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SUMMARY

Most papers on topology optimization consider that thera limear relation between the strains and the
displacements of the structure, meaning that the displantsrof the structure are small. However, when
the external loads applied to the structure are large, @atiements also become large, so it is necessary
to suppose that there is a nonlinear relation between steaid displacements. In this case, we say that the
structure is geometrically nonlinear. In practice, thisamethat the linear system that needs to be solved
each time the objective function of the problem is evaluasetbplaced by an ill-conditioned nonlinear
system of equations. Moreover, the stiffness matrix andlérazatives of the problem also become harder
to compute.

The objective of this work is to solve topology optimizatiproblems under large displacements through
a new optimization algorithm, named Sequential Piecewisedr Programming (SPLP). This method rely
on the solution of convex piecewise linear programming soiblems that include second order information
about the objective function. To speed up the algorithmsehsubproblems are converted into linear
programming ones. The SPLP algorithm is not only globallpvesgent to stationary points, but our
numerical experiments also show that it is efficient and stbGopyright© 2010 John Wiley & Sons,
Ltd.

Received ...

KEY WORDS: Topology optimization; Geometric nonlinearitgequential piecewise linear program-
ming

1. INTRODUCTION

Efficient methods for the solution of topology optimization problems include thi kmewn
Method of Moving Asymptotes (MMA) and its variants (see, for example,nBeeg [, 2],
Bruyneelet al.[3], Zillober [4], Zillober, Schittkowski and Moritzend]), as well as some standard
mathematical programming methods such as the Sequential Linear Programixi)aalorithm
(Gomes and Senné]| Sigmund [7], Kikuchi et al. [8], Nishiwaki et al. [9]) and the Sequential
Quadratic Programming (SQP) algorithm (Etman et al])f Even a hybrid scheme that uses
qguadratic approximations of some separable convex approximation fusiqi@menwold and
Etman [L1]) has been successfully employed to solve such problems.

Most works on topology optimization consider that the structure is under slispllacements,
so the relation between strain and displacement can be represented barariowel. However,
for large displacements this hypothesis is no longer valid, and we say thatringure is
geometrically nonlinear, which means that it is necessary to adopt a nanlegrasentation for
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2 F. A. M. GOMES AND T. A. SENNE

the strain-displacement relation. Due to the computational difficulties thatvelnisie the geometric
nonlinearities are considered, there is just a few papers that deal witbrdfilem. Among them,
we may cite those written by Jo@7], Buhl, Pedersen and Sigmunt3, Bruns and Tortorelli 14],
Gea and Luo 5], Bruns, Sigmund and TortorelliLp], Ohsaki and Nishiwakif7], Luo and Tong
[18], Lazarov, Schevenels and Sigmurdd], Lahuertaet al.[20], and Lee and Parlefl].

A survey on this field shows that MMA-like algorithms represent the vast nityajof methods
developed for solving geometrically nonlinear topology optimization problemshis paper we
introduce an alternative algorithm, called Sequential Piecewise LinearagPnogng (SPLP), that
is an extension of the Sequential Linear Programming (SLP) algorithm of &am Senneq],
developed for the design of structures under small displacements.

The SPLP algorithm adds second order information to the objective funagguiring the
solution of one piecewise linear subproblem per iteration. This subproisidorther converted
to a linear programming one, in order to reduce the computational costs. nssith stay between
the SLP algorithm, that has cheap iterations but takes too many steps togmraed the SQP
method, that performs a smaller number of computationally intensive iterations.

The paper is organized as follows. In Section 2 we present the topofatgyipation problem
under large displacements. The SPLP method is described in Section 3 andadteagb
implementation is presented in Section 4. The performance of the algorithmyzeahén Section
5, and some conclusions are presented in Section 6.

2. THE GEOMETRICALLY NONLINEAR TOPOLOGY OPTIMIZATION PROBEM

Let Q be a given two- or three-dimensional domain where a structure is to be builtpdogy
optimization problem is a mathematical problem that consists in determining how tibpwtistr
material over) in such a way that the structure generated is optimal in some sense, andssatisfi
set of design constraints.

In the minimum compliance topology optimization problem, the objective is to find thestiff
structure that fits into the domain, and satisfies a volume constraint and somagipy conditions.
When the structure is subject to small displacements, a linear model is usesttibeehe strain-
displacement relation. In this case, after the discretizatidn, dfie topology optimization problem
can be written in the form

min fTu
P
st K(pju=f
Nel l
Z’Uzﬁi <V @)

i=1
ﬁie{071}a i:17"'7nel7

wheren,; is the number of elements of the domaiiis a variable that indicates whether the i-th
element is filled §; = 1) or void (p; = 0), v; is the volume of the-th element) is the upper limit
for the volume of the structuré,is the vector of nodal forces associated to the external loads,
the vector of nodal displacements, dddp) is the (global) stiffness matrix.

Since topology optimization problems are usually huge, it would not be possibmive
an integer nonlinear programming problem such Bs To circumvent this problem, Bendsge
[22] introduced theSolid Isotropic Material with Penalizatio(SIMP) method, where the integer
variablesp, are replaced by the continuous densities. p; < 1, that are raised to a penalty
parameterp > 1 in order to avoid the presence of intermediate values. When the SIMP method
is used, the global stiffness matrix is givenKyp) = > p'k;, wherek; is the stiffness matrix
of the i-th element.

If we also define a lower limip,,;, for the densities;, thenK(p) becomes symmetric and
positive definite, sm = K(p)~'f, and we can rewrite Probleri)(as
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TOPOLOGY OPTIMIZATION OF GEOMETRICALLY NONLINEAR STRUCTRES 3

min fTK(p)~'f

Nel

Vipi

S.t. — —-1<0 (2)
i=1 v a
0<pmin§pi§1, i=1,...,nel.

When the structure is subject to large displacements, the linear strain-disi@atmodel is no
longer valid, and we need to replace the equilibrium equaiofys)u = f by a nonlinear system in
the form

R(u, p) =0. 3

Supposing thap is fixed, the displacement vectarthat solves§) can be obtained by means of
the Newton’s method. In this case, the nonlinear equations are approxibyatieel linear system

Kr(ug, p)Aug = —R(ug, p), (4)

whereKr = 0R/0u is the tangent stiffness matrix. Starting from a given vecigrthe method
solves a sequence of systems in the fod)y @nd updates the displacements using ; =
u;, + Auy, until the condition||R(ug, p)|| < ¢ is satisfied, for some > 0.

The definition ofR.(u, p) and of K1 (ux, p) varies according to the hyperelastic model adopted
for the material. In this work, we use the neo-Hookean material model of Siaudet [23, 24],
instead of the usual Saint Venant-Kirchhoff model.

Although the Saint Venant-Kirchhoff material law is far more used than ottaerial models, it
does not guarantee the existence of a solution3piif fact, this model can pose several difficulties
for Newton’s method, preventing its convergence (Lahuetrtd. [20]). On the other hand, BalPp)
has shown that the systef®) @lways has a solution when a polyconvex constitutive model, such as
the Simo-Ciarlet neo-Hoolean material law, is used.

Moreover, the tangent stiffness matrix of the Simo-Ciarlet model is chéamampute than the
matrix related to the Saint Venant-Kirchhoff model, that is build up summing akterms that
depend orp. (see, for example 2f]).

To see how system8)and @) are defined, IeF = [f;;] represent the deformation gradient tensor
of the structure. In the Simo-Ciarlet model, the strain-energy density fumistigiven by (see0])

= 1.[1 1
W =W(J.Ic) = 5A [Q(J2 1) - an] + gulle =3 —2InJ),

where) andy are Lang constants/ = det(F) andI = tr(FTF).
Gathering the components of the first Piola-Kirchoff stress tensor intoettten

—~ —~ — —~17T
__|ow aw ow ow
afll 8f21 ale 8f22

and definingG as the matrix of the derivatives of the shape functions with respect to the
displacements, we define

q(@®) = / GTad,,
Q;

whereQ; andu(® are, respectively, the domain and the vector of nodal displacements bffthe
element. Defining the vector of internal nodal forces of the structure as

Nel
fint(uv p) = Z pfq(ﬁ@))
i=1
we may write the nonlinear systerd) (n the form
R(u, p) = fine(u, p) —f = 0.

Copyright© 2010 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engn2010)
Prepared usingimeauth.cls DOI: 10.1002/nme



4 F. A. M. GOMES AND T. A. SENNE

Using this system we can finally write the nonlinear version of the topology oftiniz 2) as

min (£ (a(p), )| u(p)

Nel

Vi Pi

s.t. -1<0 ®)
— V* -
i=1
O<pmin§pi§17 i:1>"'an€l7

where we writen = u(p) to stress that the displacements depeng.ofhe tangent stiffness matrix
used in §) is assembled combining the contributions of theelements, i.e.

Nel

Kr(u,p) =Y plkp(@l),
i=1
wherek(1i(®)), the tangent matrix of the i-th element, is given by
kp(0®) = / GTDGdS,.
Qe

The tangent stiffness modulus matfixused in this last formula is obtained deriviergvith respect
to the components of the deformation gradient.

3. SEQUENTIAL PIECEWISE LINEAR PROGRAMMING

The sequential linear programming method proposed by Gomes and $#imas shown a good
performance for the solution of topology optimization problems under smalbdisments, mainly
due to its quite cheap iterations.

In the presence of large displacements, however, it is not just the timé ppeaach iteration
that counts. Since each computation of the objective function of prolderadquires the solution of
one nonlinear system, it is worth devising a method that reduces the nuniteratbns, as it may
save time. But some care still must be taken to avoid spoiling the benefits of thistiimetion by
taking a computationally expensive iteration.

In this section we present an algorithm that is based on the solution of psecdwear
programming problems. The method is particularly well suited for solving ditfimpology
optimization problems, since it converges as quickly as a SQP algorithm, butdétates require
just the solution of linear programming problems, as in a SLP method.

3.1. Description of the method
Consider the nonlinear programming problem

min  f(x)
st. c(x)=0 (6)

XISXSX’UJ

where the functiong : R® — R andc : R™ — R™ have Lipschitz continuous first derivatives, and
x;, X, € R™ are vectors that define, respectively, the lower and upper bounsts Téne conversion
of a topology optimization problem such &) o the form @) is an easy task, requiring just the
introduction of a slack variable to transform the volume constraint into aateou
A solution vectorx € R™ is calledfeasibleif all of the constraints and bounds df)(are satisfied
atx. Since the bound constraints are never violated by the SPLP algorithm, gasilnifity of a
pointx is measured by the function
p(x) = [le()||1.
We say thaik is ap-stationarypoint if it satisfies the Karush-Kuhn-Tucker (KKT) conditions of
problem
min  p(x)
st x <x<xy,
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TOPOLOGY OPTIMIZATION OF GEOMETRICALLY NONLINEAR STRUCTRES 5

We also say that a feasible points regularif the gradients of the active constraintxadre linearly
independent.

For most topology optimization problems, the second derivatives of thetolgjdanction are
expensive to evaluate, so algorithms that require this kind of informatioseddlem used. With the
aim of obtaining a good approximation f@(x) (i.e. using some second order information) without
sacrificing the efficiency of the optimization algorithm, in the SPLP method the tlgeanction
of (6) around a poink is approximated by

fx+s) = f(x) + Vf(x)"s +Ti(s), (@)

wherel';, : R™ — R is a convex non-negative piecewise linear function that gives someriatmn
about the curvature of. The definition ofl";, will be discussed in detail in Subsectidri.
On their turn, the equality constraints of probled) &re approximated by the linear model

c(x +8) ~c(x) + A(x)s, (8)

whereA (x) = [Vey(x) . .. Ve (x)]” is the Jacobian matrix of the constraints.
Using (7) and @), problem 6) can be approximated by

min = my(s) = VF(x*F)Ts 4+ Tx(s)
st Ax®)s+c(x®)=0
x; <xM 45 <x,
Islloc < 0

9)

whered, > 0. The last inequality in9) defines a trust region, adopted to prevent the subproblem
from becoming unbounded and to ensure the global convergence®®Pttie algorithm. In practice,
the box constraints and the trust region inequality are coupled togetheve ssimply write

s; < s <s, wWhere

s; = max{—0,x; — X(k)} and S, = min{J, x, — X(k)}. (20)

The central idea of the algorithm is simple: at thh iteration of the algorithm, we solve the
piecewise linear problen®), and use its solutiom,., to obtain a trial poink*t1) = x(*) 4 s_ that
is a (supposedly) better approximate solution for the original prob&m (

However, this scheme does no prevent the feasible set of proB)drorfi being empty. When this
happens, a feasibility restoration step must precede the computatigrFollowing the suggestion
of Gomes and Senné]| this restoration step is obtained solving the auxiliar subproblem

min M(X(k),s) = ||A(x(k))s + c(x(k))||1
st x <x® 4s<x, (11)
IIs]|ce < 0, 80.

where, M (x(®)s) is the first order approximation for(x) atx(*).
The one-norm is used ii{) to allow the conversion of this problem into the linear programming
problem
min M (x*) s,z) = e’z
st AxM)s + E(x*)z = —c(xM)
max{—0.80y, x; — x(k')} < s < min{0.80y, X, — X(k)}
z >0,

(12)

wherez € R™ is the vector of slack variables of the; infeasible linearized constraints,=
[11...1]7, and matrixE is defined by

) 1. if c; (x*) <0
(k)Y ) i )
B; (™) = { 1 if c (x*)) >0,

T,J?
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6 F. A. M. GOMES AND T. A. SENNE

wherel; is thei-th column of the identity matrix of ordew.;, andiy, s, ..., i,,, are the indices
of the nonzero components efx(*)). A feasible point for {2) can be trivially obtained by taking
s=0andz; = |¢;;(x")],j =1,...,m,.

We start an iteration of the SPLP algorithm findisg, the solution of problem1(). If
M(x*) s,) =0, we also solve problem9j, obtaining the steps.. On the other hand, if
M(x™) s,) > 0, we simply set. = s,,. One should notice that the trust region radius used 1 (
is smaller thar,., in order to increase the feasible region of probl&nand allow the reduction of
the objective function.

A trial steps, is only accepted i&k(®) + s, is a better solution forg) thanx(®). To take this
decision we rely on the merit function

U(x,0) = 0f(x) + (1 - 0)p(x),

wheref € [0, 1] is a parameter that defines the balance between the two objectives of thelmetho
that are the reduction of the objective functifix) and of the infeasibility measurgx). Following
the scheme presented 7] 6], we defined;, = min{6;"”, 92”9@}, where

) ) arge N min
O™ =min{1,0o,...,0k_1}, 95@ - {1+(k+1)1'1] .

;"7 = sup{f € [0,1] | Preq > 0.5P2"},

red
andN > 0is a large parameter (e.fy. = 10°) used to allow a nonmonotone decreasé.of
To decide if the step. is to be accepted or not, we compare the actual reduction of the merit
function with the reduction predicted by the mod@). (The actual reduction af betweenx*) and
x(®) 4 s. is given by

Ared = 0[f(x) = f(x +5c)] + (1 = 0)[p(x) — p(x + sc)],
while the predicted reduction is defined as
Preq = 0]-Vf(x)Ts, — Tp(sc)] + (1 — 0)[M(x,0) — M(x, s.)],

The steps.. is accepted if the merit function is reduced at least by one tenth of theti@cuc
predicted by the linear model, i.e. if,.; > 0.1P,.4. If this condition is not verifieds is reduced
and the step is recomputed. Besides, the trust region radius may also émsettor decreased
depending on the ratia\, .,/ P..q. These and other details of the method are fully described in
Algorithm 1.

3.2. Global convergence

In [6], Gomes and Senne present a SLP algorithm that is globally convengéet the hypothesis
that the sequendex(®)} is bounded, which is trivially satisfied by bound constrained problems such
as 6). The global convergence of Algorithm 1 can be easily derived frardmmas and theorems
presented in€], rewriting Lemmas 3.3 and 3.7 to cope with the piecewise linear fun&tigs).

The convergence proofs are divided into three steps. First, it is stwtnthe algorithm is well
defined, i.e., that a new iteraté*+1) is eventually obtained after repeating the steps of the algorithm
a finite number of times. Then it is proved that every limit point of an infinite saga{x*)} is
p-stationary. Finally, it is shown that there exists a limit pointthat is stationary for) whenever
the limit points of the sequende(®)} are feasible and regular. The reader is referre@fpr the
complete convergence proofs.

4. IMPLEMENTATION DETAILS

4.1. The piecewise linear model

The piecewise linear functidny (s) that is used to construct the model. (s) must approximate the
quadratic functiony,(s) = %STBks, whereBy, is a symmetric positive definite matrix. Since such
model is rebuilt at each iteration, we will drop off the subsckipod simplify the notation.

Copyright© 2010 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engn¢2010)
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TOPOLOGY OPTIMIZATION OF GEOMETRICALLY NONLINEAR STRUCTRES 7

Algorithm 1 The SPLP algorithm.

Require: duin > 0, 6 > dmin and x(@ such thatg; < x© < x,,
1 0p  1; 0™ 1: k<« 0
2: while a stopping criterion is not satisfiedo
3:  Determines,, the solution of {2)

4: it M(x™ s, z) =0, then

5: Starting froms,,, determines,., the solution of )
6: €lse

7: S¢ < Sp.

8 endif

9:

Computed'*#* andg;"”
100 ), < min{0}*"9° 67 gmaery
11: if Ayeq > 0.1P,..q then

12: x(kHD)  x(k) 4 g,

13: ComputeA (x*t1)), By 1, E(x*TD) andV f(x(*+1)).
14: if Ayeq > 0.5P,.4, then

15: Ok+1 < min{1.5dk, [|xy — X100 }
16: eseif Ayeq > 0.2P,.q4, then

17: 5k+1 — O,

18: else

19: 5k+1 <« 0.250,

20: end if

21: 5k+1 — max{5k+1, 5mm}

22: Omaz < 1

23: k< k+1

24:  else

25: 0p < max{0.25||s.| 00, 0.1y }

26: Omaz < Ok

27:  endif

28: end while

Supposing thaB is diagonal, bothy(s) andI'(s) are separable, so we can write

I'(s) = Zl—‘z(sz) ~ v(s) = Z%(S’) = Z %bis?,

whereb; is the i-th diagonal element @. We define each functiolj;(s;) following the guidelines
proposed by Byret al.[29, 30]. _
LetT;(s;) be formed by2r + 1 line segments, each one defined by a linear funcﬁfj@r@si), Jj=
0,...,2r. Inthis case, sincB is positive definite, we may write
(4)
i(s:) je{I(IJl,.&?.},{w} {61 (s )}
Eachﬁgj)(si) should interpolate;(s;) and its first derivative at a poimf). The definition of the

interpolation points depends on two scalabs,and U;, and on the lower and upper limits fer
given in (LO). Three cases are considered.

Case 1. fix; — x7,| < 1075, then we definel(.o) = D; =0, choose&J; > 0 and set

t9) =032y, j=1,...,2r
Case 2. fix; — x,,| <1075, then we definez(.”) = U, =0, chooseD; < 0 and set

t9) =03'D;,  j=0,...2r—1

Copyright© 2010 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engn2010)
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8 F. A. M. GOMES AND T. A. SENNE

Case 3. Otherwise, we chooBe < 0 andU; > 0, and set

} 0.39D;, j=0,...,r—1,
/=10, i=r
0.327=9U;, jg=r+1,...,2r

Instead of adopting the elegant but complicated choic®0énd U; given in [30], we simply
define

D; = max{s;,, min{—0.56, 2v;}} and  U; = min{s,,, max{0.59, 2v;}},
wherev; = —(9f(x)/0z;)/b; is the unconstrained minimum of the quadratic function

Vol e O
q(s;) = 2b,si + o, ;.

Sincel'(s) is a convex function, we can convef)(into a linear programming with (27 + 1)
variables. This is done by means of a change of variables defined by

2r
Sizzwij7 7::1,...777,, (13)
7=0

where the new variable;; is associate to thg-th line segment of’;(s;). The upper and lower
bounds for these new variables are given by

s1; Swip < 31-(0)7
0<w <pY—pYY, j=1,...,2r—1,
0 S war S Su; — B£2T)7

where 8 = 1t 4+ 1) is the breakpoint between thgth and the(j + 1)-th adjacent
segments of’; (s;).

Preliminary numerical experiments suggest that it is sufficient to use thie@atation points
(i.e.r = 1), since no significant improvement on the number of iterations is obtaindtéguoints
(r = 2), and the linear programming problems becomes prohibitive large fo2.

4.2. Choice of the diagonal matrix

In principle, a good choice for matriB; would be the diagonal of the Hessian of the objective
function (or of the Lagrangian) of problens)( evaluated atx(*). However, for topology
optimization problems, even this matrix is too expensive to obtain. Moreovergiprésence of
large displacements, there is no guarantee that the Hessian is positiviedefin

If we put aside the idea of using the true Hessian, the first alternativedhats to mind is the
adoption of a limited-memory quasi-Newton approximationBgr, as the one proposed by Goulart
and Herskovits31].

Another interesting option is to approximate the Hessian by a diagonal matriedefipon
intermediate variables. In this case, given a set bftermediate variableg; = y;(x), the function
f(x) is approximated by

TQ

of y(k) k
(k) _ (k)
+§j gy Wi =) (14)

where y; = 1/x; or y; = «;*, depending on if we use the reciprocal intermediate variables
introduced by Etman, Groenwold and Rood4][ or the exponential variables of Groenwold and
Etman [L1]. In this kind of approximationf(y) is a linear function ory, but a nonlinear function

of the original variablex, so its Hessian may be used to deflBig

Copyright© 2010 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engn2010)
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TOPOLOGY OPTIMIZATION OF GEOMETRICALLY NONLINEAR STRUCTRES 9

In our preliminary tests, the use of exponential intermediate variables éutped both the
reciprocal variables scheme and the quasi-Newton approximation.forenee decided to use this
approach, although we recognize that further experiments shoulchbeced in order to establish
the best alternative for compultirgy, .

For the exponential variables, the approximate functiaf is given by

(k)

R n ) % (k) 0 X(k)
Fox) = Fx)+Y (3;",@)) -1 (%) T
i=1 i ’

i

where, acoording to Fadel, Riley and Bartheler3y]] the exponents;l(.’“) should be obtained
imposing the condition
afE(x(k—l)) B 3f(X(k_1))

(91‘1‘ al‘i ’

) Of(x*=Dy Jof(xk) (k=1) , (k)
a;’ =1+1In ( oz, oz, In (xl Jx; ) .

Naturally, some precautions should be taken when the terms inside a logaritregasve or
zero. In such cases, we ad@é)’f) = —1, which reverts to the reciprocal approximation scheme.

which gives

4.3. Filtering

A naive implementation of a topology optimization algorithm that uses the SIMP method in
combination with 4-node rectangular finite elements and bilinear interpolatingidns may result
in a structure containing a checkerboard-like patteffa¢and Sigmund33)).
To circumvent this problem, it is a common practice to adopt a filter that reptheatensity of
each element; by a value that depends on the densities of the elements that belong tdBdiball
with radiusr,,,..., centered ire;.
Two filters are available in the SPLP algorithm: the density filter of Bruns angli [34], and
the Heaviside filter proposed by Guest, Prevost and Belyst@#pdnd adapted by Sigmund@d).
When the density filter is useg; is replaced by a weighted mean of the densities of the elements
belonging to a neighborhoaB;. This weighted density is given by

fj(sij)
];Bi > jen, &i(sij) 7
where
exp(—s7;/2(r/3)%) _—
o) = | S sy <
0 if si; >r,

ands;; is the Euclidean distance between the centroids of elemeamtd;.

Although the filtered densities must be used not only in the objective fundiidralso in the
constraints, this filter preserves the linearity of the volume constraint.

The idea behind the Heaviside filter is to round up each weighted dendiyl if ¢; > pumin, SO
¢; can assume just two discrete valugs;, or 1. However, with this modification, the optimization
problem becomes non-differentiable. This difficulty is circumvented agprating ¢; by

ni(p) =1 — exp(—PB¢;) + ¢i exp(—f3),

wheres > 0 is a penalty parameter that controls the curvature of this function.

It should be noted that not only(p) is differentiable, but it also reduces to the density filter when
B = 0. To avoid numerical instabilities, Sigmun8d] suggests the gradual increasesofrom 1 to
500. However, in our experiments, best results were obtained adopéiffiged value3 = 1.5. The
only side effect of this approach is that the volume constraint becomdis@amn
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10 F. A. M. GOMES AND T. A. SENNE

4.4. Stopping criteria

One important feature of our algorithm is the fact that the stopping criteriatisased only on the
step size, or on the variation of the objective function value. Instead,dapta mathematically
sound criterion, aiming to ensure that the solution obtained is close to a statpmiar for problem
(6).

Let Px(y) be the orthogonal projection of onto the setX = {x € R"|x; < x < xy,},
vi(x® A% be the gradient of the Lagrangian akdenote the vector of the Lagrange multipliers
associated to the equality constraints@)f(Qiven as a by product of the tangent step). We say that
Algorithm 1 has found an good approximation for a stationary point when

lgp(x®) o < 1073,

wheregp(x®)) = Px (x®) — v¢(x®) A®))) — x(*) is the projected gradient at*). In addition

to this criterion, we also limit to 50 the number of iterations of the algorithm for thermadiate

values of the penalty parameter of the SIMP method. For the last vapjehaf limit on the number
of iterations is increased to 10000, so only the projected gradient is upealdtice.

4.5. Solution of the nonlinear systems

Each time the objective function of problend)(is evaluated, it is necessary to solve the
nonlinear systenR(u(p), p) = 0. In our algorithm, this is done applying Newton’s method until
IR (uk, p)| < 107°.

The only drawback of this approach is that there is no guarantee that rihentastiffness
matrix K1 (p) that appears in the linear syst@&w-(u, p) Au,, = —R(uy, p) is positive definite, so
Newton’s method may fail to converge to a solution. A strategy for circumwvghiis problem was
proposed by Buhl, Pedersen and Sigmuh@],[and consists in the removal of nodes surrounded by
void (or minimum density) elements from the convergence criterion.

Another strategy is the arc-length method, proposed by Wem§@igaufid improved by Riks38g],
Batoz and Dhatt39] and Crisfield f10, 26]. To understand how this method works, it is important
to remember that, if the nodal displacements of a structure are large, thddfiadtion curve is
not only nonlinear, but also may contain limit points, i.e. points where the caiteén a local
maximum, a local minimum or where the tangent is vertical. When Newton’s metlzothes a
limit point, K7 (p) becomes singular, and the method diverges. In the arc-length methodadtis lo
gradually increased by means of the introduction of a “load level” varidie belongs to théo, 1]
interval. An additional constraint is used to fix the length of the load step.

In our numerical experiments, both the elimination of elements surroundedithyard the arc-
length method fail to ensure the convergence of Newton’s method for Vatges of the external
load.

Fortunately, we also noted that the numerical instabilities of Newton’s methmeirelated to the
density threshol,,;,. When this value was smalK(p) became near singular, and the method
failed to converge. Therefore we decided to perform a simple changariables. We rescaled the
densities so their original lower limig,,;, = 0.001, was converted into the more palatable value
= 0.1. The scaled density vecterwas defined by

1 — B Prmin — Pmi
Ti:(%x)piJr(’M‘), i=1, .., N
17,0m7n lfpmin

Naturally, the volume constraint was altered accordinglyy savas changed to

~ 1 — 7 Denin — Prmin el
V= min V* + < min Vs
(1 - pmin) 1 — Pmin Z !

i=1

Pmin
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5. NUMERICAL TESTS

Our analysis of the practical performance of the SPLP algorithm wagl lmasthe solution of five
well known topology problems, to make sure that the structures obtainesbamgatible with the
results presented in the literature. All of the problems were discretized intald-rectangular finite
elements, using bilinear interpolating functions to approximate the displacements.

Since the SLP method of Gomes and Senne outperformed the CCSA algoritBramberg
[2] for the linear compliance minimization problems (sé&§),[we decided to compare the new
algorithm with the SLP method, as well as to a SQP algorithm with a diagonabapyaiion to the
Hessian matrix. The main difference between the three methods tested is thiajettiese function
of problem @) is replaced byv f(x(*))”s for the SLP algorithm, and by f(x(*))”s + 1s7Bys
for the SQP algorithm, whemB,, is described in Subsectiagh2. In practical terms, this means that
the SQP algorithm requires the solution of quadratic programming problenils, té other two
methods involve the solution of linear programming problems. On the other then8PLP method
deals with larger problems, since it replaces vesterR” by w € R3", as described inl(3).

All of the algorithms were coded in C++. The subproblers dnd (12) were solved using
the CPLEX (ver. 12.1) software library, no matter the objective functioopset. The solution
of the linear systems that appear at each iteration of Newton’s method va@sezbusing the
Cholesky factorization routine of the CHOLMOD library (ver. 1.7), depeld by Davis and his
colleaguestl]. The tests were performed on a personal computer with a Intel Coré1iZea
processor, under the Ubuntu Linux operating system.

For all of the problems, the initial density vector was chosen so that the eieimad the same
density, and the volume of the structure was equil’toThe penalty parameter of the SIMP method,
p, was gradually increased from 1 to 3, in steps of 0.1. Each time this parawetethanged, the
objective function and the constraints were rescaled by

7 f() = c(7)
flr) = and c(r) = )
= il )= Netrall
wherer is the starting scaled density vector for that valug.dbther initial parameters used in the
algorithm were, = 0.1, andé,y,;,, = 1076,

5.1. Problem 1

The design domain of this problem, presented by Buhl, Pedersen and Sidfrgjinis shown in
Figure 1. The structure has a thickness®f m. A load of 300 kN is applied downwards at the
center of the right side of the domain. The Young’s modulus and the P&gsio of the material

are sett® x 10° N/m? and0.4, respectively. The domain is discretized into 2500 square elements.
The optimal structure must contain no more than 50% of the domain’s volumera@hesr,,, .
adopted for both the density and the Heaviside filters are set to the length@lEents.

F
L 25cm

\ \
! 100 cm !

Figure 1. Design domain for the first problem.

The results obtained for Problem 1 are shown on Tablehe table presents the final objective
function value, the number of iterations and the time spent by each algorithibotio the density
and the Heaviside filters.

The structures found by the SPLP algorithm are presented in Figliceshow how the nonlinear
analysis affects the topology of the structure, this figure also includesshits obtained using the
small displacement model. The structures found are compatible with thoss@ésn [L3].

Copyright© 2010 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engn2010)
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Table I. Results for the first problem.

Method Density filter Heaviside filter
Objective Iter.  Time (s) Objective Iter.  Time (s)

SPLP  1.0863 x 10° 1102  135.54 1.1312x 10° 1063  127.94
SLP 1.0801 x 10° 1640  175.10 1.1310 x 10° 1835  193.99
SQP 1.0863 x 10° 1001  160.34 1.1304 x 10° 933  148.74

a m m

Q

£

-

®

Q

=

IS

o

P
Density filter Heaviside filter
Figure 2. Structures obtained for the first problem.

5.2. Problem 2

This problem was proposed by Gea and Luolif][ The design domain is shown in FiguBeThe
structure’s thickness is set tol em. A load of 200 NV is applied upwards at the center of the top
side of the domain. The Young’s modulus and the Poisson’s ratio of the matexjaespectively,

10° N/em? and0.3. The domain is discretized into 3600 square elements. The volume of the optimal
structure is limited to 25% of the domain’s volume. A radius of 2.5 elements is uséukfdilters.

e -

! 80 cm

Figure 3. Design domain for the second problem.

Table Il contains the results obtained for this problem. The structures found byRh® S
algorithm are shown on Figuek It is worth noting that, for this problem, there is a huge difference
between the structures obtained considering the linear and the nonlineat. rivtmieover, the
topology is also significantly affected by the filter used.

Table 1. Results for the second problem.

Method Density filter Heaviside filter
Objective Iter. Time (s) Objective Iter. Time (s)
SPLP 325,14 741 111.06 428.08 2318 336.66
SLP 325,50 961 122.63 428.08 3980 478.73
SQP 325,33 810 172.71 428.08 2451 522.34
Copyright© 2010 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engn¢2010)
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Figure 4. Structures obtained for the second problem.
5.3. Problem 3

Figure5 shows the design domain for this problem, that was suggested by Gea aftid.urhe
thickness of the domain is set@ol cm. The magnitudes of the external loads &fe= F3 = 15 N
andF, = 30 N. The material has a Young’s modulus1®000 N/cm? and a Poisson’s ratio of3.
The domain is discretized into 2500 square elements. The maximum admissible vslaatdo
25% of the domain’s volume. A radius of 2 elements is used for the filters.

| 80 cm |
\ \

20 cm

Figure 5. Design domain for the third problem.

Tablelll shows the performance of the three algorithms for this problem. The optin@btnes
are given in Figuré.

Table Ill. Results for the third problem.

Method Density filter Heaviside filter
Objective  lter. Time (s) Objective lter. Time (s)
SPLP 88.644 900 90.40 121.95 1262 119.14
SLP 88.695 3625 295.65 121.83 2693 178.68
SQP 88.644 887 121.40 121.95 1391 180.59
5.4. Problem 4

The fourth problem, proposed by Jung and G£4,[is shown in Figure7. The thickness of the
structure is set t0.1 cm and the magnitude of the external load is se3@d@v. The material has a
Young’s modulus o000 N/cm? and a Poisson’s ratio ®f3. The domain is discretized into 3200
square elements. The final structure must contain only 20% of the domaioie. The radius
adopted for the filters corresponds to the length of 2 elements.

The results obtained for this example are presented in TeblEhe optimal topologies are shown
in Figure8. One should notice the difference between the structures obtained femtieand the
large displacement models. The structures obtained using the density 8lisrapatible to those
presented in42).

Copyright© 2010 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engn2010)
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Density filter Heaviside filter
Figure 6. Structures obtained for the third problem.
| 160 cm ‘
\ \
20cm
'F B
Figure 7. Design domain for the fourth example.
Table IV. Results for the fourth example.
Method Density filter Heaviside filter
Objective  Iter. Time(s) Objective Iter. Time (s)
SPLP 67.865 1219 139.11 91.447 1092 127.67
SLP 68.010 1929 178.54  91.447 1428 139.04
SQP 67.816 1159 191.64  91.487 1359 223.39
]
()
-
]
()
£
-V VAVAV 2 NIV
(o]
Z
Density filter Heaviside filter
Figure 8. Structures obtained for the fourth problem.
5.5. Problem 5

Our fifth problem is the well-known MBB beam, whose design domain is shovirigare 9. The
beam has a thickness 6fl m and the external load has a magnitude4of £ N. The Young’s
modulus of the material is set ®x 10° N/m? and the Poisson’s ratio t0.4. The domain is
discretized into 2400 square elements. The optimal structure must containradhrao 50% of
the domain’s volume. The radius of the filters has the same length as of 3.5 &demen

The results obtained by the algorithms are given in Tahland the optimal topologies are shown
in Figure10. As this figure reveals, the structures obtained when the nonlinear mageldshave a
large number of (curved) bars.
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lF

LZO cm

! 120 cm
Figure 9. Design domain for the fifth problem.

Table V. Results for the fifth problem.

Method Density filter Heaviside filter

Objective Iter.  Time (s) Objective Iter.  Time (s)

SPLP  6.9992 x 10* 805 84.09 7.3741 x 10* 1154  120.78
SLP 6.9903 x 10* 1047 92.82 7.3818 x 10* 2754  223.18
SQP 7.0018 x 10* 809  112.80 7.3731 x 10* 1090  157.48

©
P AV AV AN AV VLN
-
5
War7 aNPavs s nval
P
Density filter Heaviside filter
Figure 10. Structures obtained for the fifth problem.
5.6. Analysis

To allow an overall analysis of the performance of the algorithms, their ruatfpresented in Tables
| to V) were also gathered using the performance profiles introduced by BothNog [43].

For each problemp and each algorithm, lett,, ; be the time spent by to solvep. In this case,
the performance ratio of one method with respect to the best algorithm s lgyve

- lp,s
P2 min{t, s, Vs € S}

so the overall performance of algorithwis defined by the function

_ #{pePlrps <7}

Np

pS(T)

where#{C'} is the cardinality of the sef'. Functionp,(7) gives the fraction of the problems that
are solved by algorithm with a performance ratio not greater thanTherefore p,(1) gives the
fraction of the problems for which algorithmis the best algorithm.

Figurel1l shows the performance profiles of the three algorithms for the 10 problexssnied
above. The profiles for the small displacement model were also included figtire, to highlight
the effect of the introduction of the nonlinear model.

As we see in Figurd 1, when the linear model is considered, the SLP algorithm is the fastest
method for all of the problems. For these problems, the mean differenceedret®PLP and
SLP reaches 30%, while SQP is about 160% slower than the SLP algorithnitheDother
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Figure 11. Performance profiles for the 10 problems.

hand, for geometrically nonlinear structures, the SPLP algorithm is by thegfastest algorithm,
outperforming SLP by more than 50% and the SQP method by about 40%, andifzeye.

A good explanation for these results can be found in Figr¢hat shows the profiles obtained
considering the number of iterations, instead of the time spent by the algoritenge see in
this figure, the SPLP and the SQP methods take almost the same number of Beatieach the
solution, while the SLP algorithm requires, on average, 20% more iteratioribe linear model,
and nearly twice the number of iterations when considering the geometricalipear problems. In
other words, when the iterations are cheap, as it occurs under the sspédicements hypothesis,
we can afford to spent more iterations to solve a problem. However, as thespiemt on each

iteration increases, saving iterations become crucial.
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Figure 12. Profiles based on the number of iterations.

Another interesting conclusion that can be drawn from Figafeand 12, is that the piecewise
linear functionl'(s) is a very efficient approximation for the quadratic separable funetieh The
SPLP method retained the good convergence properties of the SQP algdithwith a faster
iteration, due to its linear, instead of quadratic, subproblems.

Naturally, the number of external iterations could be further reduced tisenSQP method with
a better approximation for the Hessian of the Lagrangian. Yet this woulitecte/o overheads:
the computation of matriB; would become more costly, and it would be necessary to solve one
tougher quadratic problem per iteration. In this case, it is doubtful thaiweall time spent by the

SQP algorithm would decrease.
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6. CONCLUSIONS

In this paper, we have presented a new algorithm for the topology optimizaftigaometrically
nonlinear structures. This challenging class of problems requires thgosobf one nonlinear
system per objective function evaluation, with the aggravation that théidaomatrix of this system
may become singular when the structure is subject to large displacemenentprge Newton’s
method from converging.

For dealing with iterations that are more time consuming than those encounteeadsaiving
the linear compliance minimization problems, we propose the approximation ofdbkepr by a
SPLP model, so some information about the curvature is considered buiibeblems solved at
each iteration remain linear. The new algorithm has the same global coneergmperties of the
SLP algorithm of Gomes and Senr&. [

The cost of computing the second derivatives is mitigated using a diaggoabamation for the
Hessian of the objective function, that is computed according to a strateggsed by Groenwold
and Etman11]. The numerical instabilities of Newton’s method are addressed rescadirgtisity
variables, that are shifted to the inter{@l, 1], allowing the solution of problems with large external
loads.

The performance of the SPLP algorithm was compared to a SLP and a SQBdmétie
numerical tests suggest that the new algorithm is promising. In fact, it seesostaine relatively
cheap steps, as done by the SLP method, with a moderate number of iteratidnsthe SQP
method.

As a future work, we plan to improve the efficiency of the algorithm acceteyahe solution
of the systems of equations by means of the approximate method proposedihyBAndsge and
Sigmund §4].
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