
DYNAMIC CONTROL OF INFEASIBILITY
IN EQUALITY CONSTRAINED OPTIMIZATION

ROBERTO H. BIELSCHOWSKY ∗ AND FRANCISCO A. M. GOMES †

Abstract. This paper describes a new algorithm for solving nonlinear programming problems
with equality constraints. The method introduces the idea of using trust cylinders to keep the
infeasibility under control. Each time the trust cylinder is violated, a restoration step is called
and the infeasibility level is reduced. The radius of the trust cylinder has a nonincreasing update
scheme, so eventually a feasible (and optimal) point is obtained. Global and local convergence of the
algorithm are analyzed, as well as its numerical performance. The results suggest that the algorithm
is promising.
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1. Introduction. We consider the equality constrained optimization problem

minimize f(x)(1.1)

subject to h(x) = 0,

where f : IRn → IR and h : IRn → IRm are C2 functions.
Usual algorithms for solving problem (1.1) alternate normal (or “vertical”) steps

towards the feasible set H0 = {x : h(x) = 0} with tangential (or “horizontal”) steps
towards the dual manifold ∇L = {x : ∇L(x, λ) = 0}, where L is the Lagrangian
function. Generally, these steps are obtained from some quadratic model for (1.1).
This feature is shared, for example, by the trust region methods proposed by Biegler,
Nocedal and Schmid [4], Byrd, Gilbert and Nocedal [9], Byrd, Hribar and Nocedal
[10], Dennis and Vicente [16], El-Alem [18], Gomes, Maciel and Mart́ınez [23], and
Lalee, Nocedal and Plantenga [24].

In this paper, we propose an algorithm that uses normal and tangential trust
region models in a more flexible way. Our bet is that, rather than taking one normal
and one tangential step per iteration, we might do better if, at some iterations, ∇L
is pursued with some priority, so several successive horizontal steps are taken before
one vertical step is computed. On the other hand, we believe that, in some cases, it
is preferable to move closer and closer to H0, so we systematically force the vertical
step. To allow this to occur, we introduce a single mechanism based on what we call
trust cylinders.

Another feature that distinguishes our method from most of the nonlinear opti-
mization algorithms recently proposed is that, using trust cylinders, we need not to
rely on a filter (see, for example, [14, chap. 15]) or on a merit function (see [23])
to obtain global convergence. Instead, we accept the horizontal step if it sufficiently
decreases the Lagrangian function, subject to the condition of staying (dynamically)
close to feasibility, in a sense that will be explained in the sequel.

Algorithms that generate feasible iterates, without solving h(x) = 0 explicitly, go
back to the early sixties, with methods usually classified either as Generalized Reduced
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Gradient (GRG) (see [45, 1, 2]), or as Projected Gradient (PG) [38, 39]. Variations of
the PG method, including some strategy to relax feasibility in a controlled way, began
to appear at the end of the sixties with the suggestive denomination of Sequential
Gradient-Restoration Algorithm (SGRA) [30, 31]. See also [33, 36, 37]. More recently,
Mart́ınez introduced a new class of algorithms called inexact restoration methods
[25, 26, 27, 28, 29], that also controls infeasibility at each iteration.

Our approach has the flavor of a PG algorithm and could be characterized as
a relaxed feasible point method, with a dynamic control of infeasibility (DCI). We
look for a compromise between allowing a large enough horizontal step, in a direction
approximately tangent to the restrictions h(x) = 0, and keeping infeasibility under
control. The main idea is to force each iterate xk to remain in a trust cylinder defined
by

Ck = {x ∈ IRn : ‖h(x)‖ ≤ ρk},

where ‖.‖ denotes the ℓ2 norm.
The dynamic control of infeasibility is kept defining the “radii” ρk of the trust

cylinders in such a way that

ρk = O(‖gp(x
k)‖),(1.2)

where gp(x) stands for the projected gradient, i.e., the orthogonal projection of the
gradient g(x) = ∇f(x) onto the null space of ∇h(x), the Jacobian of h. In our case
of interest, gp(x) will be calculated at regular points of h, where ∇h(x) has full rank.
In this situation, the least squares multiplier estimates, λLS(x), are given by

λLS(x) = argmin{‖∇h(x)T λ + g(x)‖} = −(∇h(x)∇h(x)T )−1∇h(x)g(x)(1.3)

and the resulting projected gradient is

gp(x) = g(x) +∇h(x)T λLS(x).(1.4)

Given xk−1, the kth iteration begins with a restoration step, if necessary, in order
to obtain a point xc = xk

c and a radius ρ = ρk, such that

‖h(xc)‖ ≤ ρ = O(‖gp(xc)‖)(1.5)

and

‖xc − xk−1‖ = O(‖h(xk−1)‖).(1.6)

A radius ρ = ρk satisfying (1.2) may be defined as ρ = ν np(xc) ρmax, where

np(xc) =
‖gp(xc)‖
‖g(xc)‖+ 1

(1.7)

and 10−4 ≤ ν ≤ 1 and ρmax > 0 are constants.
Given xc in Ck, the second part of the kth iteration looks for a horizontal step, δt

that provides a sufficient decrease for a quadratic approximation of f and guarantees
that x+ = xc + δt remains in a bigger trust cylinder of radius 2ρ. An optional second
order correction δsoc may also be used to reduce the infeasibility, so xk = xc+δt+δsoc.

Figure 1.1 sketches the vertical and the horizontal steps of a typical iteration.
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Fig. 1.1. The step and the trust cylinders. xc satisfies ‖h(xc)‖ < ρ, while x+ satisfies
‖h(x+)‖ < 2ρ.

An advantage of staying close to the feasible set is that a “good horizontal step”
in a level set given by h(x) = c is likely to be close to a “good horizontal step” in the
feasible set given by h(x) = 0, if c is relatively small.

The parameter ρmax = ρk
max is non-increasing and is responsible for the trusta-

bility of the trust cylinders. It is decreased every time there is an evidence that the
reduction of the Lagrangian function obtained in the horizontal step was menaced by
a significant increase in the restoration step.

In the next section, we formalize the DCI algorithm. In Section 3, a global
convergence result for the algorithm is presented, followed by the local convergence
theory, introduced in Section 4. Section 5 contains some preliminary numerical results.
Finally, some conclusions and lines for future work are included in Section 6.

2. The DCI Algorithm. In this section, we depict a typical iteration of our
main algorithm. As usual, we use the Lagrangian function, defined as

L(x, λ) = f(x) + λT h(x),

to evaluate the algorithm behaviour. In fact, the control of the trust cylinder radius
is also based on the the variation of the Lagrangian at xk

c , given by

∆Lk
c = Lk

c − Lk−1
c .

where Lk
c = L(xk

c , λk). Since our algorithm divides the step into two components, one
vertical and one horizontal, this variation is also split according to

∆Lk
c = ∆Lk−1

H + ∆Lk
V ,(2.1)

where

∆Lk−1
H = L(xk−1, λk−1)− L(xk−1

c , λk−1),(2.2)

∆Lk
V = L(xk

c , λk)− L(xk−1, λk−1).(2.3)

In the vertical step of the algorithm, we seek a point xc that satisfies (1.5) and
(1.6). Under usual regularity assumptions for ∇h(x) along the iterations, we can
achieve (1.5) and (1.6) with almost every algorithm available for the least squares
problem

minimize ‖h(x)‖2.(2.4)

Careful line searches in the Cauchy, Gauss-Newton or Newton directions, or in some
combination of them, can be used, for example, to solve problem (2.4). As a matter of
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fact, algorithms for (2.4) that take steps in the form d = −M∇h(x)T h(x), where M
represents a family of uniformly bounded and positive definite matrices, will produce
a “sufficiently” fast convergence to a feasible point, and that is what we need to
guarantee (1.6). In the implementation of the algorithm, we will give preference to a
trust region method. Namely, our restoration step successively solves the linearized
least squares problem

minimize ‖h(x) + Ad‖2

subject to ‖d‖∞ ≤ ∆V S ,(2.5)

where A is an approximation of∇h(x) and ∆V S > 0 is a trust region radius adequately
updated in the vertical subproblems.

In the horizontal step we solve the quadratic programming problem

minimize q(δ) = g(xc)
T δ +

1

2
δT Bδ

subject to ∇h(xc)δ = 0,(2.6)

‖δ‖∞ ≤ ∆,

where B is a symmetric approximation of the Hessian of the Lagrangian and ∆ > 0
is the trust region radius.

We suppose that, at the beginning of the kth iteration, the previous approximate
solution, xk−1, and the Lagrange multipliers estimate, λk−1, are available. Besides, we
also suppose known the upper limit for the trust cylinder radius, ρmax, the Lagrangian
function at some previous iteration j, Lref = L(xj

c, λ
j), the horizontal variation of

the Lagrangian, ∆Lk−1
H , and the trust region radii, ∆V S ≥ ∆min and ∆ ≥ ∆min.

Algorithm 2.1. The kth iteration of the DCI method.

1. Vertical step:
1.1. xc = xk−1.
1.2. Choose an approximate value for ρ.
1.3. REPEAT
1.3.1. IF ‖h(xc)‖ > ρ
1.3.1.1. Find xc, such that ‖h(xc)‖ ≤ ρ.
1.3.2. gp ← gp(xc); np ← ‖gp(xc)‖/(‖g(xc)‖+ 1).
1.3.3. Choose ρ ∈ [10−4npρmax, npρmax].
1.4. UNTIL ‖h(xc)‖ ≤ ρ.
1.5. Compute λ+.

2. Convergence test:
2.1. IF (np = 0),
2.1.1. QUIT (xc is a stationary point).

3. ρmax update:
3.1. ∆Lk

V ← L(xc, λ+)− L(xk−1, λk−1).
3.2. IF ∆Lk

V ≥ 1

2
[Lref − L(xk−1, λk−1)],

3.2.1. ρmax ← ρmax/2.

3.3. IF ∆Lk
V > − 1

2
∆Lk−1

H ,
3.3.1. Lref ← L(xc, λ+).
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4. Horizontal step:
4.1. REPEAT
4.1.1. Compute the Cauchy step δCP , solution of

minimize q(µgp)
subject to ‖µgp‖ ≤ ∆, µ ∈ [0,∞).

.

4.1.2. Compute a trial step δt such that
q(δt) ≤ q(δCP ),
‖δt‖ ≤ ∆, and
∇h(xc) δt = 0.

4.1.3. Optionally, compute a second order correction δsoc.
4.1.4. δ+ ← δt + δsoc; x+ ← xc + δ+.
4.1.5. ∆Lk

H ← L(x+, λ+)− L(xc, λ+); r ← ∆Lk
H/q(δt).

4.1.6. IF (‖h(x+)‖ > 2ρ) OR (r < η1),
4.1.6.1. ∆← αR∆;
4.1.7. ELSE IF r > η2,
4.1.7.1. ∆← αI∆.
4.2. UNTIL (‖h(x+)‖ ≤ 2ρ) AND (r ≥ η1).

5. Approximate solution update:
5.1. xk ← x+; λk ← λ+; k ← k + 1.
5.2. Choose ∆ ≥ ∆min.

In Algorithm 2.1, we suppose that the restoration step 1.3.1.1 will always succeed.
Obviously, this may not occur, since problem (1.1) may be infeasible. Therefore, some
termination criterion needs to be defined to prevent the algorithm from getting stuck
on this step.

In step 1.3.2 of the above algorithm and in the next section, we assume that np

is computed according to (1.7). As a matter of fact, all we need for our convergence
theory is that np = O(‖gp(xc)‖), but we decided to use an explicit formula for np in
order to keep the text more readable. Another choice we made was to define λ+ as
the vector of least squares multipliers (1.3) computed at xk

c , although other update
schemes would work as well.

Most of the constants used in Algorithm 2.1 are explicitly shown above, so the
reader does not need to guess the meaning of several obscure greek letters. We do
prefer to write ‖h(x+)‖ > 2ρ instead of ‖h(x+)‖ > ζρ, for example, to make clear
that, in steps 4.1.6 and 4.2, we are considering a larger trust cylinder. Naturally,
the algorithm will also work if we use ζ = 3, although this modification will slightly
affect the proofs of some lemmas presented in the next section. Only ∆min

∗ and the
four constants that control the behavior of the trust region method used to compute
the horizontal step were not specified. These parameters must satisfy 0 < η1 ≤ 1/2,
η1 ≤ η2 < 1, 0 < αR < 1, αI ≥ 1 and ∆min > 0. Possible values are η1 = 10−3,
η2 = 0.7, αR = 0.25, αI = 2.5 and ∆min = 10−5.

The following relations, easily derived from steps 1.3 and 4.2 of Algorithm 2.1, will

∗The parameter ∆min plays no role in the global convergence theory of Algorithm 2.1. It is also
unnecessary for the local convergence theory if we use the true Lagrangean second order polynomial as
the quadratic model q(δ) or if B is a good approximation of ∇2

xxL(x, λ) in the plane that contains the
Cauchy and the quasi-Newton directions, as it will become clear in section 4. However, our numerical
tests indicate that keeping ∆ ≥ 10−5 may slightly improve the performance of the algorithm, so we
decided to include step 5.2.
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be used frequently in the next two sections and are presented here for convenience.

ρk ≤ ρk
max‖gp(x

k
c )‖(2.7)

ρk
max ≤ 104ρk 1

np
= 104ρk ‖g(xk

c )‖+ 1

‖gp(xk
c )‖(2.8)

‖h(xk
c )‖ ≤ ‖h(xk−1)‖ ≤ 2ρk−1(2.9)

The global convergence of DCI will be guaranteed, under reasonable assumptions,
by a typical sufficient decrease argument for the Lagrangian function evaluated at xk

c .
The variation of the Lagrangian between two successive iterations is given by (2.1).
The idea is to prevent the decrease of the Lagrangian obtained at the horizontal step
to be destroyed by the restoration. For that, ρk

max is decreased in step 3 of DCI every
time ∆Lk

V is larger than a fraction of the difference between the Lagrangian at the
current iteration and a reference value Lref , fixed in some previous iteration j. If
the increase in ∆Lk

V menaces significantly the decrease in the Lagrangian obtained
since iteration j, ρmax is divided by two and Lref is updated. Lref is also updated
every time ∆Lk

V > − 1

2
∆Lk−1

H . The main argument to guarantee global convergence
establishes, under suitable assumptions, the existence of enough normal space (ENS),
dynamically calibrated for horizontal steps of reasonable size, in the sense that ρk

max

remains bounded away from zero, unless lim inf(‖gp(x
k
c )‖) = 0.

3. Global convergence. The global convergence analysis of the DCI algorithm
is based on the following hypotheses:
H1 (Differentiability): f and h are C2.
H2 (Compacity): The generated sequences {xc

k} and {xk}, the Hessian approxi-
mations Bk and the multipliers {λk} remain uniformly bounded.

H3 (Regularity and restoration): The restoration never fails and Z = {xc
k} re-

mains far from the singular set of h, in the sense that h is regular in the closure
of Z. Equivalently, {‖∇h(xc

k)T∇h(xc
k)−1‖} remains uniformly bounded.

Also, if the generated sequence {xc
k} is infinite, it satisfies

‖xc
k+1 − xk‖ = O(‖h(xk)‖).(3.1)

H4 (Second order correction): ‖δsoc
k‖ = O(‖δt

k‖2).
Supposing that H1 holds, we can assure that the remaining hypotheses will hold

if, for example, the feasible set H0 is compact, regular (i.e. ∇h(x) is of maximal
rank on H0) and x0 is feasible. In this case, if we choose an initial ρ0

max sufficiently
small, we can keep ∇h(x) with maximal rank and assure (3.1) using standard al-
gorithms for restoration, like the Gauss-Newton method. We could also replace the
compacity property of H0 by adequate properties on f , such as requiring f to satisfy
lim‖x‖→∞ f(x) =∞. In such situations, H2-H4 can be guaranteed by construction.

From now on we assume that the sequences {xk
c} and {xk} generated by DCI

satisfy H1-H4. Besides, when we say that a number is a constant, we mean that it
can be used for all k, and is associated to these specific sequences generated by DCI.

Denoting by δk
V the vertical step and by δk

H the horizontal step in the kth iteration,
we have

δk
V = xc

k − xk−1 and δk
H = xk − xc

k = δt
k + δk

soc.

Hypotheses H1-H4 allow us to choose a constant δmax > 0, such that, for all k,

‖δk
t ‖+ ‖δk

soc‖+ ‖δk
V ‖ ≤ δmax.(3.2)
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We can also define a second positive constant ξ0, such that, for all k, if ‖x−xk
c‖ ≤ δmax,

then

‖∇hj(x)‖ ≤ ξ0, j = 1, . . . ,m,(3.3)

‖∇2hj(x)‖ ≤ ξ0, j = 1, . . . ,m,(3.4)

‖∇f(x)‖ ≤ ξ0,(3.5)

‖∇2f(x)‖ ≤ ξ0,(3.6)

‖∇h(xk
c )T∇h(xk

c )‖ ≤ ξ0,(3.7)

‖Bk‖ ≤ ξ0,(3.8)

‖λk‖ ≤ ξ0,(3.9)

‖δk
soc‖ ≤ ξ0‖δk

t ‖2.(3.10)

To simplify our notation, we suppose that the constant ξ0 is large enough so
equation (3.1) can be rewritten as

‖xc
k+1 − xk‖ ≤ ξ0‖h(xk)‖.(3.11)

The main result of this section, presented in Theorem 3.6, is based on five lemmas.
The first one gives an upper limit for the increase in the infeasibility produced by the
horizontal step.

Lemma 3.1. The trial iterate x+ generated at step 4.1.4 of Algorithm 2.1 satisfies

‖h(x+)− h(xc
k)‖ ≤ ξ0‖δt‖2.(3.12)

Proof. Since x+ = xc
k + δ+ = xc

k + δt + δsoc, with ‖δ+‖ ≤ δmax, we can use a
Taylor expansion together with relations (3.4), (3.3), (3.10) and (3.2), and the fact
that ∇h(xc

k)δt
k = 0, to show that, for every j = 1, . . . ,m,

|hj(x+)− hj(xc)| ≤ |∇hj(xc)
T (δt + δsoc)|+

ξ0

2
‖δt + δsoc‖2

= |∇hj(xc)
T δsoc|+

ξ0

2
‖δt + δsoc‖2

≤ ξ2
0‖δt‖2 + ξ0(‖δt‖2 + ‖δsoc‖2)

≤ (ξ2
0 + ξ0 + ξ2

0δmax)‖δt‖2.

Setting ξ0 =
√

m(ξ2
0 + ξ0 + ξ2

0δmax), we get the desired result.
The second lemma establishes that, under H1-H4, each iteration succeeds and the

Lagrangian is sufficiently decreased.
Lemma 3.2. If xk

c is not a stationary point for (1.1), then x+ is eventually
accepted in step 4 of DCI. Moreover, we can define positive constants ξ1, ξ2 and ξ3

such that, for all k,

∆Lk
H = L(xk, λk)− L(xk

c , λk)

≤ −ξ1‖gp(x
k
c )‖min

{

ξ2‖gp(x
k
c )‖, ξ3

√

ρk
}

.(3.13)

Proof. To simplify the notation we will omit here the superscript k. Suppose that
xc is not stationary for (1.1). Let x+ = xc+δ+ = xc+δt+δsoc be a candidate obtained
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in step 4 of the kth iteration of the DCI algorithm, and let λ+ be the corresponding
multiplier.

Using a Taylor expansion, Lemma 3.1 and relations (3.6), (3.9), (3.5), (3.2), (3.10)
and (3.8), we obtain

∆L+
H = L(x+, λ+)− L(xc, λ+) = f(x+)− f(xc) + λT

+(h(x+)− h(xc))

≤ g(xc)
T δt + g(xc)

T δsoc +
ξ0

2
‖δt + δsoc‖2 + ξ0ξ0‖δt‖2

≤ q(δt)−
1

2
δT
t Bδt + ξ1‖δt‖2

≤ q(δt) + ξ2‖δt‖2,(3.14)

where ξ1 = ξ2
0 + ξ0 + ξ2

0δmax + ξ0ξ0 and ξ2 = ξ0/2 + ξ1.
Because δCP , defined in step 4.1.1 of DCI, is a Cauchy step tangent to the con-

straints, we have (see, for example, [14])

‖δCP ‖ ≥ min

{‖gp(xc)‖
‖B‖ ,∆

}

≥ min

{‖gp(xc)‖
ξ0

,∆

}

and

q(δCP ) ≤ 1

2
g(xc)

T δCP ≤ −
1

2
‖gp(xc)‖min

{‖gp(xc)‖
ξ0

,∆

}

.(3.15)

To prove the first part of the lemma, we will show that x+ is always accepted
whenever ∆ ≤ ∆, where

∆ = min

{‖gp(xc)‖
4ξ2

,

√

ρ

ξ0

}

.(3.16)

We start noting that, since ξ0 < 4ξ2,

∆ ≤ ‖gp(xc)‖
ξ0

.(3.17)

Based on the fact that ∆ ≤ ∆ and on (3.17), the upper limit of q(δCP ) given by (3.15)
can be simplified to

q(δCP ) ≤ −1

2
‖gp(xc)‖∆.(3.18)

Combining the conditions ‖δt‖ ≤ ∆ and q(δt) ≤ q(δCP ), stated in step 4.1.2 of
the DCI algorithm, with (3.16) and (3.18), we obtain

ξ2‖δt‖2 ≤ ξ2∆
2 ≤ ξ2∆∆ ≤ 1

4
‖gp(xc)‖∆ ≤ −

1

2
q(δCP ) ≤ −1

2
q(δt).(3.19)

Now, from (3.14) and (3.19), we get

∆L+
H ≤

1

2
q(δt) < 0,(3.20)

which implies that

r =
∆L+

H

q(δt)
≥ 1

2
≥ η1.(3.21)
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Since ∆ ≤ ∆ and ‖h(xc)‖ ≤ ρ, we can use (3.12) and (3.16) to guarantee that

‖h(x+)‖ ≤ ρ + ξ0‖δt‖2 ≤ ρ + ξ0∆
2 ≤ 2ρ.

Therefore, both conditions stated at step 4.2 of the algorithm are satisfied and x+ is
accepted.

To prove the second part of the lemma, let us recall that, each time the step is
rejected, ∆ is multiplied by αR, which means that we can assume the accepted trust
region radius satisfies ∆ ≥ αR∆, where 0 < αR < 1. Combining this with (3.20), the
condition q(δt) ≤ q(δCP ), (3.15), (3.17) and (3.16), we get

∆L+
H ≤

1

2
q(δt) ≤

1

2
q(δCP ) ≤ −1

4
‖gp(xc)‖min

{‖gp(xc)‖
ξ0

,∆

}

≤ −1

4
‖gp(xc)‖αR∆.(3.22)

Defining ξ1 = αR/4, ξ2 = 1/(4ξ2) and ξ3 = 1/
√

ξ0, we obtain (3.13) from (3.16) and

(3.22).
Our third lemma defines an upper limit for the (possibly positive) vertical varia-

tion of the Lagrangian, ∆Lk+1
V .

Lemma 3.3. There exists a positive constant ξ4, such that

∆Lk+1
V ≤ ξ4ρ

k
max‖gp(x

k
c )‖.(3.23)

Proof. Using a Taylor expansion, (3.5), (3.9), (3.11), (2.9) and (2.7), we get, for
the vertical variation,

∆Lk+1
V = L(xk+1

c , λk+1)− L(xk, λk)

= f(xk+1
c )− f(xk) + λk+1T

h(xk+1
c )− λkT

h(xk)

≤ ξ0‖xk+1
c − xk‖+ ξ0‖h(xk+1

c )‖+ ξ0‖h(xk)‖
≤ (ξ2

0 + 2ξ0)‖h(xk)‖ ≤ 2(ξ2
0 + 2ξ0)ρ

k ≤ ξ4ρ
k
max‖gp(x

k
c )‖.

Therefore, defining ξ4 = 2(ξ2
0 + 2ξ0), we obtain the desired result.

Our fourth lemma establishes that, between successive iterations without changes
in ρmax, the Lagrangian decreases proportionally to the descent in the corresponding
horizontal steps.

Lemma 3.4. If ρk+1
max = ρk+2

max = . . . = ρk+j
max, for j ≥ 1, then

Lk+j
c − Lk

c =

k+j
∑

i=k+1

∆Li
c ≤

1

4

k+j−1
∑

i=k

∆Li
H + rk,(3.24)

where rk = 1

2
[Lk

ref − Lk
c ].

Proof. Let us suppose that Lref doesn’t change between iterations k + 1 and
k + j1 − 1, where 0 < j1 ≤ j + 1. In this case, by (2.1) and the criterion defined in
step 3.3 of the algorithm, we have

Lk+j1−1
c − Lk

c =

k+j1−1
∑

i=k+1

(∆Li
V + ∆Li−1

H ) ≤ 1

2

k+j1−2
∑

i=k

∆Li
H .(3.25)
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On the other hand, if Lref changes at iteration k + j1, then the condition stated
in step 3.3 of DCI is satisfied. In this case, using the hypothesis that ρmax stays
unchanged at iteration k + j1 (so the inequality at step 3.2 is not satisfied) and the
fact that ∆Lk

H ≤ 0, for all k, we have

Lk+j1
c − Lk

c = ∆Lk+j1
V + L(xk+j1−1, λk+j1−1)− Lk

ref + [Lk
ref − Lk

c ]

≤ 1

2
(L(xk+j1−1, λk+j1−1)− Lk

ref ) + [Lk
ref − Lk

c ]

=
1

2
(∆Lk+j1−1

H + Lk+j1−1
c − Lk

c ) +
1

2
[Lk

ref − Lk
c ]

≤ 1

4

k+j1−1
∑

i=k

∆Li
H + rk.(3.26)

If j1 ≥ j, then (3.25) and (3.26) imply (3.24).

On the other hand, if Lref is updated at iterations k + j1, . . . , k + js, where
0 < j1 < j2 < . . . < js ≤ j, then rk+j1 = rk+j2 = . . . = rk+js = 0. Therefore,
applying the same procedure described above several times and defining j0 = 0, we
obtain

Lk+j
c − Lk

c =
s

∑

i=1

[Lk+ji
c − Lk+ji−1

c ] + Lk+j
c − Lk+js

c ≤ 1

4

k+j−1
∑

i=k

∆Li
H + rk.

Our fifth lemma establishes the existence of enough normal space in the trust
cylinders Ck to guarantee that the Lagrangian can be sufficiently decreased. The
idea supporting this lemma is that (3.13) guarantees, asymptotically, that ‖∆Lk

H‖ is

bigger than a fraction of
√

ρk, while, on the other hand, ‖∆Lk
V ‖ = O(ρk) (see the

proof of Lemma 3.3). This means that a restoration can’t, asymptotically, destroy the
decrease in the Lagrangian achieved at the horizontal step, and this prevents further
ρmax updates.

Lemma 3.5. If DCI generates an infinite sequence {xk}, then

(i) There are positive constants ξ5 and ξ6 such that, whenever

ρk
max < min{ξ5‖gp(x

k
c )‖, ξ6},(3.27)

ρmax doesn’t change at iteration k + 1.
(ii) Furthermore, if lim inf ‖gp(x

k
c )‖ > 0, then there exists k0 > 0 such that, for

every k ≥ k0,

ρk
max = ρk0

max.(3.28)

(iii) If the horizontal step and the vector of Lagrange multipliers satisfy

‖xk − xk
c‖ = O(‖gp(x

k
c )‖)(3.29)

‖λk − λLS(xk
c )‖ = O(‖gp(x

k
c )‖)(3.30)

then (3.28) is satisfied, regardless of the value of lim inf ‖gp(x
k
c )‖. In other

words, ρk
max remains bounded away from zero.
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Proof. Let us consider the first part of the lemma. To prove that ρmax doesn’t
change at iteration k + 1, we just need to show that ∆Lk+1

V < −∆Lk
H/2 (see step 3.2

of Algorithm 2.1). From Lemma 3.2, this result is attained whenever

∆Lk
V <

ξ1ξ2

2
‖gp(x

k
c )‖2(3.31)

and

∆Lk
V <

ξ1ξ3

2

√

ρk‖gp(x
k
c )‖.(3.32)

Condition (3.31) can be easily obtained from Lemma 3.3 and (3.27), taking ξ5 =
ξa
5 ≡ ξ1ξ2/(2ξ4). To obtain (3.32), we need a few more steps. Firstly, we use (2.8)

and (3.5) to write

√

ρk
max ≤ 102

√

ρk
(ξ0 + 1)1/2

‖gp(xk
c )‖1/2

.(3.33)

Then, taking the square root from both sides of (3.27) and combining the result with
(3.33), we get

ρmax ≤
√

ξ510−2
√

ξ0 + 1
√

ρk.(3.34)

Now, defining ξ5 = ξb
5 ≡ 10−4ξ2

1ξ2
2/[4ξ2

4(ξ0 + 1)], and using Lemma 3.3 and (3.27), we
obtain (3.32). The desired result follows from taking ξ5 = min{ξa

5 , ξb
5}.

In order to prove item (ii), let us define b = lim inf(‖gp(x
k
c )‖) and choose an

index k0 such that ‖gp(x
k
c )‖ > b/2, for k ≥ k0. Then, as we proved above, ρk

max ≥
min{ρk0

max, ξ5b/2, ξ6}, for k > k0. Thus, ρmax will never be decreased after a certain
iteration k0, as claimed.

To prove the third part of the lemma, we begin observing that (1.3)-(1.4) and
H1-H3 imply that λLS(x) and gp(x) are well defined and of class C1 in a compact
neighborhood of Z, the closure of Z = {xk

c}. Therefore, λLS(x) and gp(x) are Lips-
chitz continuous on the iterates, in the sense that,

‖λLS(xk+1
c )− λLS(xk

c )‖ = O(‖xk+1
c − xk

c‖)(3.35)

and

‖gp(x
k+1
c )− gp(x

k
c )‖ = O(‖xk+1

c − xk
c‖).(3.36)

From (3.1), (2.9), (2.7) and (3.29) we get

‖xk+1
c − xk

c‖ ≤ ‖xk+1
c − xk‖+ ‖xk − xk

c‖ = O(‖gp(x
k
c )‖),(3.37)

and from (3.36) and (3.37) we obtain

‖gp(x
k+1
c )‖ = O(‖gp(x

k
c )‖).(3.38)

Noticing that

L(xk+1
c , λk+1) = L(xk+1

c , λLS(xk+1
c )) + [λk+1 − λLS(xk+1

c )]T h(xk+1
c )
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and

L(xk, λk) = L(xk, λLS(xk+1
c ))− [λLS(xk+1

c )− λLS(xk
c )]T h(xk)−

[λLS(xk
c )− λk]T h(xk).

we get the following decomposition of ∆Lk+1
V into a sum of four terms:

∆Lk+1
V = L(xk+1

c , λk+1)− L(xk, λk)

= [L(xk+1
c , λLS(xk+1

c ))− L(xk, λLS(xk+1
c ))] +(3.39)

[λk+1 − λLS(xk+1
c )]T h(xk+1

c ) +

[λLS(xk+1
c )− λLS(xk

c )]T h(xk) +

[λLS(xk
c )− λk]T h(xk).

Using a Taylor expansion, (1.4), Hypothesis H2, (2.9), (3.1), (3.4)-(3.7) and (3.38),
we get

L(xk+1
c , λLS(xk+1

c ))− L(xk, λLS(xk+1
c )) =

gp(x
k+1
c )T (xk+1

c − xk) + O(‖xk+1
c − xk‖2) =

O(‖gp(x
k
c )‖ρk + ρk2

).(3.40)

Since (2.7) implies that ρk2 ≤ ρk
max‖gp(x

k
c )‖ρk, equation (3.40) assures that the

first term in the right side of (3.39) is O(‖gp(x
k
c )‖ρk).

From (3.30) and (3.38), we deduce that ‖λk+1− λLS(xk+1
c )‖ and ‖λLS(xk

c )− λk‖
are O(‖gp(x

k
c )‖). From (3.35) and (3.37), we also obtain ‖λLS(xk+1

c ) − λLS(xk
c )‖ =

O(‖gp(x
k
c )‖). Finally, (2.9) assures that ‖h(xk+1

c )‖ ≤ ‖h(xk)‖ ≤ 2ρk. This implies
that the remaining three terms in the right side of (3.39) are also O(‖gp(x

k
c )‖ρk).

Together with (2.7), this ensures that there exists ξ7 > 0, such that

∆Lk+1
V ≤ ξ7ρ

k
max‖gp(x

k
c )‖2.(3.41)

Let ρmax be defined by

ρmax = min

{

ξ1ξ2

2ξ7

,
10−4

4ξ0(ξ0 + 1)

(ξ1ξ3

ξ7

)2

}

.(3.42)

With arguments entirely similar to those used to show (3.31)-(3.32), we can prove,
from (3.41) and (3.42), that, if ρk0

max < ρmax and k ≥ k0, then ∆Lk+1
V < − 1

2
∆Lk

H .
Therefore, ρk

max does not change after k0.

We say that a point x is stationary for (1.1), i.e. it satisfies the KKT conditions
for the problem, if h(x) = 0 and gp(x) = 0. The next theorem states that, under
H1-H4, the sequence {xc

k} generated by the DCI algorithm has stationary points for
(1.1) in its accumulation set. Some additional conditions are defined to ensure that
every accumulation point results stationary for (1.1).

Theorem 3.6. Under H1-H4, either DCI stops at a stationary point for (1.1),
in a finite number of iterations, or generates a sequence with stationary points in its
accumulation set. Besides, if we impose the horizontal step and the Lagrange multi-
pliers to satisfy (3.29) and (3.30), then every accumulation point of xc

k is stationary
for (1.1).
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Proof. Let us suppose, by contradiction, that lim inf(‖gp(x
k
c )‖) = 2b > 0, and let

k0 be such that ‖gp(x
k
c )‖) > b, for k ≥ k0. In this case, item (ii) from Lemma 3.5

allows us to choose k0 ≥ k0, such that, for every k ≥ k0, ρk
max = ρk0

max. Together with
(2.8) and (3.5), this implies that ρk ≥ 10−4ρk0

maxb/[2(ξ0 + 1)].
Now, using (3.24) and (3.13), we can assure that, for k > k0,

L(xk
c , λk)− L(xk0

c , λk0) =

k
∑

i=k0+1

∆Li
c ≤

1

4

k−1
∑

i=k0

∆Li
H + rk0

≤ −(k − k0)θ + rk0 → −∞,

where

θ =
1

4
ξ1b min







ξ2b, 10−2ξ3

√

bρk0

max

ξ0 + 1







> 0.(3.43)

This contradicts H1-H2, imposing lim inf(‖gp(x
k
c )‖) = 0.

For the second part of the theorem, let’s assume that (3.29) and (3.30) apply. In
this case, Lemma 3.5 ensures that ρk

max = ρk0

max, for some k0 and every k ≥ k0.
Suppose, by contradiction, that ‖gp(xc)

kℓ)‖ ≥ b > 0 for an infinite subsequence
{kℓ}. Let nk be the number of iterations between k0 and k, for some index k ∈ {kℓ}.
In this case, using (3.24) and (3.13) again, and taking nk →∞, we have,

L(xk
c , λk)− L(xk0

c , λk0) =
k

∑

i=k0+1

∆Li
c ≤

1

4

k−1
∑

i=k0

∆Li
H + rk0

≤ −nkθ + rk0 → −∞,(3.44)

where θ is given by (3.43). This also contradicts H1-H2, implying that ‖gp(x
kℓ
c )‖ → 0

for every subsequence of xk
c .

Theorem 3.6 can equally be proved if we admit inexact solutions for the subprob-
lems associated with Algorithm 2.1, using fairly loose conditions on the residues for
accepting the step. For instance, we could relax the condition ∇h(xc) δt = 0, or ad-
mit inexact computations of gp(x) and the solution of the quadratic subproblem (2.4).
Although this modification can be interesting for large-scale problems and would not
change the proofs significantly, we preferred not to present it in this article, since its
details might look rather messy at a first reading. We also believe that the second
order correction would play a very interesting role if inexact methods were used.

4. Local Convergence. Let N(M) represent the null space of M . Let also
{xk

c} and {xk} be sequences generated by Algorithm 2.1, converging to x∗, a “good
minimizer” of problem 1.1. By “good minimizer” we mean that ∇h(x∗) has full row
rank, ∇f(x∗) = −∇h(x∗)T λ∗, with λ∗ = λLS(x∗), and there is a constant µ1 > 0,
such that, for y ∈ N(∇h(x∗)),

µ1‖y‖2 ≤ yT∇2
xxL(x∗, λ∗)y.(4.1)

In this section, we will restrict our attention to a neighborhood V ∗ of x∗, where,
due to the fact that h is C2 and ∇h(x∗) has full row rank, the orthogonal projector
onto N(∇h(x)), i.e. P (x) = I − ∇h(x)T (∇h(x)∇h(x)T )−1∇h(x), is Lipschitz con-
tinuous. Sometimes we will use the term δc to represent the “full” step taken by the
algorithm, i.e., δc = xk+1

c − xk
c = δk

H + δk+1
V .
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Besides considering hypotheses H1-H4, our analysis of the local convergence of xk
c

and xk, will be based on four additional local assumptions. The first three of these
assumptions are used in the proof of Lemma 4.1, and are described below.
A1: λk − λLS(xk

c ) = O(‖gp(x
k
c )‖).

A2: Bk is assimptotically uniformly positive-definite in the tangent space to the
restrictions, which means that, in some neighbourhood of x∗, we can redefine
µ1 so

µ1‖y‖2 ≤ yT Bky ≤ µ2‖y‖2(4.2)

for y ∈ N(∇h(xk
c )), where µ2 is just the constant ξ0 defined in (3.8).

A3: Let δk
HN be the minimizer of the quadratic model (2.6) without the trust re-

gion constraint. We assume that, whenever δk
HN is within the trust region

(‖δk
HN‖ ≤ ∆), it is the the first horizontal step tried by the algorithm. Be-

sides, we also suppose that it satisfies

P (xk
c )(Bk −∇2

xxL(x∗, λ∗))δk
HN = o(‖δk

HN‖).

Assumption A1 is not a stringent condition. Usual estimates for the Lagrange
multipliers (see, for example, [42]) satisfy ‖λk − λ∗‖ = O(‖xk

c − x∗‖), so A1 can be
guaranteed by our Lemma 4.2, presented below, along with (1.5) and (1.2).

Assumptions A2 and A3 are essentially equivalent to standard conditions for
superlinear convergence in two steps of SQP quasi-Newton methods, like those estab-
lished by Powell in [35]. These assumptions are satisfied, for example, if we define
Bk = ∇xxL(xk

c , λk). In a future paper, we intend to incorporate in our analysis the
use of secant reduced Hessian approximation schemes, as well as the inexact solution
of the subproblems involved, in a way that A2 and A3 are satisfied.

From now on, we also suppose that δsoc = 0. This is done only to simplify
the exposition. In fact, the arguments presented below are still valid if we consider
δsoc = O(‖δt‖2).

Since ∇h(x) and ∇2
xxL(x, λ) are continuous and ∇h(x∗) has full row rank, our

assumptions imply that there is a constant µ3 > 0 and a neighborhood V ∗ of x∗ such
that, for x, xk

c ∈ V ∗,

µ3‖λ‖ ≤ ‖∇h(x)T λ‖, for λ ∈ IRm,(4.3)

P (xk
c )(Bk −∇2

xxL(xk
c , λLS(xk

c )))δk
HN = o(‖δk

HN‖), and(4.4)

P (xk
c )(Bk −∇2

xxL(xk
c , λk))δk

HN = o(‖δk
HN‖).(4.5)

Let Zk be a matrix whose columns form an orthonormal basis for the null space
N(∇h(xk

c )). We can define the global minimizer of the quadratic model in the tangent
space as δk

HN = Zkνk ∈ N(∇h(xk
c )). This point clearly satisfies

(Zk)T (Bkδk
HN +∇xf(xk

c )) = (Zk)T BkZkνk + (Zk)T gp(x
k
c ) = 0.(4.6)

From (4.2) and the fact that (Zk)T Zk = I, matrix ((Zk)T BkZk)−1 satisfies, in
the neighborhood V ∗, and for all u ∈ Rn−m,

1

µ2

‖u‖2 ≤ uT ((Zk)T BkZk)−1u ≤ 1

µ1

‖u‖2.(4.7)

In the next lemma we will prove the eventual acceptance, in Algorithm 2.1, of

δk
HN = −Zkνk = −Zk((Zk)T BkZk)−1(Zk)T gp(x

k
c ).(4.8)
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Lemma 4.1. δk
HN is accepted by Algorithm 2.1, for k sufficiently large.

Proof. Combining (4.7) and (4.8), we have that

‖δk
HN‖ ≤

1

µ1

‖gp(x
k
c )‖,(4.9)

for xk
c ∈ V ∗. Because the trust region radius satisfies ∆ ≥ ∆min at the beginning of

each iteration, assumption A3 and (4.9) imply that, in a suitable V ∗, δ+
H will be the

first horizontal step tried by Algorithm 2.1.

For ν ∈ IRn−m, the reduced polynomial

q(ν) = q(Zkν) = ((Zk)T gp(x
k
c ))T ν + νT ((Zk)T BkZk)ν

has degree 2, with positive definite quadratic form. Therefore, its minimum, q(νk),
satisfies (see [14]),

q(δk
HN ) = q(Zkνk) = q(νk)

= −1

2
((Zk)T gp(x

k
c ))T ((Zk)T BkZk)−1(Zk)T gp(x

k
c )

≤ − 1

2µ2

‖gp(x
k
c )‖2,(4.10)

where the last inequality comes from (4.7).

Now, using a Taylor expansion, the fact that δk
HN = P (xk

c )δk
HN , (4.5) and (4.9),

we get

∆L+
H = L(xk

c + δk
HN , λk)− L(xk

c , λk)

= gp(x
k
c )T δk

HN +
1

2
δk T
HN∇xx

2L(xk
c )δk

HN + o(‖δk
HN‖2)

= gp(x
k
c )T δk

HN +
1

2
δk T
HNBkδk

HN + o(‖δk
HN‖2)

= q(δk
HN ) + o(‖gp(x

k
c )‖2).(4.11)

It follows from (4.10-4.11) that

|r| = |∆L+
H/q(δk

HN )| = 1 +
o(‖gp(x

k
c )‖2)

‖gp(xk
c )‖2/(2µ2)

→ 1,

so one of the acceptance conditions stated at step 4.2 of Algorithm 2.1 is satisfied for
k sufficiently large.

Let us now prove that the other acceptance condition, ‖h(xk
c + δk

HN )‖ ≤ 2ρk, also
holds. From (4.9), assumption A1 and Lemma 3.5, there exists k0 sufficiently large
so ρk

max = ρk0

max > 0 for k ≥ k0. Therefore, (2.8) and (3.5) guarantee that, for k ≥ k0,
‖gp(x

k
c )‖ ≤ βρk, where β = 104(1 + ξ0)/ρk0

max. Together with (3.12) and (4.9), this
implies that, for k sufficiently large,

‖h(xk
c + δk

HN )‖ ≤ ‖h(xk
c )‖+ ξ0‖δk

HN‖2 ≤ ‖h(xk
c )‖+

ξ0

µ1
2
‖gp(x

k
c )‖2

≤ ρk(1 + β
ξ0

µ1
2
‖gp(x

k
c )‖).
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Since, for k sufficiently large, β
ξ0

µ1
2
‖gp(x

k
c )‖ < 1, the step δk

HN will eventually be

accepted.
This lemma is based on the fact that ∆ ≥ ∆min at the beginning of an iteration.

This condition can be removed if we replace A3 by the more restrictive assumption
A3′: Let δ+ be obtained as a positive linear combination of δCP and δHN . Let also

δ+ satisfy

P (xk
c )(Bk −∇2

xxL(x∗, λ∗))δ+ = o(‖δ+‖).

In this case, we can also prove that δ+ is accepted whenever xk
c and xk are in

a suitable neighborhood V ∗ of x∗. Therefore, there exists k1 such that ∆k is not
reduced for k > k1, so we can restrict our attention to the case where δk

H = δk
HN .

Notice that the dynamic control of the infeasibility might force us to compute
more than one single vertical step δ+

V , starting from xk, if ‖gp(x
k + δ+

V )‖ is too small.
At the beginning of iteration k + 1, we have xc = xk, while the vertical step ends

at xc = xk+1
c . In order to avoid unnecessary updates of ∇h(xk

c ), we state our fourth
local assumption:
A4: Each non-zero vertical step δk+1

V = xk+1
c − xk, is computed taking one or more

steps in the form

δ+
V = −AT (AAT )−1h(xc),(4.12)

where A satisfies

‖A−∇h(xc)‖ = O(‖gp(x
k
c )‖).(4.13)

Vector δ+
V given by (4.12) is the usual Gauss-Newton step for solving h(x) = 0,

with an approximation A for the Jacobian ∇h(xc). Using a Taylor expansion, (4.3),
(4.12), (4.13) and the continuity of ∇h(x), it is easy to show that, if xk+1

c 6= xk, then
the first vertical step δ+

V of iteration k + 1 satisfies

‖δ+
V ‖ = O(‖h(xk)‖), and(4.14)

‖h(xk+1
c )‖ ≤ ‖h(xk + δ+

V )‖ = o(‖h(xk)‖).(4.15)

As gp(x
k) becomes small, it is natural to force a restoration after each horizontal

step. This can be done, for instance, by choosing ρk slightly smaller than ‖h(xk)‖.
In [11] and [12], Colemann and Conn analyze algorithms that alternate a horizontal
step with a single vertical restoration step. Under local assumptions similar to those
presented here, these so called horizontal-vertical algorithms are superlinear conver-
gent in 2 steps. Colemann and Conn also point out in [11] that the restoration step
adopted by their methods differ from the usual SQP vertical step, since it is based on
xk + δH while, in the SQP framework, xk is used to define the vertical subproblem.

One difference between these horizontal-vertical algorithms and ours is that we
admit more than one vertical step like (4.12) at each iteration, as mentioned above.
Our main result on the local behavior of the algorithm is based on the following
lemma that, in a sense, expresses analytically the “good” structure we have in the
neighborhood of a “good” KKT point. This approach is similar to the one used by
Powell in [35], although his focus was restricted to each sequence generated by an
SQP algorithm.
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It is well known that the function φ(x) = ‖h(x)‖+‖gp(x)‖ can be used to measure
how close x ∈ V ∗ is to x∗. However, we need a stronger result. We want to say that,
in a vicinity of x∗, φ(x) is equivalent to ‖x−x∗‖, in the sense that ‖x−x∗‖ = Θ(φ(x)),
i.e. ‖x− x∗‖ = O(φ(x)) and φ(x) = O(‖x− x∗‖).

Lemma 4.2. There is a neighborhood V ∗ of x∗, where

‖x− x∗‖ = Θ(‖h(x)‖+ ‖gp(x)‖)(4.16)

Proof. We just have to show that

‖x− x∗‖ = O(‖h(x)‖) + O(‖gp(x)‖),(4.17)

The converse follows trivially from the fact that h(x) and gp(x) are Lipschitz contin-
uous in V ∗.

In [19], Fletcher shows that the SQP method has quadratic convergence to a good
minimizer x∗. The same argument can be used to prove that, if δx is an SQP step
from x ∈ V ∗ to x+ = x + δx, where V ∗ is a suitable neighborhood of x∗, then we
have x+ − x∗ = O(‖x− x∗‖2). It is also easy to show (see (10.1.11)-(10.1.13) in [19])
that δx satisfies δx = x+ − x = O(‖gp(x)‖) + O(‖h(x)‖). From these two relations, it
follows that x−x∗ = (x+−x∗)−(x+−x) = O(‖x+−x‖) = O(‖gp(x)‖)+O(‖h(x)‖).

Byrd [7] and Yuan [46] give examples showing that we can’t expect superlinear
convergence in one step for xk

c . However, Byrd [8] points to the possibility of obtaining
superlinear convergence in one step for xk. To understand why this happens, notice
that a vertical step that moves from xk to xk+1

c approaches the feasible set in a
“superlinear” way. After that, the horizontal step superlinearly pushes xk+1

c towards
the dual manifold L∗ = {x ∈ V ∗ : gp(x) = 0}, with δk+1

H tangent to the feasible
directions. Therefore, this horizontal step does not destroy the “vertical superlinear
approximation”. On the other hand, if we start at xk

c , the superlinear convergence in
a single step cannot be guaranteed since the vertical step δk+1

V usually isn’t tangent

to L∗ and, for this reason, δk+1
V can partly spoil the good approach to L∗ obtained

by δk
H .
To close this section, we present our main theorem, showing that the algorithm is

2-step superlinearly convergent. Besides, convergence in one step can also be obtained
if we call a restoration at each iteration.

Theorem 4.3. Under H1-H4 and A1-A4, xk and xk
c are 2-step superlinearly con-

vergent to x∗. If a restoration is computed at each xk, then xk converges superlinearly
to x∗.

Proof. Since ‖xk+1 − x∗‖ ≤ ‖xk+1 − xk+1
c ‖ + ‖xk+1

c − x∗‖, equations (4.9) and
(4.16) imply that

‖xk+1 − x∗‖ = O(‖xk+1
c − x∗‖).(4.18)

Besides, observing that ‖xk+1
c − x∗‖ ≤ ‖xk − xk+1

c ‖+ ‖xk − x∗‖, and using (3.1) and
(4.16), we have

‖xk+1
c − x∗‖ = O(‖xk − x∗‖).(4.19)

In order to prove the 2-step superlinear convergence, we shall use the following
relations:

gp(x
k) = o(‖xk

c − x∗‖),(4.20)
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gp(x
k+1
c ) = o(‖xk−1

c − x∗‖),(4.21)

h(xk) = o(‖xk−1
c − x∗‖), and(4.22)

h(xk+1
c ) = o(‖xk

c − x∗‖).(4.23)

Let us show that these relations are valid, starting with (4.20). Using a Taylor
expansion, along with (1.4), we have, for xk ∈ V ∗,

‖gp(x
k)‖ = ‖P (xk)Γk‖+ o(‖δk

H‖)
≤ ‖(P (xk)− P (xk

c ))Γk‖+ ‖P (xk
c )Γk‖+ o(‖δk

H‖),(4.24)

where Γk = gp(x
k
c ) +∇2

xxL(xk
c , λLS(xk

c ))δk
H .

The continuity of P (x) in V ∗ and (4.9) give us

‖(P (xk)− P (xk
c ))Γk‖ = o(‖Γk‖) = o(‖gp(x

k
c )‖).(4.25)

Besides, (4.4), (4.8) and (4.9) imply that

‖P (xk
c )Γk‖ = ‖P (xk

c )(gp(x
k
c ) + Bkδk

H)‖+ o(‖δk
H‖) = o(‖gp(x

k
c )‖).(4.26)

Replacing (4.25) and (4.26) into (4.24) and considering also (4.16), we get (4.20).

To prove (4.23), we need to consider separately two situations. First, let ki be
an infinite subsequence at which no vertical step was made, i.e. xki+1

c = xki . In this
case, the dynamic control of the infeasibility, together with (4.20), imply that

‖h(xki+1
c )‖ = O(‖gp(x

ki+1
c )‖) = O(‖gp(x

ki)‖) = o(‖xki
c − x∗‖).(4.27)

Let’s now consider an infinite subsequence of iterations kj at which at least one vertical
step δ+

V satisfying A4 was made. In this case, (4.15) and (4.16) imply that

‖h(xkj+1
c )‖ ≤ ‖h(xkj

c + δ+
V )‖ = o(‖h(xkj )‖) = o(‖xkj − x∗‖).(4.28)

Equation (4.23) follows directly from (4.18), (4.27) and (4.28).
Combining (3.12), (4.9), (4.16), (4.18), (4.19) and (4.23), we can write

‖h(xk)‖ = ‖h(xk
c )‖+ O(‖δH

k)‖2) = h(xk
c ) + O(‖gp(x

k
c )‖2)

= ‖h(xk
c )‖+ O(‖xk

c − x∗‖2) = o(‖xk−1
c − x∗‖),(4.29)

so (4.22) has been proved.
Finally, to obtain equation (4.21), we use a Taylor expansion, (3.1), (4.18), (4.19),

(4.20) and (4.22), so

‖gp(x
k+1
c )‖ = ‖gp(x

k)‖+ O(‖xk − xk+1
c ‖)

= ‖gp(x
k)‖+ O(‖h(xk)‖) = o(‖xk−1

c − x∗‖).

The 2-step superlinear convergence of xk
c and xk follows from (4.16) and (4.18)-

(4.23), since these equations imply that

‖xk+1 − x∗‖ = O(‖gp(x
k+1)‖+ ‖h(xk+1)‖) = o(‖xk−1 − x∗‖), and(4.30)

‖xk+1
c − x∗‖ = O(‖gp(x

k+1
c )‖+ ‖h(xk+1

c )‖) = o(‖xk−1
c − x∗‖).(4.31)
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In order to conclude the proof, let’s assume a non zero restoration step is done at
each iteration. Then, (3.12) and (4.15), together with (4.9), (4.16), and (4.19), allow
us to improve (4.22), obtaining

‖h(xk)‖ = ‖h(xk
c )‖+ O(‖gp(x

k
c )‖2) = o(‖xk−1 − x∗‖).(4.32)

Replacing (4.20) and (4.32) into (4.30), and considering also (4.19), we get

‖xk+1 − x∗‖ = O(‖gp(x
k+1)‖+ ‖h(xk+1)‖)

= o(‖xk+1
c − x∗‖+ ‖xk − x∗‖) = o(‖xk − x∗‖),

so the desired superlinear convergence of xk to x∗ is attained.

5. Numerical experience. The success of an algorithm is based not only on its
theoretical convergence results, but also on its practical behavior. In this section, we
present one possible implementation for the DCI algorithm, along with the numerical
results obtained applying it to some problems from the CUTEr collection [22].

We do not claim we have implemented the ultimate version of the algorithm. On
the contrary, our implementation is quite simple and should be improved in order
to compete with modern commercial codes. Our only purpose is to show that the
algorithm can successfully solve medium-sized equality constrained problems. Some
hints on how to improve the code are given in the next section.

5.1. A practical implementation of the algorithm. We begin the detailed
description of the algorithm explaining how the vertical and the horizontal steps can
be implemented. After that, we discuss how to solve the linear systems that appear
when computing these steps. Finally, we present a second order correction used to
reduce the infeasibility after applying the horizontal step.

5.1.1. Vertical step. Whenever ‖h(xc)‖ > ρ at the beginning of an iteration,
we need to reduce the infeasibility. Unfortunately, this test is tricky to perform, since
ρ depends on np(xc), and this term, in turn, depends on the matrix∇h(xc). Naturally,
it would not be wise to compute ∇h(xc) just before calling the restoration, as we will
need to update this matrix after this step. For this reason, in step 1.2 of Algorithm
2.1, we define an approximate value for ρ, replacing np by

na
p =

|∆LH |
|f(xk−1)− f(xk−1

c )|+ ‖δk−1
t ‖

.

The restoration is done applying Powell’s dogleg method [34] to the constrained
linear least squares problem (2.5), replacing x by xc. Again, the solution of this
problem depends on ∇h(xc). Therefore, the first time we try to solve (2.5), we use
A = ∇h(xk−1

c ). If the infeasibility is not sufficiently reduced, we define A = ∇h(xc)
and recompute the step.

To find an approximate solution for the trust region problem, the dogleg method
uses a path consisting of two line segments. The first connects the origin to the
Cauchy point, defined as

sCS = −γA(xc)
T h(xc),

where

γ = min

{

∆V S

‖A(xc)T h(xc)‖
,
‖A(xc)

T h(xc)‖2
‖A(xc)A(xc)T h(xc)‖2

}

.
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The second line runs from the Cauchy point to the Newton point

sNS = −A(xc)
T (A(xc)A(xc)

T )−1h(xc).(5.1)

If ‖sNS‖ ≤ ∆V S , then the Newton point is the solution of the problem. Otherwise,
the point of intersection of the dogleg path and the trust region boundary is chosen.

The trust region radius ∆V S used to compute the vertical step is updated using
rules similar to those defined for the horizontal step.

Let Pred denote the predicted reduction and Ared the actual reduction of the
infeasibility. The step is rejected if Ared/Pred < 10−3. In this case, ∆V S is divided
by four. On the other hand, if Ared/Pred ≥ 0.5, we double ∆V S .

Sometimes, it is necessary to apply the dogleg method several times in order to
obtain the desired level of infeasibility. To avoid recomputing A frequently, we try to
take a new step using the same matrix whenever the dogleg method is able to reduce
‖h(xc)‖ by at least 10%. This expedient is used up to four times in a row, after which
A is recalculated.

After the restoration, ∇h(xc) is available and we need to choose ρ satisfying the
conditions stated at step 1.3.3 of Algorithm 2.1. These conditions are quite loose, so a
good scheme for defining the trust cylinder radius can be devised, taking into account
some problem characteristics and the values of ρmax and np. In our implementation,
however, a naive rule was used. If the approximate ρ computed at step 1.2 satisfies
10−4np ρmax ≤ ρ ≤ np ρmax, we keep this value. Otherwise, we simply define

ρ = min{np ρmax, 0.75ρmax}.

The reduction obtained by the dogleg method may be small depending on the
curvature of h. When this happens, we abandon the constrained linear least squares
problem and try to apply the Moré and Thuente line search algorithm [32] to the
unconstrained nonlinear least squares problem

minimize ‖h(x)‖2,(5.2)

using a BFGS approximation for the second-order part of the Hessian of the objective
function [15].

Since this last approach is more time consuming than the dogleg method, it is
applied only if ‖h(xc)‖/‖h(xk−1)‖ < 0.95 for 3 successive dogleg steps. Fortunately,
this is unlikely to occur, as the dogleg method usually works well.

5.1.2. Horizontal step. The horizontal step of the method consists in solving
the quadratic programming problem (2.6). If Z is a matrix that spans the null space of
∇h(xc), then it is possible to rewrite (2.6) as the constrained nonlinear programming
problem

minimize g(xc)
T Zv +

1

2
vT ZT BZv

subject to ‖Zv‖∞ ≤ ∆,(5.3)

where δ was replaced by Zv.
One should notice that B need not to be positive definite, so we cannot use the

dogleg method to solve (5.3), as we did in the vertical step. Instead of that, we use
the Steihaug-Toint method [41, 43], that is an extension of the conjugate gradient
(CG) method for nonconvex problems.
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Since computing the product of Z times a vector several times would be too costly,
we write the Steihaug-Toint algorithm using δ directly, as described by Lalee, Nocedal
and Plantenga in [24].

The method starts by computing the Cauchy step defined in step 4.1.1 of Al-
gorithm 2.1. If this point falls inside the trust region, it is improved by applying
successive CG iterations until q(δ) ≤ 0.01q(δCP ), or a direction of negative curvature
is found, or the trust region boundary is violated. In the last two cases, a point on
the boundary of the trust region is chosen.

5.1.3. Linear systems. In the core of both the vertical and the horizontal
step, we have linear systems involving AAT . Such systems need to be solved when
we compute

• the Newton step (5.1), in the dogleg method;
• the Lagrange multipliers (1.3) and, consequently, the projected gradient (1.4);
• the second order correction (see (5.4) in the next subsection);
• the projection of the residual vector onto N(A), in the Steihaug-Toint method.

Two routines are provided for solving these systems. One is based on the sparse
Cholesky decomposition of AAT . The second uses the conjugate gradient method to
generate an approximate solution.

If we choose to work with the Cholesky decomposition, the approximate minimum
degree algorithm of Amestoy, Davis and Duff [3] is used to reorder the rows and
columns of AAT , so the fill-in created during the factorization is minimized. For the
CG method, a band preconditioner has been implemented to accelerate the method.

As an attractive alternative, we could use the augmented system approach to solve
such systems, since it reduces the fill-in produced by dense rows in A, and keeps the
condition number of the matrix under control. Direct methods for solving symmetric
indefinite augmented systems are presented, for example, in [6, 40], while iterative
approaches are introduced in [20, 5], just to cite a few references. We plan to include
one or more of these algorithms into our code in a near future.

5.1.4. Second order correction. In DCI, a second order correction (SOC) can
be used to reduce the infeasibility after the horizontal step, as the acceptance of this
compound step is more probable to happen. Clearly, δsoc = 0 would be a possibility
for the SOC term. In fact, any δsoc = O(‖δt‖2) is acceptable for global convergence
purposes. The non-zero natural candidate corresponds to

δsoc = argmin{‖∇h(xc) δ + (h(xc + δt)− h(xc))‖}
= −∇h(xc)

T (∇h(xc)∇h(xc)
T )−1(h(xc + δt)− h(xc)).(5.4)

If gp(xc) = g(xc) + ∇h(xc)
T λLS = argmin{‖∇h(xc)

T λ + g(xc)‖} is obtained from
the Cholesky factorization of ∇h(xc)∇h(xc)

T , the second order correction results
computationally cheap. On the other hand, if we use iterative methods to compute
gp(xc), it looks reasonable to relax the convergence to gp so we can save some time
for computing δsoc.

The second order correction is called if, after computing the horizontal step, we
have

‖h(xc + δt)‖ > min{2ρ, 2‖h(xc)‖+ 0.5ρ}

or

‖h(xc)‖ ≤ 10−5 and ‖h(xc + δt)‖ > max{10−5, 2‖h(xc)‖},
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If the second order correction is refused, it is not calculated again at the same global
iteration of Algorithm 2.1.

5.2. Algorithm performance. To analyze the behavior of the algorithm just
described, we used a set of 53 medium-size equality constrained problems extracted
from the CUTEr collection [22]. The selected problems are presented in Table 5.1.
The number of variables of the problem is given by n, while m is the number of
constraints.

Table 5.1

Selected medium-size problems from the CUTEr collection.

Problem n m Problem n m
AUG2D 20200 10000 HAGER1 10001 5000
AUG2DC 20200 10000 HAGER2 10001 5000
AUG3D 27543 8000 HAGER3 10001 5000
AUG3DC 27543 8000 LCH 3000 1
CATENA 3003 1000 LUKVLE1 10000 9998
CATENARY 501 166 LUKVLE10 10000 9998
CHAIN 6402 3201 LUKVLE11 9998 6664
DTOC1L 14995 9990 LUKVLE13 9998 6664
DTOC1NA 7495 4990 LUKVLE14 998 664
DTOC1NB 7495 4990 LUKVLE15 997 747
DTOC1NC 7495 4990 LUKVLE16 9997 7497
DTOC1ND 7495 4990 LUKVLE3 10000 2
DTOC2 5998 3996 LUKVLE4 10000 4999
DTOC3 14999 9998 LUKVLE5 10002 9996
DTOC4 14999 9998 LUKVLE6 9999 4999
DTOC5 9999 4999 LUKVLE7 10000 4
DTOC6 10001 5000 LUKVLE8 10000 9998
EIGENA2 2550 1275 LUKVLE9 10000 6
EIGENACO 1640 820 OPTCTRL3 4502 3000
EIGENB2 2550 1275 ORTHRDM2 4003 2000
EIGENBCO 1640 820 ORTHRDS2 1003 500
EIGENC2 2652 1326 ORTHREGA 2053 1024
EIGENCCO 1722 861 ORTHREGC 1005 500
ELEC 600 200 ORTHREGD 1003 500
GRIDNETB 13284 6724 ORTHRGDM 2003 1000
GRIDNETE 13284 6724 ORTHRGDS 1003 500
GRIDNETH 13284 6724

Originally, all of the equality constrained problems of the CUTEr library were
selected to compose the test set. However, at this moment, the DCI algorithm is not
prepared to handle singular Jacobian matrices, so some of the problems needed to be
excluded from the list.

The DCI algorithm was implemented in FORTRAN 77 and the executable pro-
gram was generated using the ifort 9.0 compiler, under the Fedora 4 Linux operating
system. To evaluate the performance of the new method, it was compared with
two freely available nonlinear programming solvers. The first is Lancelot-B, the well
known algorithm distributed along with the Galahad library [21]. The second is Ipopt
(version 3.3.3) [44], an interior point method that also tackles equality constrained
problems quite well. Both codes include a nice interface for solving CUTEr problems.

The tests were performed on a Dell Optiplex GX280 computer, using an Intel
Pentium 4 540 processor, with a clock speed of 3.2GHz, 1MB of cache memory, a
800MHz front side bus and the Intel 915G chipset. Exact first and second derivatives
were computed by all of the methods.
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The DCI algorithm was designed to declare convergence when both ‖h(x)‖ < ǫh

and np < ǫp, as well as when ρmax < ǫr. However, since Lancelot-B uses the infinity
norm in its convergence criteria, we decided to change the first criterion, stopping the
algorithm when ‖h(x)‖∞ < ǫh and one of ‖gp‖∞ < ǫg or np < ǫp occurs. Besides, it
also terminates if ‖δt‖ < ǫd‖x‖ for 10 successive iterations or if the restoration fails
to obtain a feasible point. The constants ǫh = 10−5, ǫg = 10−5, ǫp = 10−7, ǫr = 10−7

and ǫd = 10−8 were adopted, so the stopping tolerances are compatible with those
used in Lancelot-B. The Ipopt stopping tolerances were changed accordingly. Default
values were used for the remaining Ipopt parameters. The default settings were also
used in Lancelot-B, except for the maximum number of iterations that was increased
to 10000.

Other parameters used in the DCI algorithm are

ρ0
max = max{10−5, 5.1‖h(x0)‖, 50np(x

0)},(5.5)

∆0 = ∆0
V S = max{10‖x0‖, 105},

and ∆min = 10−5. For all of the problems presented here, we used the Cholesky
decomposition to compute the solution of (AAT )s = b, although, for many of them,
it would be preferable to use the preconditioned conjugate gradient method.

The comparison of the methods were done using the performance profiles defined
by Dolan and Moré [17]. To draw the performance profiles for a set S of solvers on
a set P of problems, we need to compute, for each problem p ∈ P and each solver
s ∈ S, the performance ratio defined by

rp,s =
tp,s

min{tp,s : s ∈ S} .

where tp,s is the time spent by the solver s to solve problem p. The overall performance
of solver s is represented by function

P (t) =
1

np
size{p ∈ P : rp,s ≤ t},

where np is the number of problems considered. In words, P (t) is the fraction of the
number of problems that are solved by s within a factor t of the time spent by the
fastest solver (for each problem). Plotting P (t), we get a performance profile for a
particular solver.

For the 53 equality constrained problems selected, the performance profiles of
Lancelot-B, Ipopt and DCI and are shown in Figure 5.1. One can deduce from this
figure that the DCI algorithm took less time than Lancelot-B and Ipopt to obtain
the solution of 47% of the problems, while Ipopt was the best solver for 45% of the
problems and Lancelot-B took less time in only 9.4% of the cases. Ipopt outperforms
DCI for t between 1.5 and 4.5 but, in general, we may say that DCI presented the
best performance among the solvers.

DCI and Lancelot-B obtained an optimal solution (i.e. an stationary point for
(1.1)) for all of the problems. The Ipopt code, in turn, converged to a point of
local infeasibility when solving the LUKVLE16 problem, and ran out of memory after
spending 2920 seconds searching the solution of the LUKVLE11 problem. For all of
the remaining problems, Ipopt also obtained an optimal solution.

To close this section, let us focus our analysis on the behavior of the restoration
scheme adopted in DCI, summarized in Figure 5.2. Each point in the figure represents
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one CUTEr problem. The horizontal coordinate of a point is the percentage of the
number of iterations in which only one restoration was done. The vertical coordinate is
the percentage of iterations in which more than one restoration was needed. Diagonal
lines were included to group the problems by the percentage of iterations with one or
more restorations.
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The results obtained for the 53 CUTEr problems showed that, on average, the
DCI algorithm performed one restoration in 24.3% of the iterations, while it was nec-
essary to perform more than one restoration in only 9.2% of the iterations. Summing
the figures, we observe that no restoration was made in about two thirds of the itera-
tions, on average. Besides, if we consider only the iterations in which more than one
restoration was done, the number of restorations was equal to 2 in 62,1% of the cases.

Our experiments with the CUTEr problems also revealed that the choice of an
initial value for ρmax is still an open problem. For several problems, a particular
value of ρ0

max has led to a much better performance of the algorithm, if compared to
(5.5). One possible way to circumvent this problem is to use a few iterations of the
algorithm only to calibrate this parameter, prior to use the rules for updating it.

6. Conclusions. In this paper, we have presented a new algorithm for solving
nonlinear programming problems with equality constraints. The method uses the
idea of a trust cylinder to keep the infeasibility under control. The radius of this
cylinder is reduced as the algorithm approaches the optimal point. The algorithm is
globally convergent in the sense that its accumulation set has stationary points for
(1.1). Besides, it is also superlinearly convergent under some mild assumptions.

Our current implementation of the algorithm works well when applied to medium-
sized problems, so we believe that is worth investigating its performance for larger
problems. Some of the improvements that are to be made to the code after solving
large-scale problems include:

• the use of an augmented system approach to solve the linear systems;
• the reformulation of the algorithm so inexact solutions for the linear subrou-

tines are admitted;
• the use of BFGS approximations to the Hessian of the Lagrangian when

computing the horizontal step;
• the definition of clever rules for choosing the initial value of ρmax.

Besides, we also have plans to extend the algorithm to solve inequality constrained
problems.
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[40] O. Schenk and K. Gärtner, On fast factorization pivoting methods for symmetric indefinite
systems, Electron. Trans. Numer. Anal., 23 (2006), pp. 158–179.

[41] T. Steihaug, The conjugate gradient method and trust regions in large scale optimization,
SIAM J. Numer. Anal., 20 (1983), pp. 626–637.

[42] R. A. Tapia, Quasi-Newton methods for equality contrained optimization: equivalence of exist-
ing methods and a new implementation, in Nonlinear Programming 3, O. L. Mangasarian,
R. R. Meyer and S. M. Robinson, eds., Academic Press, New York, NY, 1978, pp. 125–164.

[43] Ph. L. Toint, Towards an efficient sparsity exploiting Newton method for minimization, in
Sparse Matrices and Their Uses, I. S. Duff, ed., Academic Press, London, UK, 1981, pp.
57-88.
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