraints
and we suppose that −∞ ≤ li ≤ ui ≤ ∞, for i = 1, . . . , n. Naturally, some of the components of x in (1)
may be slack variables generated when converting inequality constraints to this form.

Algorithms based on the sequential quadratic programming (SQP) approach are among the most
effective methods for solving (1). Some interesting algorithms of this class are given, for example, in
[3, 4, 10, 21]. A complete coverage of such methods can be found in [6, 20].

Since SQP algorithms do not require the iterates to be feasible, they have to concern with two
conflicting objectives at each iteration: the reduction of the infeasibility and the reduction of function f .
Both objectives must be taken in account when deciding if the new iterate is to be accepted or rejected.
To make this choice, most algorithms combine optimality and feasibility into one single merit function.

∗This work was supported by FAPESP grant 2004/05891-1

1

2 FRANCISCO A. M. GOMES

Filter methods, on the other hand, usually require only one of these two goals to be satisfied, avoiding
the necessity of defining a weighted sum of them. Both approaches have advantages and drawbacks. In
this paper, these approaches are mixed with the objective of reducing their disadvantages while keeping
their best features. To motivate the new algorithm, both methods are briefly introduced below.

1.1 A prototypical SQP algorithm

The algorithm presented in this paper will inherit the structure of the merit function based SQP method
proposed in [10], hereafter called the GMM algorithm.

This method divides each iteration into two components, a normal and a tangential step. The first
of these components is used to reduce the infeasibility, while the aim of the second is to improve the
objective function. A trust region approach is used as the globalization strategy. All of the iterates are
required to satisfy the bound constraints l ≤ x ≤ u, so the merit function chosen was the augmented
Lagrangian, written here (and in [10]) in an unusual way as

L(x, λ, θ) = θ[f(x) + C(x)Tλ] +
(1− θ)

2
‖C(x)‖22. (2)

In (2), θ ∈ [0, 1] is a “penalty parameter” used as a weight to balance the Lagrangian function (for
the equality constrained subproblem), defined as

ℓ(x, λ) = f(x) + C(x)Tλ,

with a measure of the infeasibility, given by

ϕ(x) =
1

2
‖C(x)‖22.

At iteration k, a new point x+ = xk + s is accepted if the ratio between the actual and the predicted
reduction of the merit function (when moving from xk to x+) is greater than a positive constant.

The actual reduction of the augmented Lagrangian at the candidate point x+ is defined as

Ared(xk, s, θ) = L(xk, θ)− L(xk + s, θ).

The predicted reduction of the merit function depends on the strategy used to approximately solve
(1). The GMM algorithm approximates (1) by the quadratic programming problem

minimize Q(H,x, λ, s) =
1

2
sTHs+∇ℓ(x, λ)T s+ ℓ(x, λ)

subject to A(x)s+ C(x) = 0

l ≤ x+ s ≤ u

where H is a symmetric n × n matrix and A(x) = (∇C1(x), . . . ,∇Cm(x))T is the Jacobian of the
constraints.

In this case, denoting

M(x, s) =
1

2
‖A(x)s+ C(x)‖22,

as the approximation of ϕ(x), the predicted reduction of the augmented Lagrangian merit function is
given by

Pred(H,x, s, θ) = θP opt
red(H,x, s) + (1− θ)P fsb

red (x, s), (3)

where

P fsb
red (x, s) = M(x, 0)−M(x, s) (4)

MIXING MERIT FUNCTION AND FILTER IDEAS 3

is the predicted reduction of the infeasibility and

P opt
red(H,x, λ, s) = Q(H,x, λ, 0)−Q(H,x, λ, s) (5)

is the predicted reduction of the Lagrangian.

The penalty parameter θ plays a crucial role in the acceptance of the step. For a augmented Lagrangian
of the form (2), (θ − 1)/θ can be viewed as the slope of the line that defines the forbidden region in the
(ϕ, ℓ)-plane, that is, the semi-space that contains all of the points that are not acceptable at the current
iteration. This is illustrated in Figure 1, where the forbidden region is highlighted for different values of
θ.

Figure 1: Three merit functions on the (ϕ, ℓ)-plane, showing the influence of the penalty parameter θ.
On the left, θ = 1/50. In the middle, θ = 1/2. On the right, θ = 49/50.

Merit functions have been criticized for many reasons. First, it is not so easy to choose an initial
value for θ, since ℓ(x, λ) and ϕ(x) usually have very different meanings and units. Besides, it is necessary
to decrease θ as the algorithm progresses to force it to find a feasible solution. If the initial penalty
parameter used is near to 1 and θ is decreased slowly, the algorithm may take too many iterations to
reach a feasible point. On the other hand, starting from a small θ or decreasing this factor too quickly
may force iterates to stay almost feasible, shortening the steps even when we are far from the optimal
solution.

As shown in [10], the adoption of a non-monotone strategy for the reduction of θ is very effective
to avoid this premature step shortening. However, it also allows the algorithm to cycle between small
and large penalty parameters, inducing some zigzagging in many cases. This undesired behavior can be
controlled if an efficient choice of the non-monotonicity parameter is adopted, but this choice is also very
problem dependent, so the criticism of the method still applies.

1.2 The filter method

To overcome some of the difficulties inherent to merit functions, Fletcher and Leyffer [8] introduced the
idea of using a filter. Instead of combining infeasibility and optimality in one single function, the filter
method borrows the idea of nondominance from multi-criteria optimization theory. Thus, a trial point is
refused only if it is dominated by some other point, generated in a previous iteration.

This approach was promptly followed by many authors, mainly in conjunction with SLP (sequential
linear programming), SQP and interior-point type methods (see, for instance, [1, 5, 6, 7, 9, 11, 12, 15,
16, 17, 22, 23, 24, 25]).

The SQP-filter algorithm presented in [6] illustrates how this nondominance criterion works. In this

4 FRANCISCO A. M. GOMES

method, the objective function f is used to measure optimality, while infeasibility is measured by

φ(x) = max{0, max
i=1,··· ,m

|Ci(x)|, max
i=1,··· ,n

[xi − ui], max
i=1,··· ,n

[li − xi]}.

Function φ(x) differs from ϕ(x) in the norm used. Besides, the violation of the bound constraints is
also taken in account here, since the filter method do not require the iterates to satisfy these constraints.

For each approximate solution x, we can plot a point (φ(x), f(x)) in the (φ, f)-plane, just as we did
with (ϕ(x), ℓ(x)) in Figure 1. A third equivalent plane will be introduced in next section, as the algorithm
presented in this paper works with (ϕ, f) pairs.

Let F be a set of previously generated pairs in the form (φj , fj). An iterate xk is accepted by the
filter whenever it satisfies

φ(xk) < (1− γ)φj or f(xk) < fj − γφ(xk) for all (φj , fj) ∈ F , (6)

where γ ∈ (0, 1) is a constant.
One advantage of this type of Pareto dominance criterion is that it does no require the redefinition

of a penalty parameter at each iteration. However, to avoid the acceptance of iterates that are too close
to the points in F , it was necessary to add to the last inequality of (6) a term that depends on the
infeasibility, giving a merit function flavor to this specific filter.

The main disadvantage of the SQP-filter based on (6) is that this acceptance criterion is too tolerant.
In fact, requiring only the infeasibility or the optimality to be improved makes possible the acceptance of
points that are only marginally less infeasible but have a large increase in f(x) over the current iterate,
or vice-versa.

Even though, the SQP-filter method can give us some good hints on how to improve the algorithms
based on merit functions.

The first hint is that the same merit function that is reliable for points in the (ϕ, f)-plane that are
near to (ϕ(xk), f(xk)) may be not so useful when the step is large, so the trial point is far from the
current iterate. As illustrated in Fig.1, for values of θ near to 1, the acceptance criterion based on a
merit function cuts off a significant portion of the feasible region, including, in many cases, the optimal
solution of the problem.

The second good idea behind the SQP-filter method is that a restoration step should be used some-
times. The objective of a restoration is to obtain a point that is less infeasible than the current one and
is also acceptable for the filter. In [6, sec. 15.5], a restoration step is computed when the trust region
quadratic subproblem is incompatible (i.e. has an empty feasible set). In our method, this strategy will
be used whenever staying away from feasibility seems not worthwhile. In other words, infeasible iterates
are welcome only if they generate large reductions of the objective function. If the decrease in f is small
and the current point is very infeasible, it is better to move off and find a more feasible point.

The last lesson we can take from the SQP-filter method is that feasible points could never be refused.
In [6, sec. 15.5], feasible points are never added to F , so a feasible iterate will always satisfy the first
inequality of (6). This assures that the optimal solution will always be accepted by the algorithm and a
restoration will always succeed.

1.3 Motivation and structure of the paper

The objective of this paper is to present an algorithm that takes advantages from both the merit function
and the filter ideas. The algorithm introduced here is a merit function SQP method, in the sense that
it still combines feasibility and optimality in one single function and it still uses penalty parameters.
However, not one but several penalty parameters are defined per iteration, each one related to a portion
of the (f, ϕ)-space. These parameters are also automatically computed from some (f, ϕ)-pairs collected
at previous iterations, so no update scheme need to be defined for θ.

This paper is organized as follows. In the next section, we present the piecewise linear function we
use to accept or reject points. Section 3 introduces the proposed algorithm. In section 4, we prove that

MIXING MERIT FUNCTION AND FILTER IDEAS 5

the algorithm is well defined. Sections 5 and 6 contain the main convergence results. Finally, in section
7 some conclusions are presented, along with lines for future work.

Through the paper, we will omit some (or even all) of the arguments of a function, if this does not
lead to confusion. Therefore, sometimes Q(H,x, s) will be expressed as Q(s), for example, if there is no
ambiguity on H and x.

2 A merit function that uses several penalty parameters per

iteration

As we have seen, a merit function deals with two different concepts: the infeasibility and the optimality
of the current point.

In this paper, we will introduce a new merit function that uses information collected at previous
iterations to accept new points. Since we compare points generated at different stages of the algorithm,
this function cannot be based on the augmented Lagrangian, like in [10], as it would depend on the
Lagrange multiplier estimates used and, obviously, these estimates change from one iteration to another.
Therefore, we decided to adopt the so called smooth ℓ2 merit function, defined as:

ψ(x, θ) = θf(x) + (1− θ)ϕ(x). (7)

The actual reduction of the ℓ2 merit function will be given by

Ared(x, s, θ) = θAopt
red(x, s) + (1− θ)Afsb

red(x, s),

where
Aopt

red(x, s) = f(x)− f(x+ s) and Afsb
red(x, s) = ϕ(x)− ϕ(x+ s).

Similarly, the predicted reduction of the merit function will be defined as in (3), replacing (5) by

P opt
red(H,x, s) = Q(H,x, 0)−Q(H,x, s),

where

Q(H,x, s) =
1

2
sTHs+∇f(x)T s+ f(x). (8)

Generally, for a trial point to be accepted, it is necessary that the actual reduction of the merit
function satisfies

Ared(x, s, θ) ≥ ηPred(H,x, s, θ),

where η ∈ (0, 1) is a given parameter.
However, this scheme based on a linear merit function is usually unreliable for trial points that are far

from the current iterate. Therefore, we suggest the use of a piecewise linear function to accept or reject
new points, which correspond to use several merit functions per iteration.

In order to define the new merit function, let F be a set of p points (ϕi, fi) in the (ϕ, f)-plane.
Suppose that these pairs are ordered so that ϕ1 < ϕ2 < · · · < ϕp. Suppose also that each point (ϕi, fi) in
F is below the line segment joining (ϕi−1, fi−1) and (ϕi+1, fi+1), for i = 2, · · · , p− 1. Thus the piecewise
linear function that passes through all of the points in F is convex.

For each point (ϕi, fi) in F , define another point (ϕi, f i) by moving a little towards the southwest (a
precise definition of ϕi and f i is given in (10) and (11) below). Let F be the set of points (ϕi, f i). The
convex piecewise linear function that connects the points in F is defined by

P(F ,ϕ) =

∞, if ϕ < ϕ1;
(fi−fi−1)

(ϕ
i
−ϕ

i−1
)
ϕ+

(fi−1ϕi
−fiϕi−1

)

(ϕ
i
−ϕ

i−1
)

, if ϕi−1 ≤ ϕ < ϕi;

fp − γs(ϕ− ϕp), if ϕ ≥ ϕp.

6 FRANCISCO A. M. GOMES

Figure 2: The set F and the piecewise linear function P(F ,ϕ).

where γs is a small positive constant, such as 10−4.
This new function, illustrated in Fig. 2, is formed by p+ 1 line segments that can be viewed as merit

functions in the form (7). The i-th of these functions is defined by the penalty parameter

θi =

0, if i = 0;
ϕ

i+1
−ϕ

i

fi−fi+1+ϕi+1
−ϕ

i

, if i < p;

1/(1 + γs), if i = p.

(9)

and a particular choice of η that will be defined below.
The region between the piecewise linear function that passes through the points in F and the function

defined by F acts as a margin that prevents the acceptance of iterates that are not “sufficiently” better
than the pairs in F .

At each iteration k, F k is generated defining, for each point (ϕi, fi) ∈ Fk, another point (ϕi, f i) such
that,

ϕi = min{ϕi − γcP
fsb
red (xk, sc), (1− γf)ϕi}, (10)

and
f i = min{fi − γfP

opt
red(Hk, xk, sc), fi − (ϕi − ϕi)}, (11)

for some 0 < γf < γc < 1. Reasonable values for these constants are γf = 10−4 and γc = 10−3.
Our algorithm starts with F0 = ∅. At the beginning of an iteration, say k, we define the temporary

set Fk as

Fk = Fk

⋃

{(f(xk), ϕ(xk))}.
As it will become clear in the next section, depending on the behavior of the algorithm, the pair
(f(xk), ϕ(xk)) may be permanently added to Fk+1 at the end of the iteration. In this case, each pair
(f(xi), ϕ(xi)) that is not below the line segment that joins (f(xi−1), ϕ(xi−1)) to (f(xi+1), ϕ(xi+1)) is
removed from Fk+1, to keep the P(F,ϕ) function convex.

A new iterate x+ = xk +sc is rejected if f(xk +sc) is above the piecewise-linear function P(Fk, ϕ(xk +
sc)) or if we predict a good reduction for the merit function, but the real reduction is deceiving (in the
sense that (14) occurs).

To express the first of these conditions in the SQP jargon, we say that x+ is not accepted if

Ared(xk, sc, θk) ≤ ηPred(Hk, xk, sc, θk), (12)

MIXING MERIT FUNCTION AND FILTER IDEAS 7

where

θk =

θ0, if ϕ(x+) < ϕ1;

θi, if ϕi ≤ ϕ(x+) < ϕi+1;

θp, if ϕ(x+) ≥ ϕp.

(13)

The η parameter is used in (12) to define the region between Fk and F k. However, a formula for η
cannot be written explicitly since we do not know in advance which of the terms in (10) and (11) will be
used to define ϕi and f i. Fortunately, this formula will only be used in the proof of Lemma 15 and, in
this case, a simple expression is known.

Some agreement between the model function and the objective function of (1) is an usual second
requirement for accepting the step in filter methods. In the SQP-filter method presented in [6], for
example, this extra condition is used whenever P opt

red is sufficiently greater than a small fraction of the

infeasibility at xk. In this case, sc is only accepted if Aopt
red/P

opt
red > γg is satisfied. Most filter algorithms,

such as those presented in [5, 7, 9, 16, 17, 22, 23] include similar tests.

The combination of infeasibility and optimality into a single merit function allow us to adopt a less
stringent condition, rejecting x+ only if

P opt
red(Hk, xk, sc) ≥ κϕ(xk) and θsup

k < γm, (14)

where

θsup
k = sup{θ ∈ IR | Ared(xk, sc, θ) ≥ γgPred(Hk, xk, sc, θ)}, (15)

κ > 0, γm ∈ (0, 1) and γg ∈ (0, 1).

In words, (14) states that when we predict a good reduction for the optimality part of the merit
function, the step is only accepted if there exists a penalty parameter θsup

k ∈ [γm, 1] such that Ared/Pred ≥
γg.

This condition seems to be somewhat inelegant, since one should expect that all of the iterates that do
not belong to the forbidden region shown in Fig. 2 are to be accepted. However, if we choose a small γm,
say 10−4, (14) becomes less stringent than (12) in most cases, so it is seldom used. In fact, we generally
have θ0(≡ 0) < γm < θ1, so this condition only applies when xk is the leftmost point in F . And even in
this case, the forbidden region is only slightly enlarged.

Finishing this section, Figure 3 illustrates how the new merit function reduces the region of acceptable
points in comparison with the filter. The comparison was made for problem 7 from the Hock and
Schittkowski test collection [18]. In the figure, the current iterate, xk = (−0.25, 2.27) is shown as a black
dot. The points in the (ϕ, f)-space used to define the F set were (0.01,−1.5), (2.28,−2.21) and (20,−2.7).
The forbidden region for the filter method, as defined in (6), is given in dark gray. The points that are
acceptable for the filter but not for the new merit function are shown in light gray. The white region
contains the points that are acceptable by both criteria. The contour lines of f(x) = log(1 +x2

1)−x2 are
concave up, while concave down contour lines are related to the constraint C(x) = (1 + x2

1)
2 + x2

2 − 4.
The white concave down narrow region in the bottom of the graph corresponds to points that are almost
feasible, i.e., points that satisfy ϕ(x) < 0.01.

3 An SQP algorithm

In the general framework of a trust region sequential quadratic programming algorithm, a step sc is
obtained approximating problem (1), in a neighborhood of an iterate xk, by a quadratic programming
(QP) problem.

8 FRANCISCO A. M. GOMES

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1

1.4

1.6

1.8

2

2.2

2.4

2.6

Figure 3: The difference between forbidden regions. Light gray points are accepted by the filter but not
by the new merit function.

In our case, this QP problem has the form

minimize Q(Hk, xk, s)

subject to A(xk)s+ C(xk) = 0 (16)

l ≤ xk + s ≤ u
‖s‖∞ ≤ ∆,

where Q(H,x, s) is defined by (8), xk is supposed to belong to

Ω = {x ∈ IRn | l ≤ x ≤ u}

and Hk is an approximation of the Hessian of the Lagrangian at xk. It should be noticed that Hk does
not need to be positive definite, so this problem must be carefully handled. The infinity norm was chosen
here so the bound constraints and the trust region constraint of (16) can be grouped.

We will use the term ϕ-stationary to say that a point x̂ satisfies the first order optimality conditions
of

minimize ϕ(x) (17)

subject to x ∈ Ω.

Unfortunately, if xk is not ϕ-stationary, the constraints of (16) may be inconsistent, so this problem
may not have a solution. Some algorithms, such as the SQP-filter method presented in [6], include
a restoration step, called to find a new point that makes (16) compatible. Another common practice
to overcome this difficulty is to directly divide the step sc into two components. The first of these
components, called normal step, or simply sn, is obtained as the solution of the feasibility problem

reduce M(xk, s)

subject to l ≤ xk + s ≤ u (18)

‖s‖∞ ≤ βd∆.

where βd ∈ (0, 1] is a given constant. If M(xk, sn) = 0, then xk can be substituted by xk + sn in (16) to
make this problem feasible, so it can be solved by any QP algorithm. Otherwise, the second component

MIXING MERIT FUNCTION AND FILTER IDEAS 9

of sc, called the tangential step, or st, is computed so Q is reduced but the predicted reduction of the
infeasibility obtained so far is retained. In other words, sc is the solution of the (now consistent) problem

reduce Q(Hk, xk, s)

subject to A(xk)s = A(xk)sn (19)

l ≤ xk + s ≤ u
‖s‖∞ ≤ ∆.

Usually, βd is set to some value around 0.8 so the trust region is enlarged from (18) to (19). This is
done to prevent sn from being the the only solution of (19) when this point is in the border of the trust
region of (18).

To insure a sufficient decrease of M , a Cauchy point, sdec
n , is computed. This Cauchy point is based

on a decent direction for ϕ(x) given by Pω(xk −∇ϕ(xk)), the orthogonal projection of xk −∇ϕ(xk) on
Ω. The solution of (18) is required to keep at least ninety percent of the reduction obtained by sdec

n .
A similar procedure is adopted for (19). In this case, sdec

t , the Cauchy point, is obtained from a
descent direction for f(x) on the tangent space, given by Px(−∇Q(sn)), the orthogonal projection of
−∇Q(sn) on the set

T = {y ∈ N (A(xk)) | (xk + sn + y) ∈ Ω}.

Again, the decrease on Q obtained by the solution of (19) must not be less than a fixed percentage of
the reduction supplied by the Cauchy point.

Besides using this two-step scheme, the algorithm presented here also performs a restoration whenever
the step becomes too small and the current point is very infeasible. Although this feasibility reinforcement
seems to be unnecessary, the restoration plays a very important role in accelerating the method and
keeping the trust region radius sufficiently large.

This role is better explained by an example. Going back to Figure 2, let’s suppose that the current
iterate xk is represented by (ϕ4, f4) and that the optimal point has a function value greater than f1. In
this case, unless the trust region radius is sufficiently large and our quadratic model is really good (so
the algorithm can jump over a large portion of the forbidden region), it will be necessary to perform a
considerable number of short-step iterations to traverse from the southeast to the northwest part of the
figure. To shorten the path between the current point and the desired solution, it is necessary to focus
only on reducing the infeasibility, and this is exactly what the restoration step does.

One may notice that the use of a standard filter is not useful for circumventing this difficulty. In fact,
the problem is aggravated in the presence of (almost) right angles in the frontier of the forbidden region.
To see why this happens, let’s suppose now that the restoration is used only to ensure that problem (16)
is compatible and that xk is in the vicinity of an almost horizontal segment of the filter envelope. In this
case, to escape from this region, it may be necessary to severely reduce the trust region radius before
(16) becomes inconsistent, so the restoration is called.

The main steps of the algorithm are given below. We start from k = 0 and take F0 = ∅ as the
initial set of points used to define the piecewise linear function P(F). An initial point x0 ∈ Ω, an initial
trust-region radius ∆0 ≥ ∆min and an initial symmetric matrix H0 need also to be given.

Algorithm 1 A new SQP algorithm

1. WHILE the stopping criteria are not satisfied
1.1. Fk← Fk

⋃{(f(xk), ϕ(xk))};
1.2. IF ‖C(xk)‖ = 0 (xk is feasible),
1.2.1. sn← 0;

10 FRANCISCO A. M. GOMES

1.3. ELSE
1.3.1. Compute dn (a descent direction for ϕ(x)):

dn← Pω(xk − γn∇ϕ(xk))− xk;
1.3.2. Determine sdec

n (the decrease step for ϕ(x)), the solution of
minimize M(xk, s)
subject to l ≤ xk + s ≤ u

‖s‖∞ ≤ βd∆k

s = tdn, t ≥ 0;
1.3.3. Compute sn (the normal step) such that

l ≤ xk + sn ≤ u,
‖sn‖∞ ≤ βd∆k, and
M(xk, 0)−M(xk, sn) ≥ βm[M(xk, 0)−M(xk, s

dec
n)];

1.4. Compute dt (a descent direction for f(x) on the tangent space):
dt← Px(−γt∇Q(sn));

1.5. Determine sdec
t (the decrease step for f(x)), the solution of

minimize Q(s)
subject to l ≤ xk + s ≤ u

‖s‖∞ ≤ ∆k

s = sn + tdt, t ≥ 0;

1.6. Compute a trial step sc such that
A(xk)sc = A(xk)sn,
l ≤ xk + sc ≤ u,
‖sc‖∞ ≤ ∆k, and
Q(sn)−Q(sc) ≥ βq[Q(sn)−Q(sdec

t)];

1.7. IF (f(xk + sc) ≥ P(Fk, ϕ(xk + sc))) OR

(P opt
red(Hk, xk, sc) ≥ κϕ(xk) AND θsup

k < γm),
1.7.1. ∆k← αR min{∆k, ‖sc‖∞}; (reduce ∆)

1.8. ELSE

1.8.1. ρk←Aopt
red(xk, sc)/P

opt
red(Hk, xk, sc);

1.8.2. IF P opt
red(Hk, xk, sc) < κϕ(xk) OR ρk < γr,

1.8.2.1. Fk+1←Fk; (include (f(xk), ϕ(xk)) in F)
1.8.3. ELSE Fk+1← Fk;
1.8.4. Accept the trial point:

xk+1← xk + sc;
ρ̃k←Ared(xk, sc, θ

sup
k)/Pred(Hk, xk, sc, θ

sup
k);

∆k+1←
{

max{αR min{∆k, ‖sc‖∞},∆min}, if ρ̃k < γg,
max{αA∆k,∆min}, if ρ̃k ≥ η;

Determine Hk+1;
k← k + 1;

1.9. IF ∆k < ∆rest AND ϕ(xk) > ǫh∆2
k,

1.9.1. Compute a restoration step sr so that
(ϕ(xk + sr) < ǫh∆2

k AND f(xk + sr) < P(Fk, ϕ(xk + sr))) OR
xk + sr is ϕ-stationary but infeasible;

1.9.2. Fk+1←Fk; (include (f(xk), ϕ(xk)) in F)
1.9.3. Accept the new point:

xk+1← xk + sr;
∆k+1← max{βr∆rest,∆min};
Determine Hk+1;
k← k + 1;

MIXING MERIT FUNCTION AND FILTER IDEAS 11

The constants used here must satisfy 0 < βd ≤ 1, 0 < βm < 1, 0 < βq < 1, κ > 0, 0 < γr < γg < η < 1,
γn > 0, γt > 0, 0 < ∆min < ∆rest, 0 < αR < 1, αA ≥ 1, ǫh > 0 and βr > 0. Parameters κ, γn, γt, ∆min,
∆rest, ǫh and βr are problem dependent and must be chosen according with some measure of problem
data. Reasonable values for the remaining parameters might be βd = 0.8, βm = 0.9, βq = 0.9, γr = 0.01,
γg = 0.05, η = 0.9, αR = 0.25 and αA = 2.5. The constant η should not be confused with the parameter
η defined in (12).

Algorithm 1 seems to be somewhat inefficient, since it requires the solution of several quadratic
programming problems per iteration. However, as it will become clear at section 7, only steps 1.3.3 and
1.6 usually require the solution of a quadratic problem. Besides, we do not need to solve these problems
exactly, so the algorithm is competitive with modern nonlinear programming codes.

The restoration step is called whenever the trust region radius becomes too small compared to ϕ(xk).
In this case, we need to find a point that is less infeasible than xk and that is also acceptable for the
piecewise linear merit function. To ensure that such a point can always be obtained, it would be necessary
to use an algorithm for global minimization. Of course, this alternative is unaffordable, so the restoration
is computed in practice by an algorithm for solving the box constrained problem (17). The only drawback
of this approach is that we cannot guarantee that a stationary but infeasible point would not be reached.
Therefore, we say that the main algorithm fails if this happens.

If xk is feasible, then the condition P opt
red < κϕ(xk) is never satisfied, since P opt

red is always greater

or equal to zero. Besides, the condition Aopt
red < γrP

opt
red is also never satisfied when xk is feasible and

f(xk +sc) < P(Fk, ϕ(xk +sc)). Therefore, all of the points in Fk are infeasible, although Fk may contain
a feasible point. This result is very important for two reasons. First, it prevents the optimal solution
of problem 1 from being refused by the algorithm. Moreover, it also assures that the algorithm is well
defined, as stated in the next section.

4 The algorithm is well defined

An iteration of algorithm 1 ends only when a new point xk + s is below the piecewise linear function
P(Fk, ϕ(xk +s)), besides satisfying some other conditions stated at steps 1.7 or 1.9.1. While such a point
is not found, the trust region radius is reduced and the iteration is repeated. It is not obvious that an
acceptable point will be obtained, as we may generate a sequence of points that are always rejected by
the algorithm. In this section, we prove that the algorithm is well defined, i.e. a new iterate xk+1 can
always be obtained unless the algorithm stops by finding a ϕ-stationary but infeasible point or a feasible
but not regular point.1

In the following lemma, we consider the case where xk is infeasible.

Lemma 1 If xk is not ϕ-stationary, then after a finite number of repetitions of steps 1.1 to 1.9, a new
iterate xk+1 is obtained by the algorithm.

Proof: At each iteration k, if f(xk+sc) < P(Fk, ϕ(xk+sc)) and one of the conditions P opt
red(Hk, xk, sc) ≤

κϕ(xk) or Ared(xk, sc, θ
sup
k) ≥ γgPred(Hk, xk, sc, θ

sup
k) (for some θsup

k ≥ γm) is satisfied, then xk + sc is
accepted and we move to iteration k + 1. Otherwise, ∆k is reduced and after some unfruitful steps,
∆k < ∆rest and ϕ(xk) > ǫh∆2

k, so a restoration is called.
Suppose that a ϕ-stationary but infeasible point is never reached (otherwise the algorithm fails). As

the restoration generates a sequence of steps {sj} converging to feasibility, and since Fk does not include
feasible points (because xk is infeasible and no feasible point is included in Fk), there must exist an iterate
xk + sr that satisfies ϕ(xk + sr) < min{ϕ1, ǫh∆2

k}, so we can proceed to the next iteration. 2

Now, in order to prove that the algorithm is also well defined when xk is feasible, we need to make
the following assumptions.

A1. f(x) and Ci(x) are twice-continuously differentiable functions of x.

1We say that a point is regular if the linear independence constraint qualification (LICQ) holds.

12 FRANCISCO A. M. GOMES

A2. The sequence of Hessian approximations {Hk} is bounded.

As a consequence of A1 and A2, the difference between the actual and the predicted reduction of the
merit function is proportional to ∆2, so the step is accepted for a sufficiently small trust region radius,
as stated in the following lemma.

Lemma 2 Suppose that A1 and A2 hold and that xk is feasible and regular for problem 1 but the KKT
conditions do not hold. Then, after a finite number of trust region reductions, the algorithm finds a new
point xk +sc that satisfies f(xk +sc) < P(Fk, ϕ(xk +sc)) and Ared(xk, sc, θ

sup
k) ≥ γgPred(Hk, xk, sc, θ

sup
k)

for some θsup
k ≥ γm.

Proof: Since xk is feasible, sn = 0. Supposing that xk is regular and non-stationary, there must exist a
vector dt 6= 0 satisfying

l ≤ xk + dt ≤ u, A(xk)dt = 0, and dT
t ∇f(xk) < 0.

Let us define, for all ∆ > 0,
p(∆) = t(∆)dt,

where
t(∆) = max{t > 0 | [xk, xk + tdt] ⊂ Ω, and ‖tdt‖∞ ≤ ∆}. (20)

Clearly, x+ dt ∈ Ω, so we have that ‖t(∆)dt‖∞ = ∆ whenever ∆ ≤ ‖dt‖∞. Define, in this case,

c = −1

2
dT

t ∇f(xk)/‖dt‖∞ = −1

2
dT

t ∇Q(0)/‖dt‖∞ > 0.

Since Q(sdec
t) ≤ Q(p(∆)), by elementary properties of one-dimensional quadratics, there exists ∆1 ∈

(0, ‖dt‖∞] such that, for all ∆ ∈ (0,∆1),

Q(0)−Q(sdec
t) ≥ −1

2
dT

t ∇Q(0)t(∆) = −1

2

dT
t ∇Q(0)

‖dt‖∞
∆ = c∆.

Moreover, since xk is feasible and Asn = 0, we have that M(xk, 0) = M(xk, sc) = 0, so

P fsb
red (xk, sc) = 0, and

P opt
red(Hk, xk, sc(∆)) = Q(0)−Q(sc(∆)) ≥ βq[Q(0)−Q(sdec

t)] ≥ βqc∆. (21)

Once xk is feasible, (ϕ(xk), f(xk)) is the first pair in Fk. Thus, there exists ∆2 ∈ (0,∆1] such that,
for ∆ < ∆2, we need to consider only the portion of P(Fk, ϕ) defined on the interval [0, ϕ2]. This linear
function may be rewritten so the condition

f(xk + sc) < P(Fk, ϕ(xk + sc))

is equivalent to
Ared(xk, sc(∆), θ1) ≥ η1Pred(Hk, xk, sc(∆), θ1), (22)

where,
Pred(Hk, xk, sc(∆), θ1) = θ1P

opt
red(Hk, xk, sc(∆)) ≥ βqc∆θ1, (23)

Ared(xk, sc(∆), θ1) = θ1[f(xk)− f(xk + sc(∆))] + (1− θ1)ϕ(xk + sc(∆))

and θ1 > 0 is given by (9).
Now, by A1, A2 and the definition of Pred, we have

Ared(xk, sc, θ) = Pred(Hk, sk, sc, θ) + c1‖sc‖2. (24)

MIXING MERIT FUNCTION AND FILTER IDEAS 13

So, using (23) and (24) we deduce that
∣

∣

∣

∣

Ared(∆)

Pred(∆)
− 1

∣

∣

∣

∣

≤ |c1|∆
βqcθ1

. (25)

Thus, for ∆ < min{(1− η1)βqcθ1/|c1|,∆2} = ∆3, the inequality (22) necessarily takes place.
Now, using the fact that θsup

k = 1 for xk feasible and replacing θ1 by 1 in (25), we can conclude that,
for

∆ < min{(1− γg)βqc/|c1|,∆3} = ∆4, (26)

the condition Ared(xk, sc(∆), θsup
k) ≥ γgPred(Hk, xk, sc(∆), θsup

k) is also satisfied and the step is accepted.
2

5 The algorithm converges to a feasible point

As mentioned in the last section, our algorithm can stop if a ϕ-stationary but infeasible point is found.
Naturally, this unexpected behavior of the algorithm makes somewhat pretentious the title of this section.

Formally, what we will prove is that, supposing that a ϕ-stationary but infeasible point is never
reached and that the restoration always succeeds, an infinite sequence of iterates converges to feasibility.

In the proofs of the lemmas presented here, we will suppose that A1 and the following assumption
are satisfied.

A3. The sequence of iterates {xk} lies within a closed and bounded domain Ω0.

This requirement is easy to fulfill, as we usually can define finite lower and upper limits for the
variables. Besides, as mentioned in [6, p.730], assumptions A1 and A3 together ensure that, for all k,

fmin ≤ f(xk) ≤ fmax and 0 ≤ ϕ(xk) ≤ ϕmax

for some constants fmin, fmax and ϕmax > 0. Our analysis will be based on the fact that the rectangle
A0 = [0, ϕmax]× [fmin, fmax] is covered by a finite number of rectangles with area greater than a small
constant. Therefore, each time we expand the forbidden region (see fig (2)) by adding to it a small
rectangle, we drive the iterates towards feasibility.

Let us start investigating what happens to ϕ(x) when an infinite sequence of iterates is added to F ,
following the skeleton of Lemma 15.5.2 of [6].

Lemma 3 Suppose that A1 and A3 hold and that {ki} is any infinite subsequence at which the iterate
xki

is added to F . Then
lim

i→∞

ϕ(xki
) = 0.

Proof: Let us suppose, for the purpose of obtaining a contradiction, that there exists an infinite
subsequence {kj} ⊆ {ki} for which

ϕ(xkj
) ≥ ǫ, (27)

where ǫ > 0.
At iteration kj , the (ϕ, f)-pair associate with xkj

is included in F at position m, which means that
ϕm−1 ≤ ϕkj

(≡ ϕm) ≤ ϕm+1 and fm−1 ≥ fkj
(≡ fm) ≥ fm+1. Thus, as long as the pair (ϕkj

, fkj
) remains

in F , no other (ϕ, f)-pair is accepted within the rectangle

rm = {(ϕ, f) | ϕm ≤ ϕ ≤ ϕm, fm ≤ f ≤ fm}.

Notice that, by (10), (11) and (27), the area of this rectangle is, at least,

(ϕm − ϕm)(fm − fm) ≥ (ϕm − ϕm)2 ≥ (γfϕkj
)2 ≥ γ2

f ǫ
2.

14 FRANCISCO A. M. GOMES

Assume now that (ϕkj
, fkj

) is excluded from F by another pair (ϕkl
, fkl

), included in F at an iteration
kl > kj . This case is illustrated in Fig. 4. Notice that (ϕkl

, fkl
) cannot fall in regions I and V since, in

this case, (ϕkj
, fkj

) will not be excluded from F . It can be easily verified that the worst case occurs when
(ϕkl

, fkl
) lies on p1(ϕ) or p2(ϕ).

Suppose (ϕkl
, fkl

) lies on p2(ϕ), as depicted in Fig. 4. In this case, the rectangle rm will be entirely

above p2, the line that connects (ϕkl
, fkl

) to (ϕm+1, fm+1). Since p2 will be included in the new piecewise
linear function P(F), no point within rm can ever be reached by a new iterate.

The same idea can be applied in the case (ϕkl
, fkl

) lies on p1(ϕ). Therefore, once (ϕkj
, fkj

) is included

in F , rm will always be above P(F). Since the area of this rectangle is at least γ2
f ǫ

2 and the set

A0 is completely covered by at most Surf(A0)/[γ
2
f ǫ

2] of such rectangles, it is impossible for an infinite
subsequence of {ki} to satisfy (27), and the conclusion follows. 2

Figure 4: Adding a new iterate that excludes (ϕkj
, fkj

) from F .

Finally, we are going to consider the case where no point is added to Fk for k sufficiently large.

Lemma 4 Suppose that assumptions A1 and A3 hold. Suppose also that, for all k > k0, xk is never
included in Fk. Then,

lim
k→∞

ϕ(xk) = 0. (28)

Proof: Since xk is not included in Fk, no restorations are made and both conditions stated at step 1.8.2
of algorithm 1 are never satisfied for k > k0. Therefore, we have

f(xk)− f(xk+1) ≥ γrP
opt
red ≥ γrκϕ(xk) > 0, (29)

for all k > k0, which means that the objective function always decrease between infeasible iterations.
Since A1 and A3 imply fmin ≤ f(xk) ≤ fmax, we must have

lim
k→∞

f(xk)− f(xk+1) = 0. (30)

Then, (28) follows from (29) and (30). 2

6 The algorithm finds a critical point

Finally, we are able to prove the convergence of the algorithm to a stationary point for (1). In order to
do that, we will need to make one additional assumption on the choice of the normal step sn.

MIXING MERIT FUNCTION AND FILTER IDEAS 15

A4. There exist κn, kN > 0 such that, if {xki
} is a subsequence of iterates that converges to a feasible

point, the choice of sn at step 1.3.3 of algorithm 1 satisfies

‖sn(xk,∆k)‖ ≤ κn‖C(xk)‖2

for ki > kN .

This requirement is also easy to fulfill since it only applies when the infeasibility is small and, in this
case, it is reasonable to suppose that the normal step will also be small.

In the following lemma, derived from lemma 6.1 of [10], we show that in the neighborhood of a
feasible, regular and non-stationary point, the directional derivative of the quadratic model (8) along dt

is bounded away from zero.

Lemma 5 Suppose that A2 and A4 hold and that {xki
} is an infinite subsequence that converges to the

feasible and regular point x∗ ∈ Ω, which is not stationary for (1). Then there exists k1, c1 > 0 such that

−∇Q(sn(x,∆))T dt(H,x,∆) ≥ c1 (31)

for all x ∈ {xki
| k ≥ k1}. Moreover, ‖dt(H,x,∆)‖ is bounded and bounded away from zero for all

x ∈ {xki
| k ≥ k1}.

Proof: For all x ∈ {xki
}, we have that

dt(H,x,∆) = Px(−γt∇Q(sn(x,∆))) = Px(−γt[Hsn(x,∆) +∇f(x)]).

By the contractive property of the orthogonal projections,

‖Px(−γt[Hsn(x,∆) +∇f(x)])− Px(−γt∇f(x))‖2 ≤ γt‖H‖2‖sn(x,∆)‖2.

So, by A2 and A4, we have that

‖dt(H,x,∆)− Px(−γt∇f(x))‖2 ≤ γ1‖C(x)‖ (32)

for k > kN . By the continuity of ∇f(x) and the fact that {xki
} converges, we deduce that

‖∇f(xki
)TPx(−γt∇f(xki

))−∇f(xki
)T dt(Hki

, xki
,∆ki

)‖2 ≤ γ2‖C(xki
)‖. (33)

Notice that Px(−γt∇f(xki
)) is the solution of

minimize ‖ − γt∇f(xki
)− z‖22

subject to A(xki
)z = 0

l ≤ xki
+ sn + z ≤ u.

Now, define Px∗(−γt∇f(x∗)) as the solution of

minimize ‖ − γt∇f(x∗)− z‖22
subject to A(x∗)z = 0 (34)

l ≤ x∗ + z ≤ u.

Since x∗ is regular but is not a stationary point for (1), it follows that z = 0 is not a solution for (34).
So, Px∗(−γt∇f(x∗)) 6= 0. Moreover, since z = 0 is feasible for (34), we have that

‖ − γt∇f(x∗)− Px∗(−γt∇f(x∗))‖22 < ‖ − γt∇f(x∗)‖22,

which implies that ∇f(x∗)TPx∗(−γt∇f(x∗)) < 0.

16 FRANCISCO A. M. GOMES

Using the fact that Px(−γt∇f(x)) is a continuous function of x and sn for all regular x (see [10]), we
can define c2, c3, c4 > 0 and k2 ∈ IN such that, for all x ∈ {xki

| k ≥ k2}, we have

c2 ≤ ‖Px(−γt∇f(x))‖ ≤ c3 and ∇f(x)TPx(−γt∇f(x)) ≤ −c4. (35)

Now, from (32), (33) and (35), the continuity of C(x) and the feasibility of x∗, there exists k3 ≥
max{k2, kN} such that, whenever x ∈ {xki

| k ≥ k3},

c2
2
≤ ‖dt(H,x,∆)‖ ≤ 2c3 and ∇f(x)T dt(H,x,∆) ≤ −c4

2
.

Therefore, ‖dt(H,x,∆)‖ is bounded and bounded away from zero for all x ∈ {xki
| k ≥ k3}.

Finally, since dt ∈ N (A(x)), assumptions A2 and A4 hold, and ‖dt‖ is bounded, we have that, for all
x ∈ {xki

| k ≥ k3},
∇Q(sn)T dt = ∇f(x)T dt + dT

t Hsn ≤ −
c4
2

+ γ3‖C(x)‖,

where γ3 > 0. Then, (31) follows defining c1 = c4/4 and choosing k1 > k3 such that ‖C(x)‖ ≤ c4/(4γ3).
2

Using Lemma 5, we state in the next lemma that, in the neighborhood of a feasible, regular and
non-stationary point, the decrease of the quadratic model (8) is proportional to the trust region radius
∆.

Lemma 6 Suppose that A2 and A4 hold and that {xki
} is an infinite subsequence that converges to the

feasible and regular point x∗ ∈ Ω, which is not stationary for (1). Then there exists c2, k2 > 0 and
∆1 ∈ (0,∆min) such that

Q(x, sn(x,∆))−Q(x, sc)) ≥ c2 min{∆,∆1} (36)

for all x ∈ {xki
| k ≥ k2}.

Proof: See Lemma 6.2 of [10]. 2

Now, we are able to present a crucial lemma, derived from Lemma 6.3 of [10], that relates P opt
red to the

trust region radius in the neighborhood of a feasible point.

Lemma 7 Suppose that A1, A2 and A4 hold and that {xki
} is an infinite subsequence that converges to

the feasible and regular point x∗ ∈ Ω, which is not stationary for (1). Then there exists ǫ, c3, k3 > 0 and
∆1 ∈ (0,∆min) such that, for ki > k3, if

ϕ(xki
) ≤ ǫ∆2, (37)

we have that
P opt

red(xki
, sc) = Q(xki

, 0)−Q(xki
, sc) ≥ c3 min{∆,∆1}. (38)

Proof: By Lemma 6, assumptions A1 and A4 and the convergence of {xki
}, we have that

Q(0)−Q(sc) ≥ Q(sn)−Q(sc)− |Q(0)−Q(sn)| ≥ c2 min{∆,∆1} − γ4‖C(x)‖

for all x ∈ {xki
| k ≥ k2}, where c2, k2 and ∆1 are defined as in Lemma 6 and γ4 > 0. Therefore, (38)

follows if we choose c3 < c2 and k3 ≥ k2 such that ǫ ≤ α2(c2 − c3)2/(2γ2
4), where α = min{1,∆1/∆}. 2

We next examine what happens if ∆ is bounded away from zero and an infinite subsequence of points
is added to F .

Lemma 8 Suppose that A1, A2, A3 and A4 hold and that {xkj
} is an infinite subsequence at which xkj

is added to F . Suppose furthermore that the limit points of this sequence are feasible and regular, that
the restoration always terminates successfully and that ∆kj

≥ ∆2, where ∆2 is a positive scalar. Then
there exists a limit point of this sequence that is a feasible, regular and stationary point for (1).

MIXING MERIT FUNCTION AND FILTER IDEAS 17

Proof: From assumption A3, we know that {xkj
} has a convergent subsequence, say {xki

}. Let us
suppose that the limit point of this subsequence is not stationary for (1).

From Lemma 3 we know that there exists k5 ∈ IN such that, for ki > k5,

ϕ(xki
) < ǫh∆2

2.

Thus, a restoration is never called for ki > k5. So, the hypothesis that xki
is added to Fki

implies
that Ared(xki

, sc, θ
sup
ki

) ≥ γgPred(xki
, sc, θ

sup
ki

) for some θsup
ki
≥ γm, and that one of the inequalities stated

at step 1.8.2 of the algorithm is satisfied at iteration ki.
Suppose, for the purpose of obtaining a contradiction, that {xki

} converges to a point that is not
stationary for (1). So, from Lemma 3 and (38), there exists k6 ≥ k5 such that ϕ(xki

) < ǫ∆2
ki

and

P opt
red(xki

, sc) ≥ c3 min{∆1,∆2},
for all ki > k6.

Using Lemma 3 again, we can deduce that there exists k7 ≥ k6 such that ϕ(xki
) < (c3/κ)min{∆1,∆2}

and the condition P opt
red < κϕ(xk) is never satisfied for ki > k7.

Therefore, ρk < γr must hold. To show that this is not possible, let us write the inequality
Ared(xki

, sc, θ
sup
ki

) ≥ γgPred(xki
, sc, θ

sup
ki

), as

θsup
ki

Aopt
red(xki

, sc) + (1− θsup
ki

)(ϕ(xki
)− ϕ(xki

+ sc)) ≥
γgθ

sup
ki

P opt
red(xki

, sc) + γg(1− θsup
ki

)P fsb
red (xki

, sc).

Using the hypothesis that ρk < γr and the fact that P fsb
red (xki

, sc) ≥ 0, we have

θsup
ki

γrP
opt
red(xki

, sc) + (1− θsup
ki

)(ϕ(xk)− ϕ(xk + sc)) ≥ γgθ
sup
ki

P opt
red(xki

, sc).

Then, taking k4 > k3 (defined in Lemma 7), we deduce from (38) that, for ki > k4,

(1− θsup
ki

)(ϕ(xki
)− ϕ(xki

+ sc)) ≥ (γg − γr)θ
sup
ki

c3 min{∆1,∆2}.
But, since, γg > γr and limi→∞ ϕki

= 0, we must have

lim
i→∞

θsup
ki

= 0,

which contradicts the fact that θsup
ki
≥ γm. Therefore, {xki

} must converge to a stationary point for (1).
2

Supposing again that ∆ is bounded away from zero, we will now complete our analysis investigating
what happens when no iterates are added to F for k sufficiently large.

Lemma 9 Suppose that A1, A2, A3 and A4 hold, that xk is always accepted but Fk remains unchanged
for k > k5 and that ∆k ≥ ∆3, for some positive ∆3. Suppose also that the limit points of the infinite
sequence {xk} are feasible and regular. Then there exists a limit point of {xk} that is a feasible, regular
and stationary point of (1).

Proof: Assumption A3 implies that there exists a convergent subsequence {xki
}. If the limit point of

this subsequence is not stationary for (1), then from Lemma 7, we have

P opt
red ≥ c3 min{∆3,∆1} (39)

for all ki > max{k5, k3}. Moreover, since xki
is always accepted and Fk is not changed, we deduce, from

step 1.8.2 of the algorithm, that ρk ≥ γr. Therefore,

f(xki
)− f(xki

+ sc) ≥ γrP
opt
red . (40)

From (39) and (40) we conclude that f(xki
)− f(xki

+ sc) ≥ γrc3 min{∆1,∆3} for all ki sufficiently large,
which contradicts the compactness assumption A3. Thus, the limit point of {xki

} must be stationary. 2

In the last part of this section, we will discuss the behavior of the algorithm when ∆ → 0. We will
start showing that the predicted reduction of the quadratic model is sufficiently large when ∆ is small.

18 FRANCISCO A. M. GOMES

Lemma 10 Suppose that A2 and A4 hold and that {xki
} is an infinite subsequence that converges to the

feasible and regular point x∗ ∈ Ω, which is not stationary for (1). Suppose also that ϕk satisfies (37) and
that

∆ < min{c3/(κǫ),∆1} = ∆5 (41)

for ki > k6, where c3, ǫ and ∆1 are defined as in Lemma 7. Then P opt
red > κϕ(xki

).

Proof: Suppose, for the purpose of obtaining a contradiction, that P opt
red ≤ κϕ(xk) for some ki > k6.

Then, from (38), we have
c3 min{∆,∆1} ≤ P opt

red ≤ κϕ(xki
) ≤ κǫ∆2,

which is impossible because of (41). Thus P opt
red > κϕ(xki

) must hold. 2

The purpose of the next four Lemmas is to prove that there exists a sufficiently small trust region
radius so the step is always accepted and ∆ is not reduced further at step 1.7.1 of algorithm 1.

The first lemma shows the relation between the predicted reduction of the infeasibility and ∆.

Lemma 11 Suppose that assumption A1 holds and that xk is not ϕ-stationary. Then there exists
∆6, c4 > 0 such that

P fsb
red (xk, sc) ≥ c4∆k, (42)

if ∆k ∈ (0,∆6).

Proof: The proof of this Lemma is based on the same arguments used to obtain (21). However, here
we deal with the reduction of the infeasibility, instead of the reduction of the objective function, so some
modifications need to be done.

Firstly, we must notice that dn 6= 0, since we suppose that xk is not ϕ-stationary. Thus, we can
redefine (20) as

t(∆) = max{t > 0 | [xk, xk + tdn] ∈ Ω and ‖tdn‖ ≤ βd∆}.
Now, using the fact that for ∆ sufficiently small we have ‖t(∆)dn‖ = βd∆ and defining

c = −1

2
dT

n∇ϕ(xk)/‖dn‖ > 0,

there must exist ∆6 ∈ (0, ‖dn‖] such that

M(0)−M(t(∆)) ≥ −1

2
dT

n∇ϕ(xk)t(∆) = c‖dn‖t(∆) = βdc∆

for all ∆ ∈ (0,∆6). Therefore, for the normal step sn computed at step 1.3.3 of algorithm 1, we have

M(0)−M(sn) ≥ βdβmc∆k.

But, since A(xk)sc = A(xk)sn, we deduce from (4) that

P fsb
red (xk, sc) ≥ βdβmc∆k

and the desired inequality follows. 2

In order to prove that xk + sc will be accepted, we need to consider how ϕ and f are computed. Let
us begin using the previous lemma to show that, for a small ∆, ϕi, defined in (10), will depend on the
predicted reduction of the infeasibility.

Lemma 12 Suppose that A1 holds and that xk is not ϕ-stationary. Then there exists ∆7 > 0 such that

γcP
fsb
red (xk, sc) > γfϕ(xk),

if ϕ(xk) < ǫh∆2
k and ∆k ∈ (0,∆7).

MIXING MERIT FUNCTION AND FILTER IDEAS 19

Proof: Lemma 11 ensures that

γc

γf

P fsb
red (xk, sc) ≥

γc

γf

c4∆k > 0.

Defining ∆7 = min{γcc4/(γf ǫh),∆6}, where ∆6 is given in Lemma 11, we have that

γc

γf

P fsb
red (xk, sc) ≥ ǫh∆7∆ > ǫh∆2 ≥ ϕ(xk),

for all ∆ ∈ (0,∆7), so the desired result follows. 2

Using Lemma 11 again, we can also show that f , defined in (11), will depend on P opt
red if ∆ is sufficiently

small.

Lemma 13 Suppose that A1, A2 and A4 hold, that {xki
} is an infinite subsequence that converges to

the feasible and regular point x∗ ∈ Ω, which is not stationary for (1), and that ϕk is given by (10). Then
there exists ∆8 > 0 such that

γfP
opt
red(Hk, xk, sc) ≥ (ϕ(xk)− ϕk),

if ϕ(xk) < min{ǫh, ǫ}∆2
k and ∆k ∈ (0,∆8), where ǫ is defined as in Lemma 7.

Proof: From Lemma 7 we deduce that, if ∆k ∈ (0,∆1], then

γfP
opt
red(Hk, xk, sc) ≥ γfc3∆k.

Now, defining ∆8 = min{γfc3/ǫh,∆1}, we have

γfP
opt
red(Hk, xk, sc) ≥ ǫh∆8∆ ≥ ǫh∆2

k ≥ ϕ(xk) ≥ (ϕ(xk)− ϕk)

and the desired conclusion follows. 2

Let us prove now that, for a infeasible x, the ratio between the actual and the predicted reduction of
the merit function is sufficiently large if ∆ is small, not matter how the penalty parameter θ is chosen.

Lemma 14 Suppose that A1, A2 and A4 hold, that θ ∈ [0, 1] and γ ∈ (0, 1) are given parameters and
that {xki

} is an infinite subsequence that converges to the feasible and regular point x∗ ∈ Ω, which is not
stationary for (1). Then there exists ∆9 > 0 such that, for ki sufficiently large,

Ared(xki
, sc, θ) ≥ γPred(Hki

, xki
, sc, θ)

for all ∆ki
∈ (0,∆9), if xki

is infeasible.

Proof: Since limi→∞ ϕ(xki
) = 0 and, at the beginning of iteration k, the trust region radius satisfies

∆ki
≥ ∆min, there must exist k7 ≥ k3 (defined in Lemma 7) such that, for ki > k7, the condition

ϕ(xki
) ≤ ǫ∆2

ki
is satisfied, so (38) holds. Besides, since xki

is infeasible, (42) also holds if we take
∆9 ≤ ∆6 (defined in Lemma 11). Therefore, from the definition of Pred, we have that

Pred(Hki
, xki

, sc, θ) ≥ θc3 min{∆ki
,∆1}+ (1− θ)c4∆ki

.

where ∆1, c3 and c4 are defined as in Lemmas 7 and Lemma 11.
For any θ ∈ [0, 1], the above inequality implies that

Pred(Hki
, xki

, sc, θ) ≥ min{∆ki
,∆1}min{c3, c4} > 0.

But, from A1 and A4, we also have that

|Ared(∆ki
)− Pred(∆ki

)| ≤ c5∆2
ki
.

20 FRANCISCO A. M. GOMES

for some c5 > 0. From the last two inequalities, we deduce that, for ∆ki
≤ ∆1,

|Ared(∆ki
)− Pred(∆ki

)|
Pred(∆ki

)
=

∣

∣

∣

∣

Ared(∆ki
)

Pred(∆ki
)
− 1

∣

∣

∣

∣

≤ c5
min{c3, c4}

∆k. (43)

Therefore, defining ∆9 = min{(1− γ)min{c3, c4}/c5,∆1,∆6}, we obtain the required result. 2

In our last lemma, we will use the previous results to prove that, if ∆ → 0, there is no infinite
subsequence that converges to a point that is not stationary for (1).

Lemma 15 Suppose that A1, A2, A3 and A4 hold. Suppose also that the limit points of the infinite
sequence {xk} are feasible and regular and that limk→∞ ∆k = 0. Then there exists a limit point of {xk}
that is a stationary point of (1).

Proof: Assumption A3 implies that there exists a convergent subsequence {xki
}. Let us suppose, for

the purpose of obtaining a contradiction, that the limit point of this subsequence is not stationary for
(1).

Now, we need to consider separately two mutually exclusive situations. First, let us suppose that xki

is feasible. In this case, Lemma 2 assures that, for ∆ < ∆4 (defined in (26)), the step is accepted and
the trust region radius need not to be reduced further.

On the other hand, if xki
is not ϕ-stationary, Lemmas 12 and 13 assure that, for ∆ki

≤ min{∆7,∆8} =

∆10, we have P fsb
red ≥ γfϕi/γc and P opt

red ≥ (ϕi − ϕi)/γf , so the parameter η used in (12) is given by

η =
(f i−1 − f i)γcP

fsb
red + (ϕi − ϕi−1)γfP

opt
red

(f i−1 − f i)P
fsb
red + (ϕi − ϕi−1)P

opt
red

,

where i is defined in such a manner that ϕi−1 ≤ ϕ(x+) ≤ ϕi. Thus, 0 < η < 1 and f(xki
+ sc) >

P(Fki
, ϕ(xki

+ sc)) is equivalent to (12).

Now, using Lemmas 10 and 14, we can deduce that, for ∆ki
< ∆9, the step is always accepted.

Consequently, ∆ki
≥ αR min{∆4,∆9,∆10}, which contradicts the hypothesis that limk→∞ ∆k = 0, so we

conclude that the limit point of the subsequence {xki
} is a stationary point of (1). 2

Finally, let us state a theorem that puts together all of the results presented so far.

Theorem 1 Suppose that A1, A2, A3 and A4 hold and that {xk} is an infinite sequence generated
by Algorithm 1. Then either the restoration converges to a ϕ-stationary but infeasible point of (1), or
limk→∞ ϕ(xk) = 0. Moreover, if the restoration always succeeds and all of the limit points of {xk} are
regular, there exists a limit point x∗ that is a regular and stationary point for (1). In particular, if all of
the ϕ-stationary points are feasible and regular, then there exists a subsequence of {xk} that converges to
a feasible, regular and stationary point of (1).

Proof: This result is a direct consequence of Lemmas 3, 4, 8, 9 and 15. 2

7 Numerical experience

The description of some steps of Algorithm 1 was intentionally left vague to suggest the reader that
several alternative implementations are available. In this section, we describe one of such possible imple-
mentations and present the numerical results obtained by applying the algorithm to some problems from
the CUTEr collection [13].

MIXING MERIT FUNCTION AND FILTER IDEAS 21

7.1 Algorithmic details

The computational effort of algorithm 1 may be decomposed into three main parts. The first is related
to the reduction of the infeasibility and includes steps 1.3.1 to 1.3.3. The aim of the second part, that
comprises steps 1.4 to 1.6, is to improve the objective function. Finally, a restoration is called, at step
1.9.1, if the infeasibility needs to be drastically reduced. Each one of these parts is briefly described
below.

Taking a closer look at steps 1.3.1 and 1.3.2, one may notice that vectors dn and sdec
n can be easily

determined, since the first involves computing a projection on a box and the second requires only the
solution of a one-dimensional problem.

The normal step, sn, can be obtained by solving the bound-constrained least squares problem (18),
replacing the word reduce by minimize. In our experiments, the Quacon package [2] was used for this
purpose. The computation of sn is declared successful when both conditions

M(xk, 0)−M(xk, sn) ≥ βm[M(xk, 0)−M(xk, s
dec
n)]

and
‖gp(sn)‖2 ≤ 0.001‖gp(s

dec
n)‖2

are satisfied, where βm = 0.9 and gp is the projected gradient of the quadratic function minimized.
Otherwise, the limit of max{1000, 6n} iterations is reached.

Vector sc is computed by applying the MINOS 5.4 [19] solver to the quadratic problem (19), stopping
the algorithm when both

‖gp(sc)‖∞ ≤ 10−6

{‖λ‖1√
m
, 1

}

, (44)

and condition (36) are satisfied, where, again, gp is the projected gradient and λ is the vector of Lagrange
multipliers. A limit of max{1000, 3n} iterations also applies.

Vector dt is obtained, at step 1.4, using the MINOS package to approximately solve the problem

minimize
1

2
‖d+ γt∇Q(sn)‖22

subject to A(xk)d = 0

l ≤ xk + sn + d ≤ u,

where γt = 0.001. Since dt is much more difficult to obtain than dn, we decided to compute this vector
only if sc fails to satisfy conditions (36) and (44). In this case, after determining dn and sdec

t , sc is
computed again.

To determine the restored point sr, successive normal steps were computed until the conditions stated
at step 1.9.1 were satisfied. A more sophisticated restoration procedure could be devised, but this very
simple scheme seemed to be satisfactory.

In all of the experiments, exact Hessians were computed, using the Lagrange multipliers supplied by
MINOS as the approximate dual variables for problem (1).

Algorithm 1 terminates when ‖C(xk)‖∞ ≤ 10−6 and one of the conditions

1. ‖∇ℓ(xk, λk)‖∞ ≤ ǫgmax{1, ‖∇ℓ(xtyp, λtyp)‖∞},

2. ‖sc‖∞ ≤ ǫxmax{1, ‖xk‖∞}, or

3. P fsb
red ≤ ǫs and P opt

red ≤ ǫo (for three successive iterations),

is satisfied, where ǫg = 10−6, ǫx = 10−18, ǫs = ǫo = 10−8, and xtyp and λtyp are typical primal and dual
steps, determined at the first iterations of the algorithm.

The algorithm also stops if, after a restoration step, ∇ϕ(xk + s) ≤ 10−10. In this case, it is more than
likely that a ϕ-stationary but infeasible point was found.

22 FRANCISCO A. M. GOMES

The remaining parameters used are ∆0 = 105, ∆min = 10−5, γn = 1.0, γt = 10−8, γr = 10−2,
γg = 5.10−2, κ = 10−4, η = 0.9, αA = 2.5, αR = 0.25, βd = 0.8, βq = 0.9, βr = 16.0, γs = 10−4,
γf = 10−6, γc = 10−3, γm = 10−4, ∆rest = 10−1 and ǫh = 102.

7.2 Algorithm performance

To analyze the behavior of the algorithm just described, a set of 82 small to medium-size problems was
extracted from the CUTEr collection [13]. The selected problems are presented in Tables 1, 2 and 3. The
number of variables of the original CUTEr problem is given by n, while s is the number of slack variables
required to convert the problem to the form shown in (1). The number of constraints is given by m.

Table 1: Selected tiny problems from the CUTEr collection.

Problem n s m Problem n s m
AIRPORT 84 42 42 HS116 13 14 14
AVION2 49 15 LAKES 90 78
CORE1 65 18 59 LAUNCH 25 19 28
DEMBO7 16 20 20 MINMAXBD 5 20 20
DIXCHLNG 10 5 MRIBASIS 36 46 55
DIXCHLNV 100 50 PRODPL1 60 9 29
ERRINBAR 18 1 9 SWOPF 83 14 92
HIMMELBI 100 12 TENBARS3 18 8
HIMMELBK 24 14 TRUSPYR2 11 8 11

Table 2: Selected small problems from the CUTEr collection.

Problem n s m Problem n s m
BRITGAS 450 360 LUBRIF 751 500
CATENARY 501 166 MADSSCHJ 201 398 398
DALLASL 906 667 MINC44 583 519
EIGENACO 110 55 NET3 464 127 521
EIGMINB 101 101 QPCBLEND 83 31 74
ELATTAR 7 102 109 SMBANK 117 64
EXPFITC 5 502 502 SMMPSF 720 23 263
HAIFAM 99 150 150 SSEBNLN 194 24 96
HALDMADS 6 42 42 STEENBRC 540 126
HET-Z 2 202 202 YORKNET 312 256
LEAKNET 156 153

The algorithm, hereafter called GMM99, was implemented in FORTRAN 77 and the executable
program was generated using the ifort 8.1 compiler, under the Fedora 3 Linux operating system. To
evaluate its performance, the algorithm was compared to Lancelot (release B), the well known nonlinear
programming package distributed along with the Galahad library [14]. The tests were performed on a Dell
Optiplex GX280 computer, using an Intel Pentium 4 540 processor, with a clock speed of 3.2GHz, 1MB
of cache memory, a 800MHz front side bus and the Intel 915G chipset. The Lancelot default parameters
were used, except for the maximum number of iterations that was increased to 10000. Exact first and
second derivatives were computed by both methods.

The new algorithm failed to obtain a feasible point for problems LUBRIF, ROTDISC and YORKNET.
Besides, it also could not find an objective function as good as Lancelot for problems BRAINPC5,
CATENARY, DIXCHLNG, DTOC2, EG3, ELATTAR, NGONE and OPTCTRL3. These 11 occurrences
were classified as GMM99 failures.

MIXING MERIT FUNCTION AND FILTER IDEAS 23

Table 3: Selected medium-size problems from the CUTEr collection.

Problem n s m Problem n s m
AUG2D 3280 1600 HYDROELL 1009 1008 1008
BIGBANK 2230 1112 JUNKTURN 5010 3500
BRAINPC5 6907 6900 MINPERM 1113 1033
BRIDGEND 2734 2727 MOSARQP1 2500 700 700
CLNLBEAM 3003 2000 NGONE 100 1273 1273
CORKSCRW 906 100 700 OET2 3 1002 1002
COSHFUN 6001 2000 2000 OPTCDEG3 1202 800
CRESC132 6 2654 2654 OPTCTRL3 4502 3000
DITTERT 1133 1034 OPTMASS 3010 501 2505
DRUGDIS 3004 2000 ORTHREGD 1003 500
DTOC2 5998 3996 READING1 4002 2000
DTOC4 2999 1998 READING3 4002 2001
EG3 1001 1999 2000 ROTDISC 905 361 1081
GAUSSELM 1240 2002 3017 SINROSNB 1000 999 999
GILBERT 1000 1 SSNLBEAM 3003 2000
GRIDNETD 3444 1764 SVANBERG 1000 1000 1000
HADAMARD 401 800 1010 TFI1 3 1001 1001
HAGER1 2001 1000 TRAINF 4008 2002
HAGER2 2001 1000 UBH1 9009 6000
HANGING 1800 1150 1150 ZAMB2 3966 1440
HELSBY 1408 1399 ZIGZAG 3004 500 2500
HVYCRASH 4004 3000

Lancelot attained the limit of 10000 iterations without finding a feasible point for problems CRESC132,
DITTERT, LAUNCH, NET3, OPTMASS and SMMPSF. For problems DRUGDIS, GAUSSELM, HALD-
MADS, HVYCRASH, READING3 and SINROSNB, the new algorithm found a better objective function.
Finally, for problems BRIDGEND and ROTDISC Lancelot exceeded the limit of 3000 seconds of running
time. These 14 cases were treated as Lancelot failures.

Table 4 shows a summary of the results obtained comparing the new algorithm to Lancelot. According
to this table, GMM99 outperformed Lancelot in 47 problems (out of 82), while Lancelot achieved the
best performance in 32 cases (including GMM99 failures). As mentioned above, both algorithms failed
to solve problem ROTDISC.

Table 4: Comparison between GMM99 and Lancelot.

Compared performance GMM99 Lancelot
Almost indistinguishable 2 2
From 1.01 to 2 times better 2 5
From 2 to 10 times better 18 12
From 10 to 100 times better 10 3
More than 100 times better 4 2
Failures 11 14

Table 5 shows the number of times GMM99 and Lancelot obtained the best solution for each type of
objective function and constraint. In this table, the problems are also divided according to their size.

For this specific selection of problems, GMM99 performed better for problems with a linear objective
function, while Lancelot was the best option for solving problems with a quadratic function and nonlinear
constraints. These results are probably related to the fact that MINOS was used to compute the tangential
step in GMM99. In general, GMM99 had a slightly better performance.

The new algorithm was also compared with GMM, the standard trust-region SQP method presented
in [10]. The results are shown in Tables 6 and 7.

24 FRANCISCO A. M. GOMES

Table 5: Number of times GMM99 and Lancelot outperformed one another as a function of problem
type.

Objective Constraint Algorithm Problem size Total
type type tiny small medium
Linear Nonlinear Lancelot 0 3 2 5

GMM99 9 8 8 25
Quadratic Linear Lancelot 0 0 3 3

GMM99 0 1 1 2
Nonlinear Lancelot 3 2 10 15

GMM99 2 1 3 6
Nonlinear Linear Lancelot 0 0 2 2

GMM99 2 3 2 7
Nonlinear Lancelot 0 1 6 7

GMM99 1 1 5 7

Table 6: Comparison between GMM99 and GMM.

Compared performance GMM99 GMM
Almost indistinguishable 15 15
From 1.01 to 2 times better 18 12
From 2 to 10 times better 9 3
From 10 to 100 times better 3 1
Failures 9 15

The GMM algorithm was not able to find a feasible solution for problems CATENARY, CRESC132,
LAKES, LUBRIF, ROTDISC and STEENBRC. Moreover, the objective function at the solution was
worse than the value obtained by GMM99 for problems AUG2D, COSHFUN, EIGMINB, HAGER1,
HAGER2, HIMMELBI, NGONE and SSNLBEAM. For the OPTCTRL3 problem, the algorithm found
a solution too far from the one supplied by Lancelot. These problems were classified as GMM failures.

The 9 GMM99 failures cited in Table 6 include problems LUBRIF, ROTDISC and YORKNET, for
which a feasible point was not found, problem OPTCTRL3, because Lancelot obtained a much better
solution, and also problems BRAINPC5, ELATTAR, GAUSSELM, HVYCRASH and SINROSNB, for
which GMM has found a lower objective function.

Naturally, the definition of failure used here is arguable, since the fact that an algorithm has found a
better solution does not imply that the other method failed to find a local optimum. Besides, problems
CATENARY, DIXCHLNG, DTOC2, EG3 and NGONE, classified as GMM99 failures when comparing
this algorithm to Lancelot, are not considered as failures in Table 6, since GMM was not able to find a
better solution in all of these cases. Even though, we decided to use the term failure to stress that an
algorithm that finds a lower solution performs better than the rival, no matter the time spent to find the
solution.

Finally, Table 7 shows how the good performance of GMM and GMM99 is distributed among different
types of problems.

Tables 6 and 7 clearly show the superiority of GMM99 over GMM. The new algorithm is more robust
and attained the best performance for all of the problem classes. Taking into consideration that GMM
also uses Minos to compute the horizontal step and Quacon to compute the vertical step, so the core of
the algorithm is the same of GMM99, these results suggest that the use of the new acceptance criterion,
combined with a restoration procedure, can improve the performance of the SQP algorithm.

For some problems, no points were included in F , so the behavior of GMM and GMM99 were very
similar. Considering the whole set of 82 problems, the mean number of points in F at the last iteration
of GMM99 was 5. However, for 7 problems, the cardinality of the F set was greater or equal to 20.

MIXING MERIT FUNCTION AND FILTER IDEAS 25

Table 7: Number of times GMM and GMM99 outperformed one another as a function of problem type.

Objective Constraint Algorithm Problem size Total
type type tiny small medium
Linear Nonlinear GMM 2 4 3 9

GMM99 3 5 7 15
Quadratic Linear GMM 0 0 0 0

GMM99 0 1 3 4
Nonlinear GMM 0 1 5 6

GMM99 3 0 7 10
Nonlinear Linear GMM 0 1 1 2

GMM99 1 1 2 4
Nonlinear GMM 0 2 3 5

GMM99 1 0 8 9

The restoration was called at least once for 24 problems. The purpose of the restoration is to avoid the
excessive reduction of the step size when xk is very infeasible. This strategy has shown to be effective for
18 problems, while the performance was not significantly altered for two problems and slightly worsened
for 4 problems.

8 Conclusions

In this paper, we depict the general framework of a new SQP algorithm that combines ideas from both
merit functions and the filter introduced by Fletcher and Leyffer in [8]. The use of several penalty
parameters defined automatically by the previous iterates avoids the premature reduction of θ as well as
the zigzagging that can occur when a non-monotone strategy is used to update this parameter. The new
method is also less tolerant than the filter method, since we do not accept points that marginally reduce
the infeasibility or the objective function.

The algorithm presented here is unique in the sense that it combines

• The use of a piecewise-linear function to accept or reject iterates. This function can be interpreted
as a merit function that selects the penalty parameter according to the position of the predicted
point in the (ϕ, f)-plane, but also as a convex piecewise filter.

• The effective use of the points in F to define the forbidden region in the (ϕ, f)-plane. In addition
to dominated points, filter-SQP methods cut off the entire northwestern part of the allowed region
when the predicted reduction of the objective function is positive. The GMM99 algorithm reject
points if they belong to the forbidden region depicted in Figure 2 or if condition (14) is satisfied.
However, this second condition is so mild that it is seldom used in practice.

• The use of the restoration to prevent the step shortening inherent to methods that use points in
the (ϕ, f)-plane to define the forbidden region.

The results shown in the previous section suggest that the algorithm, as implemented, is superior to
the method presented in [10] and slightly better than Lancelot for small to medium-size problems. As
a future work, we intend to test other strategies to compute the restoration, as well as other solvers to
compute the normal and tangential steps, in order to deal with larger problems. Perhaps, the library used
to solve the quadratic subproblems can be selected dynamically, after knowing the size of the problem
and the type of the objective function and constraints.

26 FRANCISCO A. M. GOMES

Acknowledgments

The author would like to thank Prof. José Mario Mart́ınez for his insightful comments and Tadao Ando
Jr. for the revision of the text.

References

[1] C. Audet and J. E. Dennis, A pattern search filter method for nonlinear programming without deriva-
tives, SIAM J. Optimization, 14 (2004), pp.980–1010.

[2] R. H. Bielschowsky, A. Friedlander, F. A. M. Gomes, J. M. Mart́ınez and M. Raydan, An adaptative
algorithm for bound constrained quadratic minimization, Investigación Operativa, 7 (1997), pp. 67–
102.

[3] R. H. Byrd, J. C. Gilbert and J. Nocedal, A trust region method based on interior point techniques
for nonlinear programming, Math. Programming, 89 (2000), pp. 149–185.

[4] R. H. Byrd, M. E. Hribar and J. Nocedal, An interior point algorithm for large-scale nonlinear
programming, SIAM J. Optimization, 9 (2000), pp. 877–900.

[5] C. M. Chin and R. Fletcher, On the global convergence of an SLP-filter algorithm that takes EQP
steps, Math. Programming, 96 (2003), pp. 161–177.

[6] A. Conn, N. I. M. Gould and P. L. Toint, Trust Region Methods, SIAM, Philadelphia (2000).

[7] R. Fletcher, N. I. M. Gould, S. Leyffer, P. L. Toint and A. Wächter, Global convergence of a trust-
region SQP-filter algorithm for general nonlinear programming, SIAM J. Optimization, 13 (2002),
pp. 635–659.

[8] R. Fletcher and S. Leyffer, Nonlinear programming without a penalty function, Math. Programming,
91 (2002), pp. 239–269.

[9] R. Fletcher, S. Leyffer and P. L. Toint, On the global convergence of a filter-SQP algorithm, SIAM
J. Optimization, 13 (2002), pp. 44–59.

[10] F. A. M. Gomes, M. C. Maciel and J. M. Mart́ınez, Nonlinear programming algorithms using trust
regions and augmented Lagrangians with nonmonotone penalty parameters, Math. Programming, 84
(1999), pp. 161–200.

[11] C. Gonzaga, E. Karas and M. Vanti, A globally convergent filter method for nonlinear programming,
SIAM J. Optimization, 14 (2003), pp. 646–669.

[12] N. I. M. Gould, S. Leyffer and P. L. Toint, A multidimensional filter algorithm for nonlinear equations
and nonlinear least-squares, SIAM J. Optimization, 15 (2005), pp. 17–38.

[13] N. I. M. Gould, D. Orban and P. L. Toint, CUTEr (and SifDec), a constrained and unconstrained
testing environment, revisited, ACM Trans. Math. Software, 29 (2003), pp. 373-394.

[14] N. I. M. Gould, D. Orban and P. L. Toint, GALAHAD, a library of thread-safe Fortran 90 packages
for large-scale nonlinear optimization, ACM Trans. Math. Software, 29 (2003), pp. 353-372.

[15] N. I. M. Gould, C. Sainvitu and P. L. Toint, A filter-trust-region method for unconstrained optimiza-
tion, SIAM J. Optimization, 16 (2006), pp. 341–357.

MIXING MERIT FUNCTION AND FILTER IDEAS 27

[16] N. I. M. Gould and P. L. Toint, Global convergence of a hybrid trust-region SQP-filter algorithm
for general nonlinear programming, in System Modeling and Optimization XX, E. Sachs and R.
Tichatschke (eds.), Kluwer, Dordrecht (2003), pp. 23–54.

[17] N. I. M. Gould and P. L. Toint, Global convergence of a non-monotone trust-region filter algorithm for
non-linear programming, Tech. report RAL-TR-2003-003, CLRC Rutheford Appleton Laboratory,
Oxfordshire, UK (2003).

[18] W. Hock and K. Schittkowski, Test examples for nonlinear programming codes, Lecture Notes in
Economics and Mathematical Systems, 187 (1981), Springer, Heidelberg.

[19] R. B. Murtagh and M. A. Saunders, Large-scale linearly constrained optimization, Math. Program-
ming, 14 (1978), pp. 41–72.

[20] J. Nocedal and S. J. Wright, Numerical Optimization, Springer, New York (1999).

[21] T. D. Plantenga, A trust-region method for nonlinear programming based on primal interior point
techniques, SIAM J. Sci. Computing, 20 (1999), pp. 282–305.

[22] M. Ulbrich, S. Ulbrich and L. N. Vicente, A globally convergent primal-dual interior point filter
method for nonconvex nonlinear programming, Math. Programming, 100 (2004), pp. 379–410.

[23] S. Ulbrich, On the superlinear local convergence of a filter-SQP method, Math. Programming, 100
(2004), pp. 217–245.

[24] A. Wächter and L. T. Biegler, Line search filter methods for nonlinear programming: motivation
and global convergence, SIAM J. Optimization, 16 (2005), pp. 1–31.

[25] A. Wächter and L. T. Biegler, On the implementation of an interior-point filter line-search algorithm
for large-scale nonlinear programming, Math. Programming, 106 (2006), pp. 25–57.

