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Abstract. Pre-aggregation functions follow the basic concept of aggre-
gation functions with the difference that they are just directional increas-
ing. In this work, we present a new pre-aggregation function by gener-
alizing the Choquet integral in such a way that the product operator is
substituted by overlap functions. We call this new concept as Choquet-
like overlap based integral (CO-integral). Since Lucca et al. presented
the concept of pre-aggregation having an excellent performance in Fuzzy
Rule-Based Classification Systems (FRBCSs), we also apply a particular
CO-integral in FRBCSs and compare our new generalization with the
best pre-aggregation function proposed by them. We demonstrate that
this CO-integral can be used as an alternative of the application of pre-
aggregations by offering new possibilities for defining another aggregation
operator in the fuzzy reasoning method (FRM) of FRBCSs.

Keywords: pre-aggregation functions, Choquet integral, overlap func-
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1 Introduction

Pre-aggregations functions is a new concept presented by Lucca et al. [1], where
the required concept of aggregation function is partially satisfied, that is, in
spite of the boundary condition be totally fulfilled the monotonicity is used
along some a direction (directional increasing [2]) but not for all directions. As
done in [1], in this paper, we present an application of our approach in Fuzzy
Rule-Based Classification Systems (FRBCSs) [3] since this kind of system deals
with interpretable models by using linguist labels in their rules. FRBCSs have



been applied in severals real world problems, including industry [4], health [5],
economy [6] and many others.

The Fuzzy Reasoning Method (FRM) is a key component in FRBCS since
it determines how the information learned in form of fuzzy rules is used to clas-
sify new instances. Barrenechea et al. [7] introduced a new FRM that takes into
account the information given by all fired fuzzy rules when classifying a new
instance. To do so, they considered the Choquet integral [8] as the aggregation
operator, along with a fuzzy measure called power measure, which raises the
standard cardinal measure to the power q, which is learnt using an genetic al-
gorithm [9] in order to adapt this parameter for each class. Later, Lucca et al
generalized the Choquet integral by substituting the product by a t-norm [1].

In this work, based on the idea proposed in [1], we propose a new general-
ization of the standard Choquet integral. More precisely we propose to change
the product operator of the Choquet integral by an overlap function, and thus,
introducing the concept of Choquet-like overlap-based integral (CO-integral).
We also apply this new concept in FRBCSs to test the suitability of the new
aggregation operator.

In order to demonstrate the quality of our approach, we have selected 30
datasets that are accessible in KEEL5 database repository [10]. We analyze the
behavior of our CO-integrals with respect to the best generalization presented
by Lucca et al. in [1]. Our conclusions are supported by the well-known Wilcoxon
signed-rank test [11].

The paper is organized as follows. Section 2 presents some preliminary con-
cepts that are necessary to develop the paper. The new concept of CO-integrals
is presented in Section 3. We explain the experimental framework, the results
achieved by the application of CO-integral in FRBCSs and the analyze of these
results in Section 4. The main conclusions are drawn in Section 5.

2 Theoretical Framework

In this section we introduce some preliminaries concepts necessary to understand
the paper.

Definition 1. A function A : [0, 1]n → [0, 1] is said to be an n-ary aggregation
function if the following conditions hold:

(A1) A is increasing6 in each argument: for each i ∈ {1, . . . , n}, if xi ≤ y, then
A(x1, . . . , xn) ≤ A(x1, . . . , xi−1, y, xi+1, . . . , xn);

(A2) A satisfies the boundary conditions: A(0, . . . , 0) = 0 and A(1, . . . , 1) = 1.

Let r = (r1, . . . , rn) be a real n-dimensional vector, r 6= 0. A function F :
[0, 1]n → [0, 1] is directionally increasing[2] with respect to r (r-increasing, for

5 http://www.keel.es
6 In this paper, an increasing (decreasing) function does not need to be strictly in-

creasing (decreasing).



short) if for all (x1, . . . , xn) ∈ [0, 1]n and c > 0 such that (x1+cr1, . . . , xn+crn) ∈
[0, 1]n it holds that

F (x1 + cr1, . . . , xn + crn) ≥ F (x1, . . . , xn). (1)

Similarly, one defines an r-decreasing function.

Definition 2. [1] Let r = (r1, . . . , rn) be a real n-dimensional vector, r 6= 0. A
function F : [0, 1]n → [0, 1] is is said to be an n-ary pre-aggregation function if
the following conditions hold:

(PA1) F is directionally increasing with respect to some r, i.e., it is r-increasing;
(PA2) F satisfies the boundary conditions: F (0, . . . , 0) = 0, F (1, . . . , 1) = 1.

If F is a pre-aggregation function with respect to a vector r we just say that
F is an r-pre-aggregation function. See also the works by Mesiar et al.[12] and
Dimuro et al.[13]

Definition 3. A function O : [0, 1]2 → [0, 1] is said to be an overlap function if
it satisfies the following conditions:

(O1) O is commutative;
(O2) O(x, y) = 0 if and only if xy = 0;
(O3) O(x, y) = 1 if and only if xy = 1;
(O4) O is increasing;
(O5) O is continuous.

Observe that the definitions of overlap functions can be easily extended to
n-ary functions. [14,15].

Example 1. An example of an overlap function is Ob : [0, 1]2 → [0, 1], defined as
[16]:

Ob(x, y) = min{x√y, y
√
x} (2)

Now, we recall the notion of fuzzy measure [8,17], which is going to be a key
tool for constructing our pre-aggregation functions. In the following, consider
the set N = {1, . . . , n} for an arbitrary positive integer n.

Definition 4. A function m : 2N → [0, 1] is a fuzzy measure if, for all X,Y ⊆
N , it satisfies the following properties:

(m1) Increasing: if X ⊆ Y , then m(X) ≤ m(Y );
(m2) Boundary conditions: m(∅) = 0 and m(N) = 1.

The fuzzy measure considered in this paper is the power measure mPM :
2N → [0, 1], defined, for all X ⊆ N , by

mPM (X) =

(
|X|
n

)q

, with q > 0, (3)



where the exponent q is learned genetically. The choice for this fuzzy measure
was based on the results obtained by Barrenechea et al. [7], who introduced an
evolutionary algorithm to define the most suitable power measure definition to
be used for each class. See also [1,18,19]

The Choquet integral is defined with respect to fuzzy measures. In this paper,
we consider only the discrete Choquet integral [8], related to fuzzy measures,
which are defined on finite spaces:

Definition 5. [20, Definition 1.74] Let m : 2N → [0, 1] be a fuzzy measure.
The discrete Choquet integral of x = (x1, . . . , xn) ∈ [0, 1]n with respect to m is
defined as a function Cm : [0, 1]n → [0, 1], given by

Cm(x) =

n∑
i=1

(
x(i) − x(i−1)

)
·m
(
A(i)

)
, (4)

where
(
x(1), . . . , x(n)

)
is an increasing permutation on the input x, that is, 0 ≤

x(1) ≤ . . . ≤ x(n), with the convention that x(0) = 0, and A(i) = {(i), . . . , (n)} is
the subset of indices of n− i + 1 largest components of x.

The Choquet integral combines the inputs in such a way that the importance
of the different groups of inputs (coalitions) may be taken into account. Allowing
to assign importance to all possible groups of criteria, the Choquet integral offers
greater flexibility in the aggregation modelling.

3 Choquet-like overlap-based integral (CO-integral)

In this section we introduce the idea of the generalization of the standard Cho-
quet integral, by the overlap function shown in Equation (2), introducing the
new concept of Choquet-like overlap-based integral. Specifically, in this section
the theoretical study and the new FRM are presented.

3.1 Theoretical development of CO-integrals

The proof that our CO-integral is a pre-aggregation function, satisfying the
boundary condition along with the directional increasing is presented in this
subsection.

Definition 6. Let m : 2N → [0, 1] be a fuzzy measure and O : [0, 1]2 → [0, 1] be
a bivariate overlap function. The Choquet-like overlap-based integral with respect
to m is defined as a function COb

m : [0, 1]n → [0, 1], given, for all x ∈ [0, 1]n, by

COb
m (x) =

n∑
i=1

Ob

(
x(i) − x(i−1),m

(
A(i)

))
, (5)

where (x(i), . . . , x(n)) is an increasing permutation on the input x, that is, 0 ≤
x(1) ≤ . . . ≤ x(n), with the convention that x(0) = 0, and A(i) = {(i), . . . , (n)} is
the subset of indices of n− i + 1 largest components of x.



Consider a fuzzy measure m : 2N → [0, 1] and the overlap functions that is
presented in Equation (2). The Choquet-like overlap-based integral with respect
to m, assume the following form:

COb
m (x) =

n∑
i=1

min

{(
x(i) − x(i−1)

)√
m
(
A(i)

)
,m
(
A(i)

)√
x(i) − x(i−1)

}
(6)

Proposition 1. For the overlap function Ob : [0, 1]2 → [0, 1] and fuzzy measure
m : 2N → [0, 1], COb

m satisfies the boundary conditions.

Proof. Considering 0 = (0, . . . , 0) ∈ [0, 1]n and 1 = (1, . . . , 1) ∈ [0, 1]n, one has
that:

COb
m (0) =

n∑
i=1

min

{
(0− 0)

√
m
(
A(i)

)
,m
(
A(i)

)√
(0− 0)

}
= 0,

and

COb
m (1) = min

{
(1− 0)

√
m
(
A(1)

)
,m
(
A(i)

)√
(1− 0)

}

+

n∑
i=2

min

{
(1− 1)

√
m
(
A(i)

)
,m
(
A(i)

)√
(1− 1)

}
= 1.

ut

Remark 1. Consider the following ordered vectors:

x = (x1, 0.1, 0.7, 0.9, x5), x′ = (x(1), 0.1, 0.8, 0.9, x(5)) ∈ [0, 1]5.

Observe that x(2) = x′(2), x(3) = 0.7 < 0.8 = x′(3) and x(4) = x′(4). Obviously

x′ > x, however COb
m (x) > COb

m (x′) as follows:

COb
m (x(1), 0.1, 0.7, 0.9, x(5)) = 0.58

whereas

COb
m (x(1), 0.1, 0.8, 0.9, x(5)) = 0.55

Therefore, COb
m is not increasing, which is a key propriety of aggregation

functions.

Proposition 2. Consider the vector r = (k, . . . , k) ∈ Rn, with k > 0. For the
overlap function Ob : [0, 1]2 → [0, 1] and fuzzy measure m : 2N → [0, 1], COb

m is
r-increasing.

Proof. Since the coordinates of r are all equal to some k > 0, then is sufficient
to consider the case in which x is an ordered input, that is, xi = x(i). For all



(x1, . . . , xn) ∈ [0, 1]n and for all c > 0 such that (x1 + ck, . . . , xn + ck) ∈ [0, 1]n,
it holds that:

COb
m (x1 + ck, . . . , xn + ck)

= min

{
(x(1) + ck − 0)

√
m
(
A(1)

)
,m
(
A(1)

)√
x(1) + ck − 0

}
+

n∑
i=2

min

{
(x(i) + ck − (x(i−1) + ck))

√
m
(
A(i)

)
,m
(
A(i)

)√
x(i) + ck − (x(i−1) + ck)

}
= min

{
(x(1) + ck)

√
m
(
A(1)

)
,m
(
A(1)

)
∗
√
x(1) + ck

}
+

n∑
i=2

min

{
(x(i) − x(i−1))

√
m
(
A(i)

)
,m
(
A(i)

)
∗
√
x(i) − x(i−1)

}
> min

{
x(1)

√
m
(
A(1)

)
,m
(
A(1)

)
∗ √x(1)

}
+

n∑
i=2

min

{
(x(i) − x(i−1))

√
m
(
A(i)

)
,m
(
A(i)

)
∗
√
x(i) − x(i−1)

}

and, thus, COb
m is r-increasing. ut

Theorem 1. For the overlap function Ob : [0, 1]2 → [0, 1] and fuzzy measure
m : 2N → [0, 1], COb

m is a pre-aggregation function.

Proof. It follows from Propositions 1 and 2.

3.2 The Fuzzy Reasoning Method Using CO-Integrals

In this subsection we present the new FRM generalized by the overlap function
Ob, as presented in Equation (6). For the following, consider that a classifi-
cation problem, consists of m training examples xp = (xp1, . . . , xpn, yp), with
p = 1, . . . ,m, where xpi, with i = 1, . . . , n, is the value of the i-th attribute and
yp ∈ C = {C1, C2, ..., CM} is the label of the class of the p-th training example.

In this work we use FRBCSs to deal with classification problems. Specifically,
we have selected FARC-HD [19] to accomplish the learning process and the form
of the fuzzy rules used by this algorithm is:

Rule Rj : If xp1 is Aj1 and . . . and xpn is Ajn then Class is Cj with RWj , (7)

where xp = (xp1, . . . , xpn), is the n-dimensional vector of attribute values cor-
responding to an example xp. Rj is the label of the jth rule, Aji is an an-
tecedent fuzzy set modeling a linguistic term, Cj is the class of the j-th rule, and
RWj ∈ [0, 1] is the rule weight [21], which in this case is computed using the
certainty factor.



Our proposal is a modification of the third step of the FRM in the FARC-HD
fuzzy classifier. More precisely, we propose the usage of Choquet-like overlap-
based integral (CO-integral) in order to obtain the information associated with
each class of the problem. Specifically, the new classification soundness degree
in the FRM is the following:

– Example classification soundness degree for all classes. In this step
we apply our CO-functions to combine the association degrees obtained in
the previous steps of the FRM, bki (xp), as follows:

Yk(xp) = COb
m

(
bk1(xp), . . . , bkL(xp)

)
, with k = 1, . . . ,M, (8)

where COb
m is the obtained CO-integral, which is the result of combining

overlap functions O : [0, 1]2 → [0, 1], the fuzzy measure m : 2N → [0, 1], xp is
the example to be classified, M is the number of classes of the problem and
L is the number of fuzzy rules in the system. Specifically we use the overlap
function shown in Equation (6), that is, Ob.

4 Application of CO-integrals in Fuzzy Rule-Based
Classification Systems

In this section, firstly we present the 30 real world classification problems selected
from the KEEL dataset repository [10] (Section 4.1). Furthermore, presenting
the achieved results in test by the FRM generalized by our CO-integral, along
with an analysis of these obtained results (Section 4.2).

4.1 Experimental framework

The properties of the datasets, containing for each dataset, the identifier (Id.),
along with the name (Dataset), the number of instances (#Inst), the number
of attributes (#Att) and the number of classes (#Class) are summarized in
Table 1. The magic, page-blocks, penbased, ring, shuttle, satimage and twonorm
datasets have been stratified sampled at 10% in order to reduce their size for
training. Examples with missing values have been removed, e.g., in the wisconsin
dataset.

As proposed in [7,18,22], we adopt the 5-fold cross-validation model, in other
words, a dataset is splitted in five random partitions, where each partition have
20% of the examples, and a combination of four of them is used for training
and the remainder one is used for testing. This process is repeated five times
by using a different partition to test the created system each time. In order to
measure the quality of each partition, the accuracy rate is calculated, that is, we
divide the number of correctly classified examples divided by the total number
of examples for each partition. Then, as the final result of the algorithm we
consider the average of the achieved accuracy in this five partitions.



Table 1. Summary of the datasets used in this study.

Id. Dataset #Inst #Att #Class Id. Dataset #Inst #Att #Class

App Appendiciticis 106 7 2 Pho Phoneme 5,404 5 2
Bal Balance 625 4 3 Pim Pima 768 8 2
Ban Banana 5300 2 2 Rin Ring 740 20 2
Bnd Bands 365 19 2 Sah Saheart 462 9 2
Bup Bupa 345 6 2 Sat Satimage 6,435 36 7
Cle Cleveland 297 13 5 Seg Segment 2,310 19 7
Eco Ecoli 336 7 8 Shu Shuttle 5,800 9 7
Gla Glass 214 9 6 Spe Spectfheart 267 44 2
Hab Haberman 306 3 2 Tit Titanic 2,201 3 2
Hay Hayes-Roth 160 4 3 Two Twonorm 740 20 2
Iri Iris 150 4 3 Veh Vehicle 846 18 4
Mag Magic 1,902 10 2 Vow Vowel 990 13 11
New Newthyroid 215 5 3 Win Wine 178 13 3
Pag Pageblocks 5,472 10 5 Wis Wisconsin 683 11 2
Pen Penbased 1,099 16 10 Yea Yeast 1,484 8 10

4.2 Experimental Results

This subsection present the results achieved in testing by the FRM general-
ized by our overlap function, Ob. In order to determine the quality of the ap-
proach, we also present the results achieved by this generalization along with
the best pre-aggregation function proposed by Lucca et al. in [1] (named here as
HamacherPA), since this generalization provides results with a mean accuracy
superior than the standard Choquet Integral. Furthermore, this generalization
is statistically superior when compared with the one which uses the FRM of the
Winning Rule (WR), that is, using the maximum as aggregation function.

The results achieved in testing by these approaches are presented in Table 2
by columns, where the best result achieved among the different datasets if high-
lighted in boldface.

From the results shown in the Table 2, it is possible to observe that our gen-
eralization by the overlap function (Ob) presents a good performance, achieving
a good mean, but, smaller than the one achieved by the pre-aggregation pro-
posed in [1]. However, looking only at the mean is not enough to opine about
the quality of this generalization, and for this reason, any conclusions should be
constructed using an appropriate statistical study.

More specifically, we carried out a pair-wise comparison using the well known
Wilcoxon signed-rank test [11]. Table 3 present the results of this comparisons,
where R+ indicates the ranks obtained by Ob and R− represents the ranks
achieved by HamacherPA.

According to the obtained statistical results presented in Table 3, we can
affirm with a high level of confidence, that there is no statistical differences
among these generalizations. Furthermore, if we look closer, it is possible to
observe that CO-integrals achieves a better classification rate in 14 datasets
under this study. Obviously, HamacherPA achieved a mean superior than Ob in



Table 2. Results in testing provided by the CO-integral.

Dataset HamacherPA Ob

App 82.99 83.03
Bal 82.72 82.08
Ban 85.96 86.81
Bnd 72.13 71.83
Bup 65.80 65.51
Cle 55.58 56.24
Eco 80.07 76.20
Gla 63.10 66.82
Hab 72.21 72.86
Hay 79.49 78.72
Iri 93.33 94.00
Mag 79.76 79.86
New 95.35 94.88
Pag 94.34 94.52
Pen 90.82 91.09
Pho 83.83 82.92
Pim 73.44 75.38
Rin 88.78 89.32
Sah 70.77 69.48
Sat 80.40 78.54
Seg 93.33 92.51
Shu 97.20 97.29
Spe 76.02 77.88
Tit 78.87 78.87
Two 85.27 83.78
Veh 68.20 67.73
Vow 68.18 68.08
Win 96.63 94.97
Wis 96.78 96.63
Yea 56.53 57.35

Mean 80.26 80.17

15 datasets and they tie in the Titanic dataset. Therefore reinforcing the results
obtained in the statistical test.

5 Conclusions

In this paper, we introduce the notion of Choquet-like overlap-based aggregation
function (CO-integral). The CO-integral is defined in a similar way of a Choquet-
like pre-aggregation function, introduced by Lucca et al. [1], also obtaining a
directional increasing function, and so, producing an pre-aggregation function.

We applied the CO-integral based on the overlap function Ob in the FRM of
FRBCSs. Moreover, we have to highlight that this CO-integral allows to conclude
that this generalization is competitive with the one presented in [1]. Therefore,



Table 3. Wilcoxon Test to compare the CO-integral based on the Ob overlap versus
the HamacherPA.

Comparison R+ R− p-value

Ob vs. HamacherPA 210 255 0.634

the approach presented in this work is an alternative to the function presented
by Lucca et al, whereas an improvement in the quality of the new FRM was
presented.

Future work is concerned with the usage of different overlap functions and
also the study of the properties satisfied by the CO-integrals.
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12. R. Mesiar, A. Kolesárová, H. Bustince, G. P. Dimuro, B. C. Bedregal, Fusion
functions based discrete Choquet-like integrals, European Journal of Operational
Research 252 (2) (2016) 601 – 609.

13. G. P. Dimuro, B. Bedregal, H. Bustince, J. Fernandez, G. Lucca, R. Mesiar, New
results on pre-aggregation functions(submitted).

14. E. P. Klement, R. Mesiar, E. Pap, Triangular Norms, Kluwer Academic Publisher,
Dordrecht, 2000.
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