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Abstract. Mathematical morphology (MM) is a theory for nonlinear image and
signal processing that was originally based on complete lattices and is usually
still conducted in this framework. Later, MM was extended from complete lat-
tices to complete inf-semilattices (cisls) using reference functions. Recently an
auto-associative memory model based on a cisl was introduced by Sussner and
Medeiros who conducted experiments concerning gray-scale image restoration
using the median filter as a reference function. The adaptive median and Wiener
filters often exhibit a better performance regarding noise reduction of corrupted
images. We employ these filters as reference functions of auto-associative mem-
ories based on cisls in this paper. In experiments regarding the recall of noisy
gray-scale images, our approach outperformed both the aforementioned image
filters as well as a number of associative memory models including the cisl-based
one that uses the median filter as a reference function.
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1 Introduction

Mathematical morphology was initiated in the late 1960s by G. Matheron and J. Serra,
as the part of binary image processing that is concerned with image filtering and geo-
metric analysis by means of structuring elements [1]. Afterwards, MM was extended
to gray scale images using the umbra approach [2]. More recent approaches to MM in-
clude fuzzy MM [3–5] and L-fuzzy MM [9]. Note that, in all approaches towards MM,
the class of images represents a partially ordered set and in most cases including the
ones mentioned before a complete lattice [16] on which morphological operators are
defined [6–8].

The effect of a morphological operator is determined by the specific partial order-
ing on the underlying image space, the choice of what is foreground and what is back-
ground. This choice, which is never made explicit and for that reason usually goes
unnoticed, causes morphological operators to usually come in dual pairs, for example
dilation/erosion, opening/closing [6] etc. In contrast, an operator ψ is called self-dual
when ψ( f ∗) = (ψ( f ))∗ for any input image f . Here, f ∗ denotes the dual image of the



image f . In many applications such as image filtering or image denoising, self-duality
is a desirable property.
An algebraic approach towards self-dual mathematical morphology that is based on
complete inf-semilattices was developed by Keshet and Heijmans [8, 10]. Specifically,
by using self-dual partial orderings the image space becomes a complete inf-semilattice
on which self-dual erosion operators can be defined that have many interesting proper-
ties and promising applications in nonlinear image analysis. A complete inf-semilattice
is a set in which every arbitrary subset has an infimum (but not necessarily a supremum
exist). A cisl can be derived from a conditionally complete lattice-ordered group F by
defining a partial order �r that depends on an arbitrary reference element r of F. The
resulting cisl, denoted Fr , has r as its least element. Given an arbitrary element x of a
complete lattice-ordered group, a reference element r arises as the value ρ(x) of a so
called reference function.

In a previous paper [14], the median filter was selected as a reference function for an
auto-associative morphological memory based on a cisl that we shall call semi-lattice
associative memory (SLAM) in this paper. The choice of the reference function that is
employed in a SLAM is an open research problem. In this paper, the adaptive median
and Wiener filters are used as reference functions of auto-associative memory models
based on cisls in the experimental section on gray-scale images retrieval since the adap-
tive median filter and the Wiener filter are respectively suitable for reducing the amount
of salt and pepper and Gaussian noise in corrupted gray-scale images [22, 24]. The sim-
ulations conducted in this paper not only confirm the latter observation but also reveal
that the SLAM models using the adaptive median and Wiener filters exhibit a better
image restoration performance in terms of the normalized mean squared error than the
respective filters alone. In addition, we compared the results obtained by the approach
proposed in this paper with the ones produced by a number of fuzzy and neural AM
models from the literature [25, 26, 29].

2 Some Mathematical Background

A partially ordered set or poset is a set in which a reflexive, antisymmetric, and transitive
binary relation “ ≤ ” is defined. For simplicity, we assume that a partially ordered set is
non-empty [15]. If we additionally have either x ≤ y or y ≤ x in a partially ordered set
P, then P is said to be totally ordered and is called chain. An operator ψ : P → P is said
to be increasing if x ≤ y implies that ψ(x) ≤ ψ(y). An operator ψ : P → P is called
extensive (anti-extensive) if x ≤ ψ(x) (ψ(x) ≤ x) ∀ x ∈ P. Finally, ψ is idempotent if
ψ2 = ψ.
A partially ordered set L is called a lattice if every finite, non-empty subset of L has
an infimum and a supremum in L [16]. In particular, every totally ordered set or chain
such as R and Z is a lattice. For any X ⊆ L, we denote the infimum of X using the
symbol

∧
X and the supremum of X using the symbol

∨
X . If X = {x j ∈ L : j ∈ J}

for some index set J, then we write
∧

j∈J x j instead of
∧

X and
∨

j∈J x j instead of∨
X . A lattice L is complete if every subset of L has an infimum and a supremum

in L. A lattice L is called conditionally complete if every bounded subset of L has
an infimum and a supremum in L. In particular, the set of finite elements of a complete



lattice L, i.e., L\{
∧
L,

∨
L}, is conditionally complete. If every finite, non-empty subset

of a partially ordered set L has an infimum in L, then L constitutes an inf-semilattice.
If every subset of L has an infimum in L then L is called a complete inf-semilattice
or cisl. If L is a (complete) lattice or an inf-semilattice then the direct product Ln is
also a (complete) lattice or an inf-semilattice, respectively. These ideas can be further
extended by considering LX , the class of functions from a set X , ∅ to L. A function
φ : L → M, where L and M are cisls, is called a cisl homomorphism or (algebraic)
erosion if we have the following equation for all index sets J and all x j ∈ L (the
concept of (algebraic) dilation is defined in a similar way):

φ(
∧
j∈L

x j ) =
∧
j∈L

φ(x j ) . (1)

The chains R and Z also constitute examples of lattice-ordered groups, for short l-
groups i.e lattices that also form a group in which every group translation x → a+ x+ b
is isotone [16]. Note that in this paper the group operation is denoted using the symbol
“+” for addition.

If G is a complete lattice whose set of finite element forms a group with isotone
group translation then we refer to G as a complete l-group extension [7]. Of course, a
conditionally complete lattice F can form a group at the same time and, in this case F is
simply called a conditionally complete l-group [16]. For example, the l-groups R and
Z are conditionally complete.

From now on, let F stand for an arbitrary conditionally complete l-group. Note that
F induces conditionally complete l-groups Fn, Fm×n, and FX . Given a matrix A ∈ Fm×p

and a matrix B ∈ Fp×n, the matrix C = A ∨� B, called the max-product of A and B, and
the matrix D = A ∧� B, called the min-product of A and B are defined by the following
equation for all i = 1, . . . ,m and j = 1, . . . , n:

ci j =
k∨
ξ=1

(aiξ + bξ j ), di j =

k∧
ξ=1

(aiξ + bξ j ). (2)

The cone F+ is defined as {x ∈ F : 0 ≤ x}, where 0 denotes the neutral element with
respect to the group operation of addition. Note that

(
F+, ≤

)
represents a cisl. The pos-

itive part x+ and the negative part x− of an element x of F are respectively given by
x+ = x ∨ 0 and x− = −x ∨ 0, where 0 denotes the neutral element of the group F. Every
x ∈ F can be written as x = x+ − x−. The element x+ and x− of the cone F+ are said
to be disjoint because x+ ∧ x− = 0. Defining the following partial order � on F turns F
into a cisl [6].

Proposition 1. Consider the binary relation �0 on F that is defined as follows:

x �0 y ⇔ x+ ≤ y+ and x− ≤ y− (3)

We have that (F, �0) is a cisl whose least element is 0. The infimum of an arbitrary
subset {xi : i ∈ I} of F is given by

k

i∈I

xi =
∧
i∈I

(xi)+ −
∧
i∈I

(xi)−. (4)



In particular the infimum operation in the cisl (F, �0) satisfies

(
k

i∈I

xi)+ =
∧
i∈I

(xi)+ and (
k

i∈I

xi)− =
∧
i∈I

(xi)− (5)

The cisl (F, �0) is also denoted using the symbol F0. The neutral element of addition 0
plays an important role in F0 whose construction is based on the fact that 0 represents
a reference element of the lattice (F, ≤). Recall that an arbitrary element r of a lattice L
is called a reference element if the following statement is satisfied for all x, y ∈ L:

x ∧ r = y ∧ r and x ∨ r = y ∨ r ⇔ x = y. (6)

If F is conditionally complete l-group then every r ∈ F is reference element of the
lattice (F, ≤) and a cisl arises via the following definition of “�r” which constitutes a
partial order on F. The resulting cisl (F, �r ) can be denoted using the symbol Fr .

x �r y ⇔ x ∨ r ≤ y ∨ r and y ∧ r ≤ x ∧ r (7)

For an arbitrary X ⊆ F, the infimum of X in the cisl Fr is denoted using the symbolc
r X . In the special case where X = {x j ∈ L : j ∈ J} for some index set J,

c
r X is

also denoted k
r

j∈J

x j . (8)

Moreover, (zr ) denotes z−r for all z, r ∈ F. Note that x �r y is equivalent to having both
(xr )+ ≤ (yr )+ and (xr )− ≤ (yr )− . This observation leads to the following expression:

k
r

j∈J

x j =
∧
j∈J

(x j )+r −
∧
j∈J

(x j )−r + r . (9)

3 Semilattice Associative Memories

Associative memories (AMs) are designed to store a finite set of pattern associations
(xξ, yξ ), where ξ = 1, . . . , k, called set of fundamental memories [19]. Moreover, an
AM should permit the retrieval of a desired output upon presentation of a possibly noisy
or incomplete version of a input pattern.

In this paper, the focus is on auto-associative memories, i.e., the case where yξ = xξ
for all ξ = 1, . . . , k. Furthermore, the patterns xξ are assumed to be in Fn, where F is a
conditionally complete l-group. Hence, the auto-associative memory described in this
paper corresponds to a mappingM : Fn → Fn. Ideally,M exhibits perfect recall of the
original pattern, that is,M (xξ ) = xξ for all ξ ∈ K and some tolerance with respect to
noise, that is,M

(̃
xξ

)
= xξ for noisy or incomplete versions x̃ξ of xξ .

The classical auto-associative morphological memories (AMMs) [20], [21], also
referred to as lattice auto-associative memories, are defined in terms of the min- and
max-products. Originally, defined as mappings Fn → Fn, where F = R or F = Z,
AMMs can also be viewed as mappings Gn → Gn, where G = R ∪ {−∞,+∞} or
G = Z∪ {−∞,+∞} [27]. As observed in [14], AMMs can also be defined as follows for
an arbitrary complete lattice-ordered group F.



Let X ∈ Fn×k be the matrix whose ξ-th column is xξ for ξ = 1, . . . , k. The AMM
MXX is the mapping Fn → Fn determined by the equation

MXX (x) = MXX ∧� x ∀x ∈ Fn, (10)

where the synaptic weight matrix MXX is given by MXX = X ∨� X∗. The dual AMM
modelWXX : Fn → Fn is determined by the equation

WXX (x) = WXX ∨� x ∀x ∈ Fn, (11)

where the synaptic weight matrix WXX is given by WXX = X ∧� X∗. If G denotes the
completion of F, then G represents a complete l-group extension and Equations 10 and
11 can also be applied to x ∈ Gn. As shown in [7], the respective extended mappings
Gn → Gn represent elementary operations of MM in complete lattices - in this case
from the complete lattice Gn to the complete lattice Gn - and this is the reason why the
AMsMXX andWXX are called “morphological”.

Recently, Sussner and Medeiros introduced a AMM model in complete semilattices.
Let us briefly review this model. As before, we consider patterns x1, . . . , xk ∈ Fn. Let
ρ : Fn → Fn be an arbitrary function. Given an arbitrary element x of Fn, ρ(x) will
play the role of a reference element and therefore we may refer to ρ as a “reference
function”. Let X±ρ ∈ F

n×2k be the matrix whose ξth column is (xξ − ρ(xξ ))+ and
(ξ + k)th column is given by (xξ − ρ(xξ ))− for all ξ = 1, . . . , k. In addition, let Mρ

XX
denotes the matrix MX±ρX

±
ρ
∈ Fn×n. The following equation yields an auto-associative

memoryMρ : Fn → Fn [14]:

Mρ (x) = Mρ
XX ∧� (x − ρ(x))+ − Mρ

XX ∧� (x − ρ(x))− + ρ(x) ∀x ∈ Fn. (12)

Theorem 1. LetMρ : Fn → Fn be defined as in Equation 12. The functionMρ rep-
resents an associative memory model, that is guaranteed to yield perfect recall for an
arbitrary set of patterns

{
x1, . . . , xk

}
⊂ Fn for an arbitrary number of patterns k ∈ N.

Formally we have:
Mρ (xξ ) = xξ ∀ ξ = 1, . . . , k , (13)

For an arbitrary input pattern x ∈ Fn, the output patternMρ (x) ∈ Fn satisfies

ρ(x) �ρ(x) Mρ (x) �ρ(x) x. (14)

If ρ(x) = r ∈ Fn for all x ∈ Fn, thenMρ represents an erosion from the cisl Fn0 to the
cisl Fnρ.

4 Simulations in Gray-Scale Images Reconstruction

In this section we perform some experiments using the ten images that are displayed in
1. These images have size 64 × 64 and 256 gray levels. In the simulations concerning
FAM models, we converted these images into ten fuzzy images by normalizing the
respective pixel values within the range [0, 1]. For each of these images, we generated
a vector xξ of length n = 4096.



Recall that Mρ depends on the choice of reference vectors which can be accom-
plished by means of a reference function ρ : Fn → Fn. Here, F can be assumed to be Z
or R. In a previous papers, the median filter was chosen as a reference function.

In this paper, the reference functions are chosen to be the adaptive median (AMF)
and Wiener filters [22, 24]. The adaptive median and Wiener filters have outperformed
than median filter with respect to image noise reduction in a number of simulations.

Using a range of window sizes varying between an initial size 3 × 3 and a max-
imal window size, the adaptive median filter (AMF) represents an iterative procedure
in which some pixel locations are flagged as noisy and in which the values of these
presumably noisy pixels are replaced by the ones obtained from the median filter while
other pixels are left unaltered. The AMF ensures that most of the pixels that are cor-
rupted by impulsive noise, in particular salt and pepper noise, are detected even at a
high noise level provided that the maximal window size is large enough.

Wiener filtering (after N. Wiener, who first proposed the method in 1942) is one
of the earliest and best approaches to linear image restoration [24]. The Wiener filter
is optimal in terms of the mean square error. In other words, let x(n) is a wide sense
stationary (WSS) random process. Suppose that we want to determine the unit sample
response or frequency response of the LTI (linear time invariance) system such that the
filter output f̂ (n) is the minimum-mean square error (MMSE) estimate of some “target”
process f (n) that is jointly WSS with x(n) by carrying out the following minimization:

ĥ(n) = argmin f (n) E
[
|e(n) |2

]
= argmin f (n) E

[��� f (n) − f̂ (n)���
2]
. (15)

Here E[·] is the expectation operator and e(n) is the estimation error. The resulting filter
ĥ(n) is called the Wiener filter for estimation of f (n) from x(n). This approach often
produces better results than linear filtering. The adaptive filter is more selective than a
comparable linear filter, preserving edges and other high frequency parts of an image.
In addition, there are no design task; the Wiener function handles all preliminary com-
putations and implements the filter for an input image, Wiener, however, does require
more computation time than linear filtering. The Wiener function works best when the
noise is constant power (“white”) additive noise, such as Gaussian white noise.

Specifically, we employed α,ω : Rn → Rn, where α and ω correspond respectively
to the adaptive median with maximum window size 39 × 39 and the Wiener filters.

As expected, bothMα andMω succeeded in achieving perfect recall of the original
patterns x1, . . . , x10 in accordance with Theorem 1. In order to verify the tolerance of
Mα andMω models with respect to noise, we corrupted x1, . . . , x10 by introducing the
following types of noise:

1. Salt and pepper noise with density 0.50;
2. Gaussian noise with mean 0 and variance 0.15;

We conducted this experiment 100 times for each type of noise and each original
pattern xξ , where ξ = 1, . . . , 10. Fig. 2. provides a visual interpretation. The first column
displays the original images. The second column displays the corrupted versions x̃1, and



Fig. 1. Original gray-scale images that were used in constructing SLAMs Models.

x̃2 of x1, and x2, respectively. The third column shows the images retrieved by the filters
α (top) andω (bottom). The last image in the top row showsMα (̃x1) and the last image
in the bottom row showsMω (̃x2). A close visual inspection reveals thatMα (̃x1) and
Mω (̃x2) are slightly more similar to x1 and x2 than α (̃x1) and ω (̃x2).

Table 1 lists the normalized mean square errors (NMSEs) produced by the adaptive
median and Wiener filters as well as the SLAM modelsMα andMω for each type of
noise. Note that, for each type of noise,Mα andMω outperformed the filters α and ω,
respectively, in terms of the NMSE. The associative memoriesMα andMω yielded the
best results in this experiment with respect to reducing the amounts of salt and pepper
noise and Gaussian noise, respectively.

Fig. 2. The first row depicts the original image x1, a noisy image x̃1, i.e., x1 corrupted by salt
and pepper noise, α (̃x1) andMα (̃x1), i.e the outputs produced by the adaptive median filter and
by Mα. The second row depicts the original image x2, a noisy image x̃2, i.e., x2 corrupted by
Gaussian noise, The remaining images in the second rows, correspond to the outputs produced
by the Wiener filter ω andMω .



NMSE (Comparison with Original Images)

Noise x̃ α (̃x) Mα (̃x) ω (̃x) Mω (̃x)
Salt and Pepper 0.7535 0.1408 0.1359 0.3371 0.3330

Gaussian 0.5786 0.4268 0.4241 0.2544 0.2529

Table 1. NMSEs of the corrupted images as well as the errors produced by the adaptive median
and Wiener filters the corresponding memory models.

Furthermore, we performed experiments using the morphological associative mem-
ory WXX+ν) [27] and the optimal linear associative memory (OLAM) proposed by Ko-
honen and Ruohonen [32]. The synaptic weight matrix W of the OLAM model is given
by W = X X+, where X+ denotes the pseudo-inverse of the matrix X = [x1 . . . xk] ∈
Rn×k such that X+X = I, which means that xξ for 1 ≤ ξ ≤ k are linear independent
vectors. In addition, we compared the results produced byMα (̃x1) andMω (̃x1) with
the ones produced by other distributed associative memories, namely Kosko’s max-min
[33] and Junbo’s fuzzy autoassociative memories (FAMs) [34] as well as the complex-
valued Hopfield net of Tanaka et al. [13].

The outcome of this experiment is visualized in Fig. 3. Table 2 lists the resulting
mean NMSEs produced by Mα, Mω , Mρ (where ρ denotes the median filter), the
MAM WXX + ν [14], the OLAM, the complex-valued Hopfield net, and the aforemen-
tioned FAM models. Table 2 reveals that the SLAM model Mα, that uses the AMF
as a reference function, exhibits the highest tolerance with respect to salt and pepper
noise. The OLAM, followed by the SLAM modelMω , achieved the highest error cor-
rection capability with respect to Gaussian noise of mean 0 and variance 0.15. Unlike
the AMF, the Wiener filter does not include a noise detection phase. Therefore a SLAM
model that uses an Gaussian noise filter having a noise detection phase [35] may be
able to produce better results than Mω . Finally, note that for images corrupted by an
unknown type of noise, a universal filter [36, 37] may be used as a reference function
of a SLAM model.

5 Conclusion

In this paper, we reviewed MM as well as associative memories complete semi-lattices
(SLAMs). We argued that in applications concerning the recall of noisy images, the
adaptive median and Wiener filters are more suited than the conventional median filter
to serve as reference functions for SLAMs. We conducted a series of experiments con-
cerning the restoration of gray-scale images that were corrupted by salt-and-pepper as
well as Gaussian noise. In these experiments, the SLAM models based on the adaptive
median and Wiener filters outperformed the SLAM model based on the median filter
and the fuzzy and gray-scale morphological associative memories that we tested. More-
over, the SLAM modelsMα andMω exhibited better results that the adaptive median
and Wiener filters alone. In future research, we intend to make further steps towards
solving the problem of choosing a reference function for a SLAM model.



Associative Salt & Pepper Gaussian
Memory d = 0.5 σ2 = 0.15
Mα 0.1359 0.4241
Mω 0.3330 0.2529
Mρ 0.3734 0.3201

WXX + ν 0.4537 0.4126
OLAM 0.2342 0.1201

Complex Hopfield 0.3252 0.6870
Kosko’s FAM 0.8230 0.8228
Junbo’s FAM 0.7466 0.6049

Table 2. NMSEs produced by associative memory models in applications to patterns that were
corrupted by introducing salt and pepper or Gaussian noise.

Fig. 3. Consider the tree image corrupted by salt and pepper noise with density 0.5. The images
in first row show the outputs ofMα,Mω ,Mρ, and WXX + ν. The bottom row shows the outputs
produced by the OLAM, the complex-valued Hopfield net, Kosko’s FAM, and Junbo’s FAM.
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