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SUMMARY

Most papers on topology optimization consider that there isa linear relation between the strains and the
displacements of the structure, meaning that the displacements of the structure are small. However, when
the external loads applied to the structure are large, the displacements also become large, so it is necessary
to suppose that there is a nonlinear relation between strains and displacements. In this case, we say that the
structure is geometrically nonlinear. In practice, this means that the linear system that needs to be solved
each time the objective function of the problem is evaluatedis replaced by an ill-conditioned nonlinear
system of equations. Moreover, the stiffness matrix and thederivatives of the problem also become harder
to compute.
The objective of this work is to solve topology optimizationproblems under large displacements through
a new optimization algorithm, named Sequential Piecewise Linear Programming (SPLP). This method rely
on the solution of convex piecewise linear programming subproblems that include second order information
about the objective function. To speed up the algorithm, these subproblems are converted into linear
programming ones. The SPLP algorithm is not only globally convergent to stationary points, but our
numerical experiments also show that it is efficient and robust. Copyright c© 2010 John Wiley & Sons,
Ltd.
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1. INTRODUCTION

Efficient methods for the solution of topology optimization problems include the well known
Method of Moving Asymptotes (MMA) and its variants (see, for example, Svanberg [1, 2],
Bruyneelet al. [3], Zillober [4], Zillober, Schittkowski and Moritzen [5]), as well as some standard
mathematical programming methods such as the Sequential Linear Programming (SLP) algorithm
(Gomes and Senne [6], Sigmund [7], Kikuchi et al. [8], Nishiwaki et al. [9]) and the Sequential
Quadratic Programming (SQP) algorithm (Etman et al. [10]). Even a hybrid scheme that uses
quadratic approximations of some separable convex approximation functions (Groenwold and
Etman [11]) has been successfully employed to solve such problems.

Most works on topology optimization consider that the structure is under smalldisplacements,
so the relation between strain and displacement can be represented by a linear model. However,
for large displacements this hypothesis is no longer valid, and we say that thestructure is
geometrically nonlinear, which means that it is necessary to adopt a nonlinear representation for
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2 F. A. M. GOMES AND T. A. SENNE

the strain-displacement relation. Due to the computational difficulties that arisewhen the geometric
nonlinearities are considered, there is just a few papers that deal with thisproblem. Among them,
we may cite those written by Jog [12], Buhl, Pedersen and Sigmund [13], Bruns and Tortorelli [14],
Gea and Luo [15], Bruns, Sigmund and Tortorelli [16], Ohsaki and Nishiwaki [17], Luo and Tong
[18], Lazarov, Schevenels and Sigmund [19], Lahuertaet al. [20], and Lee and Park [21].

A survey on this field shows that MMA-like algorithms represent the vast majority of methods
developed for solving geometrically nonlinear topology optimization problems. In this paper we
introduce an alternative algorithm, called Sequential Piecewise Linear Programming (SPLP), that
is an extension of the Sequential Linear Programming (SLP) algorithm of Gomes and Senne [6],
developed for the design of structures under small displacements.

The SPLP algorithm adds second order information to the objective function, requiring the
solution of one piecewise linear subproblem per iteration. This subproblemis further converted
to a linear programming one, in order to reduce the computational costs. The idea is to stay between
the SLP algorithm, that has cheap iterations but takes too many steps to converge, and the SQP
method, that performs a smaller number of computationally intensive iterations.

The paper is organized as follows. In Section 2 we present the topology optimization problem
under large displacements. The SPLP method is described in Section 3 and its practical
implementation is presented in Section 4. The performance of the algorithm is analyzed in Section
5, and some conclusions are presented in Section 6.

2. THE GEOMETRICALLY NONLINEAR TOPOLOGY OPTIMIZATION PROBLEM

Let Ω be a given two- or three-dimensional domain where a structure is to be built. Atopology
optimization problem is a mathematical problem that consists in determining how to distribute
material overΩ in such a way that the structure generated is optimal in some sense, and satisfies a
set of design constraints.

In the minimum compliance topology optimization problem, the objective is to find the stiffest
structure that fits into the domain, and satisfies a volume constraint and some boundary conditions.
When the structure is subject to small displacements, a linear model is used to describe the strain-
displacement relation. In this case, after the discretization ofΩ, the topology optimization problem
can be written in the form

min
ρ

fTu

s.t. K(ρ̃)u = f
nel∑

i=1

viρ̃i ≤ V
∗

ρ̃i ∈ {0, 1}, i = 1, . . . , nel,

(1)

wherenel is the number of elements of the domain,ρ̃i is a variable that indicates whether the i-th
element is filled (̃ρi = 1) or void (ρ̃i = 0), vi is the volume of thei-th element,V is the upper limit
for the volume of the structure,f is the vector of nodal forces associated to the external loads,u is
the vector of nodal displacements, andK(ρ̃) is the (global) stiffness matrix.

Since topology optimization problems are usually huge, it would not be possibleto solve
an integer nonlinear programming problem such as (1). To circumvent this problem, Bendsøe
[22] introduced theSolid Isotropic Material with Penalization(SIMP) method, where the integer
variables ρ̃i are replaced by the continuous densities0 ≤ ρi ≤ 1, that are raised to a penalty
parameterp > 1 in order to avoid the presence of intermediate values. When the SIMP method
is used, the global stiffness matrix is given byK(ρ) =

∑nel

i=1 ρ
p
iki, whereki is the stiffness matrix

of the i-th element.
If we also define a lower limitρmin for the densitiesρi, thenK(ρ) becomes symmetric and

positive definite, sou = K(ρ)−1f , and we can rewrite Problem (1) as
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TOPOLOGY OPTIMIZATION OF GEOMETRICALLY NONLINEAR STRUCTURES 3

min
ρ

fTK(ρ)−1f

s.t.
nel∑

i=1

viρi
V ∗
− 1 ≤ 0

0 < ρmin ≤ ρi ≤ 1, i = 1, . . . , nel.

(2)

When the structure is subject to large displacements, the linear strain-displacement model is no
longer valid, and we need to replace the equilibrium equationsK(ρ)u = f by a nonlinear system in
the form

R(u,ρ) = 0. (3)

Supposing thatρ is fixed, the displacement vectoru that solves (3) can be obtained by means of
the Newton’s method. In this case, the nonlinear equations are approximatedby the linear system

KT (uk,ρ)∆uk = −R(uk,ρ), (4)

whereKT = ∂R/∂u is the tangent stiffness matrix. Starting from a given vectoru0, the method
solves a sequence of systems in the form (4), and updates the displacements usinguk+1 =
uk +∆uk until the condition‖R(uk,ρ)‖ ≤ ε is satisfied, for someε > 0.

The definition ofR(u,ρ) and ofKT (uk,ρ) varies according to the hyperelastic model adopted
for the material. In this work, we use the neo-Hookean material model of Simo-Ciarlet [23, 24],
instead of the usual Saint Venant-Kirchhoff model.

Although the Saint Venant-Kirchhoff material law is far more used than othermaterial models, it
does not guarantee the existence of a solution for (3). In fact, this model can pose several difficulties
for Newton’s method, preventing its convergence (Lahuertaet al.[20]). On the other hand, Ball [25]
has shown that the system (3) always has a solution when a polyconvex constitutive model, such as
the Simo-Ciarlet neo-Hoolean material law, is used.

Moreover, the tangent stiffness matrix of the Simo-Ciarlet model is cheaperto compute than the
matrix related to the Saint Venant-Kirchhoff model, that is build up summing several terms that
depend onρ. (see, for example, [26]).

To see how systems (3) and (4) are defined, letF = [fij ] represent the deformation gradient tensor
of the structure. In the Simo-Ciarlet model, the strain-energy density function is given by (see [20])

Ŵ ≡ Ŵ (J, IC) =
1

2
λ

[
1

2
(J2 − 1)− ln J

]
+

1

2
µ(IC − 3− 2 ln J),

whereλ andµ are Laḿe constants,J = det(F) andIC = tr(FTF).
Gathering the components of the first Piola-Kirchoff stress tensor into the vector

σ =

[
∂Ŵ

∂f11

∂Ŵ

∂f21

∂Ŵ

∂f12

∂Ŵ

∂f22

]T

and definingG as the matrix of the derivatives of the shape functions with respect to the
displacements, we define

q(û(i)) =

∫

Ωi

GTσdΩi,

whereΩi and û(i) are, respectively, the domain and the vector of nodal displacements of thei-th
element. Defining the vector of internal nodal forces of the structure as

fint(u,ρ) =

nel∑

i=1

ρpiq(û
(i))

we may write the nonlinear system (3) in the form

R(u,ρ) = fint(u,ρ)− f = 0.

Copyright c© 2010 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng(2010)
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4 F. A. M. GOMES AND T. A. SENNE

Using this system we can finally write the nonlinear version of the topology optimization (2) as

min
ρ

[fint(u(ρ),ρ)]
Tu(ρ)

s.t.
nel∑

i=1

viρi
V ∗
− 1 ≤ 0

0 < ρmin ≤ ρi ≤ 1, i = 1, . . . , nel,

(5)

where we writeu ≡ u(ρ) to stress that the displacements depend onρ. The tangent stiffness matrix
used in (4) is assembled combining the contributions of thenel elements, i.e.

KT (u,ρ) =

nel∑

i=1

ρpikT (û
(e)),

wherekT (û
(e)), the tangent matrix of the i-th element, is given by

kT (û
(e)) =

∫

Ωe

GTDGdΩe.

The tangent stiffness modulus matrixD used in this last formula is obtained derivingσ with respect
to the components of the deformation gradient.

3. SEQUENTIAL PIECEWISE LINEAR PROGRAMMING

The sequential linear programming method proposed by Gomes and Senne [6] has shown a good
performance for the solution of topology optimization problems under small displacements, mainly
due to its quite cheap iterations.

In the presence of large displacements, however, it is not just the time spent per each iteration
that counts. Since each computation of the objective function of problem (5) requires the solution of
one nonlinear system, it is worth devising a method that reduces the number ofiterations, as it may
save time. But some care still must be taken to avoid spoiling the benefits of this time reduction by
taking a computationally expensive iteration.

In this section we present an algorithm that is based on the solution of piecewise linear
programming problems. The method is particularly well suited for solving difficult topology
optimization problems, since it converges as quickly as a SQP algorithm, but its iterations require
just the solution of linear programming problems, as in a SLP method.

3.1. Description of the method

Consider the nonlinear programming problem

min f(x)
s.t. c(x) = 0

xl ≤ x ≤ xu,
(6)

where the functionsf : Rn → R andc : Rn → R
m have Lipschitz continuous first derivatives, and

xl,xu ∈ R
n are vectors that define, respectively, the lower and upper bounds for x. The conversion

of a topology optimization problem such as (5) to the form (6) is an easy task, requiring just the
introduction of a slack variable to transform the volume constraint into an equation.

A solution vectorx ∈ R
n is calledfeasibleif all of the constraints and bounds of (6) are satisfied

at x. Since the bound constraints are never violated by the SPLP algorithm, the infeasibility of a
pointx is measured by the function

ϕ(x) = ||c(x)||1.

We say thatx is aϕ-stationarypoint if it satisfies the Karush-Kuhn-Tucker (KKT) conditions of
problem

min ϕ(x)
s.t. xl ≤ x ≤ xu,
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TOPOLOGY OPTIMIZATION OF GEOMETRICALLY NONLINEAR STRUCTURES 5

We also say that a feasible pointx is regular if the gradients of the active constraints atx are linearly
independent.

For most topology optimization problems, the second derivatives of the objective function are
expensive to evaluate, so algorithms that require this kind of information areseldom used. With the
aim of obtaining a good approximation forf(x) (i.e. using some second order information) without
sacrificing the efficiency of the optimization algorithm, in the SPLP method the objective function
of (6) around a pointx is approximated by

f(x+ s) ≈ f(x) +∇f(x)T s+ Γk(s), (7)

whereΓk : Rn → R is a convex non-negative piecewise linear function that gives some information
about the curvature off . The definition ofΓk will be discussed in detail in Subsection4.1.

On their turn, the equality constraints of problem (6) are approximated by the linear model

c(x+ s) ≈ c(x) +A(x)s, (8)

whereA(x) = [∇c1(x) . . .∇cm(x)]
T is the Jacobian matrix of the constraints.

Using (7) and (8), problem (6) can be approximated by

min mk(s) = ∇f(x
(k))T s+ Γk(s)

s.t. A(x(k))s+ c(x(k)) = 0

xl ≤ x(k) + s ≤ xu

‖s‖∞ ≤ δk

(9)

whereδk > 0. The last inequality in (9) defines a trust region, adopted to prevent the subproblem
from becoming unbounded and to ensure the global convergence of theSPLP algorithm. In practice,
the box constraints and the trust region inequality are coupled together, sowe simply write
sl ≤ s ≤ su where

sl = max{−δ,xl − x(k)} and su = min{δ,xu − x(k)}. (10)

The central idea of the algorithm is simple: at thek-th iteration of the algorithm, we solve the
piecewise linear problem (9), and use its solution,sc, to obtain a trial pointx(k+1) = x(k) + sc that
is a (supposedly) better approximate solution for the original problem (6).

However, this scheme does no prevent the feasible set of problem (9) from being empty. When this
happens, a feasibility restoration step must precede the computation ofsc. Following the suggestion
of Gomes and Senne [6], this restoration step is obtained solving the auxiliar subproblem

min M(x(k), s) = ||A(x(k))s+ c(x(k))||1
s.t. xl ≤ x(k) + s ≤ xu

‖s‖∞ ≤ 0, 8δk.
(11)

where,M(x(k), s) is the first order approximation forϕ(x) atx(k).
The one-norm is used in (11) to allow the conversion of this problem into the linear programming

problem
min M(x(k), s, z) = eT z

s.t. A(x(k))s+E(x(k))z = −c(x(k))
max{−0.8δk, xl − x(k)} ≤ s ≤ min{0.8δk, xu − x(k)}
z ≥ 0,

(12)

wherez ∈ R
mI is the vector of slack variables of themI infeasible linearized constraints,e =

[1 1 . . . 1]T , and matrixE is defined by

Ej(x
(k)) =

{
Iij , if cij (x

(k)) < 0,
−Iij , if cij (x

(k)) > 0,
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6 F. A. M. GOMES AND T. A. SENNE

whereIi is the i-th column of the identity matrix of ordermI , andi1, i2, . . . , imI
are the indices

of the nonzero components ofc(x(k)). A feasible point for (12) can be trivially obtained by taking
s = 0 andzj = |cij (x

(k))|, j = 1, . . . ,mI .
We start an iteration of the SPLP algorithm findingsn, the solution of problem (12). If

M(x(k), sn) = 0, we also solve problem (9), obtaining the stepsc. On the other hand, if
M(x(k), sn) > 0, we simply setsc = sn. One should notice that the trust region radius used in (11)
is smaller thanδk, in order to increase the feasible region of problem (9) and allow the reduction of
the objective function.

A trial step sc is only accepted ifx(k) + sc is a better solution for (6) thanx(k). To take this
decision we rely on the merit function

ψ(x, θ) = θf(x) + (1− θ)ϕ(x),

whereθ ∈ [0, 1] is a parameter that defines the balance between the two objectives of the method,
that are the reduction of the objective functionf(x) and of the infeasibility measureϕ(x). Following
the scheme presented in [27, 6], we defineθk = min{θsupk , θlargek }, where

θmin
k = min {1, θ0, . . . , θk−1} , θlargek =

[
1 +

N

(k + 1)1.1

]
θmin
k ,

θsupk = sup{θ ∈ [0, 1] |Pred ≥ 0.5P fsb
red },

andN ≥ 0 is a large parameter (e.g.N = 106) used to allow a nonmonotone decrease ofθ.
To decide if the stepsc is to be accepted or not, we compare the actual reduction of the merit

function with the reduction predicted by the model (9). The actual reduction ofψ betweenx(k) and
x(k) + sc is given by

Ared = θ[f(x)− f(x+ sc)] + (1− θ)[ϕ(x)− ϕ(x+ sc)],

while the predicted reduction is defined as

Pred = θ[−∇f(x)T sc − Γk(sc)] + (1− θ)[M(x,0)−M(x, sc)],

The stepsc is accepted if the merit function is reduced at least by one tenth of the reduction
predicted by the linear model, i.e. ifAred ≥ 0.1Pred. If this condition is not verified,δ is reduced
and the step is recomputed. Besides, the trust region radius may also be increased or decreased
depending on the ratioAred/Pred. These and other details of the method are fully described in
Algorithm 1.

3.2. Global convergence

In [6], Gomes and Senne present a SLP algorithm that is globally convergent under the hypothesis
that the sequence{x(k)} is bounded, which is trivially satisfied by bound constrained problems such
as (5). The global convergence of Algorithm 1 can be easily derived from the lemmas and theorems
presented in [6], rewriting Lemmas 3.3 and 3.7 to cope with the piecewise linear functionΓk(s).

The convergence proofs are divided into three steps. First, it is shownthat the algorithm is well
defined, i.e., that a new iteratex(k+1) is eventually obtained after repeating the steps of the algorithm
a finite number of times. Then it is proved that every limit point of an infinite sequence{x(k)} is
ϕ-stationary. Finally, it is shown that there exists a limit pointx∗ that is stationary for (6) whenever
the limit points of the sequence{x(k)} are feasible and regular. The reader is referred to [28] for the
complete convergence proofs.

4. IMPLEMENTATION DETAILS

4.1. The piecewise linear model

The piecewise linear functionΓk(s) that is used to construct the modelmk(s) must approximate the
quadratic functionγk(s) = 1

2s
TBks, whereBk is a symmetric positive definite matrix. Since such

model is rebuilt at each iteration, we will drop off the subscriptk to simplify the notation.

Copyright c© 2010 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng(2010)
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TOPOLOGY OPTIMIZATION OF GEOMETRICALLY NONLINEAR STRUCTURES 7

Algorithm 1 The SPLP algorithm.

Require: δmin > 0, δ0 ≥ δmin and x(0) such thatxl ≤ x(0) ≤ xu

1: θ0 ← 1; θmax ← 1; k ← 0
2: while a stopping criterion is not satisfied,do
3: Determinesn, the solution of (12)
4: if M̄(x(k), sn, z) = 0, then
5: Starting fromsn, determinesc, the solution of (9)
6: else
7: sc ← sn.
8: end if
9: Computeθlargek andθsupk

10: θk ← min{θlargek , θsupk , θmax}
11: if Ared ≥ 0.1Pred then
12: x(k+1) ← x(k) + sc
13: ComputeA(x(k+1)), Bk+1, E(x(k+1)) and∇f(x(k+1)).
14: if Ared ≥ 0.5Pred, then
15: δk+1 ← min{1.5δk, ‖xu − xl‖∞}
16: else if Ared ≥ 0.2Pred, then
17: δk+1 ← δk
18: else
19: δk+1 ← 0.25δk
20: end if
21: δk+1 ← max{δk+1, δmin}
22: θmax ← 1
23: k ← k + 1
24: else
25: δk ← max{0.25‖sc‖∞, 0.1δk}
26: θmax ← θk
27: end if
28: end while

Supposing thatB is diagonal, bothγ(s) andΓ(s) are separable, so we can write

Γ(s) =

n∑

i=1

Γi(si) ≈ γ(s) =

n∑

i=1

γi(si) =

n∑

i=1

1

2
bis

2
i ,

wherebi is the i-th diagonal element ofB. We define each functionΓi(si) following the guidelines
proposed by Byrdet al. [29, 30].

Let Γi(si) be formed by2r + 1 line segments, each one defined by a linear functionℓ
(j)
i (si), j =

0, . . . , 2r. In this case, sinceB is positive definite, we may write

Γi(si) = max
j∈{0,...,2r}

{
ℓ
(j)
i (si)

}
.

Eachℓ(j)i (si) should interpolateγi(si) and its first derivative at a pointt(j)i . The definition of the
interpolation points depends on two scalars,Di andUi, and on the lower and upper limits fors,
given in (10). Three cases are considered.

Case 1. If|xi − xli | ≤ 10−6, then we definet(0)i = Di = 0, chooseUi > 0 and set

t
(j)
i = 0.32r−jUi, j = 1, . . . , 2r.

Case 2. If|xi − xui
| ≤ 10−6, then we definet(2r)i = Ui = 0, chooseDi < 0 and set

t
(j)
i = 0.3jDi, j = 0, . . . , 2r − 1.

Copyright c© 2010 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng(2010)
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8 F. A. M. GOMES AND T. A. SENNE

Case 3. Otherwise, we chooseDi < 0 andUi > 0, and set

t
(j)
i =





0.3jDi, j = 0, . . . , r − 1,
0, j = r,
0.32r−jUi, j = r + 1, . . . , 2r.

Instead of adopting the elegant but complicated choice ofDi andUi given in [30], we simply
define

Di = max{sli , min{−0.5δ, 2vi}} and Ui = min{sui
, max{0.5δ, 2vi}},

wherevi = −(∂f(x)/∂xi)/bi is the unconstrained minimum of the quadratic function

q(si) =
1

2
bis

2
i +

∂f(x)

∂xi
si.

SinceΓ(s) is a convex function, we can convert (9) into a linear programming withn(2r + 1)
variables. This is done by means of a change of variables defined by

si =

2r∑

j=0

ωij , i = 1, . . . , n, (13)

where the new variableωij is associate to thej-th line segment ofΓi(si). The upper and lower
bounds for these new variables are given by

sli ≤ ωi0 ≤ β
(0)
i ,

0 ≤ ωj ≤ β
(j)
i − β

(j−1)
i , j = 1, . . . , 2r − 1,

0 ≤ ω2r ≤ sui
− β

(2r)
i ,

where β(j)
i = 1

2 (t
(j)
i + t

(j+1)
i ) is the breakpoint between thej-th and the(j + 1)-th adjacent

segments ofΓi(si).
Preliminary numerical experiments suggest that it is sufficient to use three interpolation points

(i.e. r = 1), since no significant improvement on the number of iterations is obtained forfive points
(r = 2), and the linear programming problems becomes prohibitive large forr > 2.

4.2. Choice of the diagonal matrix

In principle, a good choice for matrixBk would be the diagonal of the Hessian of the objective
function (or of the Lagrangian) of problem (6), evaluated atx(k). However, for topology
optimization problems, even this matrix is too expensive to obtain. Moreover, in the presence of
large displacements, there is no guarantee that the Hessian is positive definite.

If we put aside the idea of using the true Hessian, the first alternative thatcomes to mind is the
adoption of a limited-memory quasi-Newton approximation forBk, as the one proposed by Goulart
and Herskovits [31].

Another interesting option is to approximate the Hessian by a diagonal matrix defined upon
intermediate variables. In this case, given a set ofn intermediate variablesyi ≡ yi(x), the function
f(x) is approximated by

f̂(y) = f(y(k)) +

n∑

i=1

∂f(y(k))

∂yi
(yi − y

(k)
i ), (14)

where yi = 1/xi or yi = xai

i , depending on if we use the reciprocal intermediate variables
introduced by Etman, Groenwold and Rooda [10], or the exponential variables of Groenwold and
Etman [11]. In this kind of approximation,̂f(y) is a linear function ony, but a nonlinear function
of the original variablesx, so its Hessian may be used to defineBk.

Copyright c© 2010 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng(2010)
Prepared usingnmeauth.cls DOI: 10.1002/nme



TOPOLOGY OPTIMIZATION OF GEOMETRICALLY NONLINEAR STRUCTURES 9

In our preliminary tests, the use of exponential intermediate variables outperformed both the
reciprocal variables scheme and the quasi-Newton approximation. Therefore, we decided to use this
approach, although we recognize that further experiments should be conducted in order to establish
the best alternative for computingBk.

For the exponential variables, the approximate function (14) is given by

f̂E(x) = f(x(k)) +

n∑

i=1



(

xi

x
(k)
i

)a
(k)
i

− 1



(
x
(k)
i

a
(k)
i

)
∂f(x(k))

∂xi
,

where, acoording to Fadel, Riley and Barthelemy [32], the exponentsa(k)i should be obtained
imposing the condition

∂f̂E(x
(k−1))

∂xi
=
∂f(x(k−1))

∂xi
,

which gives

a
(k)
i = 1 + ln

(
∂f(x(k−1))

∂xi

/
∂f(x(k))

∂xi

)/
ln
(
x
(k−1)
i /x

(k)
i

)
.

Naturally, some precautions should be taken when the terms inside a logarithm isnegative or
zero. In such cases, we adopta

(k)
i = −1, which reverts to the reciprocal approximation scheme.

4.3. Filtering

A näıve implementation of a topology optimization algorithm that uses the SIMP method in
combination with 4-node rectangular finite elements and bilinear interpolating functions may result
in a structure containing a checkerboard-like pattern (Dı́az and Sigmund [33]).

To circumvent this problem, it is a common practice to adopt a filter that replacesthe density of
each elementei by a value that depends on the densities of the elements that belong to a ballB(i, r)
with radiusrmax, centered inei.

Two filters are available in the SPLP algorithm: the density filter of Bruns and Tortorelli [34], and
the Heaviside filter proposed by Guest, Prevost and Belystchko [35], and adapted by Sigmund [36].

When the density filter is used,ρi is replaced by a weighted mean of the densities of the elements
belonging to a neighborhoodBi. This weighted density is given by

φi ≡ φi(ρ) =
∑

j∈Bi

ξj(sij)∑
j∈Bi

ξj(sij)
ρj ,

where

ξj(sij) =

{
exp(−s2ij/2(r/3)

2)

2π(r/3) , if sij ≤ r,
0, if sij > r,

andsij is the Euclidean distance between the centroids of elementsi andj.
Although the filtered densities must be used not only in the objective function,but also in the

constraints, this filter preserves the linearity of the volume constraint.
The idea behind the Heaviside filter is to round up each weighted densityφi to 1 if φi > ρmin, so

φi can assume just two discrete values,ρmin or 1. However, with this modification, the optimization
problem becomes non-differentiable. This difficulty is circumvented approximatingφi by

ηi(ρ) = 1− exp(−βφi) + φi exp(−β),

whereβ ≥ 0 is a penalty parameter that controls the curvature of this function.
It should be noted that not onlyηi(ρ) is differentiable, but it also reduces to the density filter when

β = 0. To avoid numerical instabilities, Sigmund [36] suggests the gradual increase ofβ from 1 to
500. However, in our experiments, best results were obtained adopting the fixed valueβ = 1.5. The
only side effect of this approach is that the volume constraint becomes nonlinear.
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4.4. Stopping criteria

One important feature of our algorithm is the fact that the stopping criteria is not based only on the
step size, or on the variation of the objective function value. Instead, we adopt a mathematically
sound criterion, aiming to ensure that the solution obtained is close to a stationary point for problem
(6).

Let PX(y) be the orthogonal projection ofy onto the setX = {x ∈ R
n|xl ≤ x ≤ xu},

∇ℓ(x(k),λ(k)) be the gradient of the Lagrangian andλ denote the vector of the Lagrange multipliers
associated to the equality constraints of (6) (given as a by product of the tangent step). We say that
Algorithm 1 has found an good approximation for a stationary point when

‖gP (x
(k))‖∞ < 10−3,

wheregP (x(k)) = PX(x(k) −∇ℓ(x(k),λ(k)))− x(k) is the projected gradient atx(k). In addition
to this criterion, we also limit to 50 the number of iterations of the algorithm for the intermediate
values of the penalty parameter of the SIMP method. For the last value ofρ, the limit on the number
of iterations is increased to 10000, so only the projected gradient is used inpractice.

4.5. Solution of the nonlinear systems

Each time the objective function of problem (5) is evaluated, it is necessary to solve the
nonlinear systemR(u(ρ),ρ) = 0. In our algorithm, this is done applying Newton’s method until
‖R(uk,ρ)‖ ≤ 10−6.

The only drawback of this approach is that there is no guarantee that the tangent stiffness
matrixKT (ρ) that appears in the linear systemKT (uk,ρ)∆uk = −R(uk,ρ) is positive definite, so
Newton’s method may fail to converge to a solution. A strategy for circumventing this problem was
proposed by Buhl, Pedersen and Sigmund [13], and consists in the removal of nodes surrounded by
void (or minimum density) elements from the convergence criterion.

Another strategy is the arc-length method, proposed by Wempner [37] and improved by Riks [38],
Batoz and Dhatt [39] and Crisfield [40, 26]. To understand how this method works, it is important
to remember that, if the nodal displacements of a structure are large, the load-deflection curve is
not only nonlinear, but also may contain limit points, i.e. points where the curveattain a local
maximum, a local minimum or where the tangent is vertical. When Newton’s method reaches a
limit point, KT (ρ) becomes singular, and the method diverges. In the arc-length method, the load is
gradually increased by means of the introduction of a “load level” variable,that belongs to the(0, 1]
interval. An additional constraint is used to fix the length of the load step.

In our numerical experiments, both the elimination of elements surrounded by void and the arc-
length method fail to ensure the convergence of Newton’s method for largevalues of the external
load.

Fortunately, we also noted that the numerical instabilities of Newton’s method were related to the
density thresholdρmin. When this value was small,KT (ρ) became near singular, and the method
failed to converge. Therefore we decided to perform a simple change ofvariables. We rescaled the
densities so their original lower limit,ρmin = 0.001, was converted into the more palatable value
ρmin = 0.1. The scaled density vectorτ was defined by

τi =

(
1− ρmin

1− ρmin

)
ρi +

(
ρmin − ρmin

1− ρmin

)
, i = 1, . . . , nel.

Naturally, the volume constraint was altered accordingly, soV ∗ was changed to

Ṽ =

(
1− ρmin

1− ρmin

)
V ∗ +

(
ρmin − ρmin

1− ρmin

) nel∑

i=1

vi.
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5. NUMERICAL TESTS

Our analysis of the practical performance of the SPLP algorithm was based on the solution of five
well known topology problems, to make sure that the structures obtained arecompatible with the
results presented in the literature. All of the problems were discretized into 4-node rectangular finite
elements, using bilinear interpolating functions to approximate the displacements.

Since the SLP method of Gomes and Senne outperformed the CCSA algorithm ofSvanberg
[2] for the linear compliance minimization problems (see [6]), we decided to compare the new
algorithm with the SLP method, as well as to a SQP algorithm with a diagonal approximation to the
Hessian matrix. The main difference between the three methods tested is that theobjective function
of problem (9) is replaced by∇f(x(k))T s for the SLP algorithm, and by∇f(x(k))T s+ 1

2s
TBks

for the SQP algorithm, whereBk is described in Subsection4.2. In practical terms, this means that
the SQP algorithm requires the solution of quadratic programming problems, while the other two
methods involve the solution of linear programming problems. On the other hand,the SPLP method
deals with larger problems, since it replaces vectors ∈ R

n by ω ∈ R
3n, as described in (13).

All of the algorithms were coded in C++. The subproblems (9) and (12) were solved using
the CPLEX (ver. 12.1) software library, no matter the objective function adopted. The solution
of the linear systems that appear at each iteration of Newton’s method was obtained using the
Cholesky factorization routine of the CHOLMOD library (ver. 1.7), developed by Davis and his
colleagues[41]. The tests were performed on a personal computer with a Intel Core i7-3612QM
processor, under the Ubuntu Linux operating system.

For all of the problems, the initial density vector was chosen so that the elements had the same
density, and the volume of the structure was equal toV ∗. The penalty parameter of the SIMP method,
p, was gradually increased from 1 to 3, in steps of 0.1. Each time this parameterwas changed, the
objective function and the constraints were rescaled by

f̃(τ ) =
f(τ )

‖∇f(τ 0)‖∞
and c̃(τ ) =

c(τ )

‖∇c(τ 0)‖∞
,

whereτ 0 is the starting scaled density vector for that value ofp. Other initial parameters used in the
algorithm wereδ0 = 0.1, andδmin = 10−6.

5.1. Problem 1

The design domain of this problem, presented by Buhl, Pedersen and Sigmund [13], is shown in
Figure1. The structure has a thickness of0.1m. A load of 300 kN is applied downwards at the
center of the right side of the domain. The Young’s modulus and the Poisson’s ratio of the material
are set to3× 109N/m2 and0.4, respectively. The domain is discretized into 2500 square elements.
The optimal structure must contain no more than 50% of the domain’s volume. Theradiusrmax

adopted for both the density and the Heaviside filters are set to the length of 3.5 elements.

100 cm

25 cm
F

Figure 1. Design domain for the first problem.

The results obtained for Problem 1 are shown on TableI. The table presents the final objective
function value, the number of iterations and the time spent by each algorithm for both the density
and the Heaviside filters.

The structures found by the SPLP algorithm are presented in Figure2. To show how the nonlinear
analysis affects the topology of the structure, this figure also includes the results obtained using the
small displacement model. The structures found are compatible with those presented in [13].

Copyright c© 2010 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng(2010)
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12 F. A. M. GOMES AND T. A. SENNE

Table I. Results for the first problem.

Method Density filter Heaviside filter

Objective Iter. Time (s) Objective Iter. Time (s)

SPLP 1.0863× 10
5 1102 135.54 1.1312× 10

5 1063 127.94
SLP 1.0801× 10

5 1640 175.10 1.1310× 10
5 1835 193.99

SQP 1.0863× 10
5 1001 160.34 1.1304× 10

5 933 148.74

Li
ne

ar
N

on
lin

ea
r

Density filter Heaviside filter

Figure 2. Structures obtained for the first problem.

5.2. Problem 2

This problem was proposed by Gea and Luo in [15]. The design domain is shown in Figure3. The
structure’s thickness is set to0.1 cm. A load of 200N is applied upwards at the center of the top
side of the domain. The Young’s modulus and the Poisson’s ratio of the material are, respectively,
105N/cm2 and0.3. The domain is discretized into 3600 square elements. The volume of the optimal
structure is limited to 25% of the domain’s volume. A radius of 2.5 elements is used for the filters.

F

80 cm

20 cm

Figure 3. Design domain for the second problem.

Table II contains the results obtained for this problem. The structures found by the SPLP
algorithm are shown on Figure4. It is worth noting that, for this problem, there is a huge difference
between the structures obtained considering the linear and the nonlinear model. Moreover, the
topology is also significantly affected by the filter used.

Table II. Results for the second problem.

Method Density filter Heaviside filter

Objective Iter. Time (s) Objective Iter. Time (s)

SPLP 325, 14 741 111.06 428.08 2318 336.66
SLP 325, 50 961 122.63 428.08 3980 478.73
SQP 325, 33 810 172.71 428.08 2451 522.34
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Density filter Heaviside filter

Figure 4. Structures obtained for the second problem.

5.3. Problem 3

Figure5 shows the design domain for this problem, that was suggested by Gea and Luo [15]. The
thickness of the domain is set to0.1 cm. The magnitudes of the external loads areF1 = F3 = 15N
andF2 = 30N . The material has a Young’s modulus of10000N/cm2 and a Poisson’s ratio of0.3.
The domain is discretized into 2500 square elements. The maximum admissible volumeis set to
25% of the domain’s volume. A radius of 2 elements is used for the filters.

F
F

F1
2

3

20 cm

80 cm

Figure 5. Design domain for the third problem.

TableIII shows the performance of the three algorithms for this problem. The optimal topologies
are given in Figure6.

Table III. Results for the third problem.

Method Density filter Heaviside filter

Objective Iter. Time (s) Objective Iter. Time (s)

SPLP 88.644 900 90.40 121.95 1262 119.14
SLP 88.695 3625 295.65 121.83 2693 178.68
SQP 88.644 887 121.40 121.95 1391 180.59

5.4. Problem 4

The fourth problem, proposed by Jung and Gea [42], is shown in Figure7. The thickness of the
structure is set to0.1 cm and the magnitude of the external load is set to30N . The material has a
Young’s modulus of3000N/cm2 and a Poisson’s ratio of0.3. The domain is discretized into 3200
square elements. The final structure must contain only 20% of the domain’s volume. The radius
adopted for the filters corresponds to the length of 2 elements.

The results obtained for this example are presented in TableIV. The optimal topologies are shown
in Figure8. One should notice the difference between the structures obtained for thesmall and the
large displacement models. The structures obtained using the density filter are compatible to those
presented in [42].
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Density filter Heaviside filter

Figure 6. Structures obtained for the third problem.

F

20 cm

160 cm

Figure 7. Design domain for the fourth example.

Table IV. Results for the fourth example.

Method Density filter Heaviside filter

Objective Iter. Time (s) Objective Iter. Time (s)

SPLP 67.865 1219 139.11 91.447 1092 127.67
SLP 68.010 1929 178.54 91.447 1428 139.04
SQP 67.816 1159 191.64 91.487 1359 223.39
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N
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lin

ea
r

Density filter Heaviside filter

Figure 8. Structures obtained for the fourth problem.

5.5. Problem 5

Our fifth problem is the well-known MBB beam, whose design domain is shown inFigure9. The
beam has a thickness of0.1m and the external load has a magnitude of400 kN . The Young’s
modulus of the material is set to3× 109N/m2 and the Poisson’s ratio to0.4. The domain is
discretized into 2400 square elements. The optimal structure must contain no more than 50% of
the domain’s volume. The radius of the filters has the same length as of 3.5 elements.

The results obtained by the algorithms are given in TableV, and the optimal topologies are shown
in Figure10. As this figure reveals, the structures obtained when the nonlinear model isused have a
large number of (curved) bars.
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20 cm

F

120 cm

Figure 9. Design domain for the fifth problem.

Table V. Results for the fifth problem.

Method Density filter Heaviside filter

Objective Iter. Time (s) Objective Iter. Time (s)

SPLP 6.9992× 10
4 805 84.09 7.3741× 10

4 1154 120.78
SLP 6.9903× 10

4 1047 92.82 7.3818× 10
4 2754 223.18

SQP 7.0018× 10
4 809 112.80 7.3731× 10

4 1090 157.48
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ea
r

Density filter Heaviside filter

Figure 10. Structures obtained for the fifth problem.

5.6. Analysis

To allow an overall analysis of the performance of the algorithms, their runtimes (presented in Tables
I to V) were also gathered using the performance profiles introduced by Dolanand Moŕe [43].

For each problemp and each algorithms, let tp, s be the time spent bys to solvep. In this case,
the performance ratio of one method with respect to the best algorithm is given by

rp,s =
tp,s

min {tp,s, ∀s ∈ S}
,

so the overall performance of algorithms is defined by the function

ρs(τ) =
# {p ∈ P | rp,s ≤ τ}

np
,

where#{C} is the cardinality of the setC. Functionρs(τ) gives the fraction of the problems that
are solved by algorithms with a performance ratio not greater thanτ . Therefore,ρs(1) gives the
fraction of the problems for which algorithms is the best algorithm.

Figure11 shows the performance profiles of the three algorithms for the 10 problems presented
above. The profiles for the small displacement model were also included in the figure, to highlight
the effect of the introduction of the nonlinear model.

As we see in Figure11, when the linear model is considered, the SLP algorithm is the fastest
method for all of the problems. For these problems, the mean difference between SPLP and
SLP reaches 30%, while SQP is about 160% slower than the SLP algorithm. Onthe other
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Figure 11. Performance profiles for the 10 problems.

hand, for geometrically nonlinear structures, the SPLP algorithm is by largethe fastest algorithm,
outperforming SLP by more than 50% and the SQP method by about 40%, on theaverage.

A good explanation for these results can be found in Figure12, that shows the profiles obtained
considering the number of iterations, instead of the time spent by the algorithms.As we see in
this figure, the SPLP and the SQP methods take almost the same number of iterations to reach the
solution, while the SLP algorithm requires, on average, 20% more iterations for the linear model,
and nearly twice the number of iterations when considering the geometrically nonlinear problems. In
other words, when the iterations are cheap, as it occurs under the small displacements hypothesis,
we can afford to spent more iterations to solve a problem. However, as the timespent on each
iteration increases, saving iterations become crucial.

1 1.1 1.2 1.3 1.4 1.5 1.6
0

0.2

0.4

0.6

0.8

1

t

ρ s(t
)

 

 

SLP
SPLP
SQP

1 1.5 2 2.5 3 3.5 4 4.5
0

0.2

0.4

0.6

0.8

1

t

ρ s(t
)

 

 

SLP
SPLP
SQP

Linear Nonlinear

Figure 12. Profiles based on the number of iterations.

Another interesting conclusion that can be drawn from Figures11 and12, is that the piecewise
linear functionΓ(s) is a very efficient approximation for the quadratic separable functionγ(s). The
SPLP method retained the good convergence properties of the SQP algorithm, but with a faster
iteration, due to its linear, instead of quadratic, subproblems.

Naturally, the number of external iterations could be further reduced using the SQP method with
a better approximation for the Hessian of the Lagrangian. Yet this would create two overheads:
the computation of matrixBk would become more costly, and it would be necessary to solve one
tougher quadratic problem per iteration. In this case, it is doubtful that theoverall time spent by the
SQP algorithm would decrease.
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6. CONCLUSIONS

In this paper, we have presented a new algorithm for the topology optimizationof geometrically
nonlinear structures. This challenging class of problems requires the solution of one nonlinear
system per objective function evaluation, with the aggravation that the Jacobian matrix of this system
may become singular when the structure is subject to large displacements, preventing Newton’s
method from converging.

For dealing with iterations that are more time consuming than those encountered when solving
the linear compliance minimization problems, we propose the approximation of the problem by a
SPLP model, so some information about the curvature is considered but the subproblems solved at
each iteration remain linear. The new algorithm has the same global convergence properties of the
SLP algorithm of Gomes and Senne [6].

The cost of computing the second derivatives is mitigated using a diagonal approximation for the
Hessian of the objective function, that is computed according to a strategy proposed by Groenwold
and Etman [11]. The numerical instabilities of Newton’s method are addressed rescaling the density
variables, that are shifted to the interval[0.1, 1], allowing the solution of problems with large external
loads.

The performance of the SPLP algorithm was compared to a SLP and a SQP method. The
numerical tests suggest that the new algorithm is promising. In fact, it seems tocombine relatively
cheap steps, as done by the SLP method, with a moderate number of iterations,as in the SQP
method.

As a future work, we plan to improve the efficiency of the algorithm accelerating the solution
of the systems of equations by means of the approximate method proposed by Amir, Bendsøe and
Sigmund [44].
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