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Abstract. Gamma-ray spectrometry is a well-established analytical method
for radionuclide concentration assessment. Given the state of modern
computer technology, analysis workflow is conveniently automatized.
Nonetheless, automated analysis algorithms still return a large number
of false positives and false negatives, mainly when dealing with samples
whose radioactivity is close to the minimum detectable value. To counter
this issue, an attempt was made to implement a better peak search algo-
rithm based on fuzzy inference systems (FIS). Compared to the classical
solution, the FIS-based algorithm returned less false negatives and sig-
nificantly less false positives. Peak area calculation performances of both
solutions were similar, although the FIS-based algorithm had slightly
lesser deviation. This paper shows that a simple set of fuzzy rules can
improve both precision and sensitivity of gamma-ray analysis algorithms.

Keywords: gamma-ray, spectrometry, fuzzy, peak detection, signal pro-
cessing

1 Introduction

Gamma-ray spectrometry is a widely adopted analytic method for radioactiv-
ity analysis in a number of scenarios such as nuclear medicine, work safety,
and environmental monitoring[1][2]. The spectrometry system is composed of a
detector made of either a semi-conductive crystal or a scintillator, converting
incident gamma-rays into electrical current which is amplified and read by ap-
propriate hardware. During the dawn of gamma-ray spectrometry, the resulting
spectra were interpreted by a capable technician, who would visually detect all
present peaks and compare their energy centroids with a reference library of
nuclides. Optionally, the technician might evaluate the area of the peaks in the
spectra, adjust them according to the detector efficiency curve, and evaluate the
concentration of radionuclides in the sample. Latelly, the process has become
automated by commercial software packages, which are able to replace much of
the manual labor that were by the technician[3].



However, automation came with the cost of sometimes unreliable results when
dealing with low levels of radioactivity. In this context, peak detection processes
based purely on statistical methods return a high rate of false positives and false
negatives.

To tackle this problem, we developed a method of automated peak searching
using fuzzy inference system (FIS), which relies on peak shape patterns defined
by empirical expertise through a set of fuzzy rules instead of comparing signals
with arbitrary one-dimensional thresholds. Signal processing techniques based
on fuzzy systems are not novel. It has been used extensively in several kinds of
spectra such as doppler [4], oximeter pulse signals[5][6], and radars[7]. Alshen-
nawy & Aly[8] developed a very promising method of edge detection in images
using fuzzy inference systems. Their novel approach yielded significantly better
results than some algebra-oriented filters. The work of Alshennawy & Aly served
as inspiration to our work, that transports the idea of edge detection in images
to peak detection in spectra.

This paper describes the mechanism by which our algorithm works and tests
both the new proposed method and the classical method of peak detection on
artificially generated spectra.

1.1 Gamma-ray spectrometry functionality

Gamma-ray spectrometry is a direct analysis technique which can be used to
measure activity concentration of some radioactive isotopes in different sam-
ples. The detectable energy in usual gamma-ray spectrometry systems covers
the range from 30 to 3000 keV[9].

Fig. 1. Example of a typical spectrum acquired by high-purity germanium (HPGe)
gamma-ray detectors.[11]



Each radioactive isotope may produce one or more gamma rays bearing dif-
ferent, characteristic energy intensities. When a gamma ray interects with the
material that composes the detector, an electrical pulse is produced and con-
verted into digital signal through a spectrometry system. After a reasonable
time, the system produces a gamma-ray spectrum, which is the stored histogram
of observed emissions by the detector in function of energy or channels[10].

Due to technical limits, spectrometry systems represent emission energies as
peaks rather than single-valued lines in the gamma-ray spectrum. Therefore, the
first step to the calculation of activity concentration is the identification of peaks
in the spectrum. The classical method of peak detection in software packages is
based on derivative calculation to identify sudden rises in the spectrum baseline
above a certain threshold. Once the peak region is marked, the next step in the
detection process is the peak area calculation either by integration of a fitted
curve or by direct summing of counts in each channel.

1.2 Fuzzy Inference Systems

Fuzzy inference systems are a group of production rules that use linguistic vari-
ables to execute a decision-making process. It can be built around actual data
(like measurements and observations), or empirical knowledge suggested by spe-
cialists in the field of interest. Therefore, the knowledge base of a fuzzy inference
system is formed by a group of conditional statements and which is put into
practice through a three-step procedure: fuzzification, inference and defuzzifica-
tion.[12] During fuzzification, the domain of the input variables is mapped into
qualitative descriptions spaces defined by membership functions. The inference
step combines the fuzzified domains according to a set of if-then rules, and then
defuzzifies the obtained result into crisp numbers as output, normally in the
range [0,1]. Nonetheless, fuzzy systems output can be mapped to any suitable
domain range.

2 Methods

2.1 Input normalization and scaling

Photopeaks in gamma-ray spectra may have unpredictably different heights due
to different sample activities and counting times. Therefore, input data must be
normalized to ensure that the same set of fuzzy rules covers all possible cases of
signal-to-noise ratios.

The transformation of raw channel counting values into a meaningful vari-
able for the fuzzy system was inspired by outlier detection methods. The most
common used form of outlier detection would be normalizing the data in terms
of mean and standard deviation, and setting an arbitrary threshold k[14]. There-
fore, normalized xi is given by

xi − x̄

σ
. (1)



Thus, every value not in the range [x̄ − kσ, x̄ + kσ] would be considered
an outlier. Empirically, k = 2 is commonly chosen as threshold, so that the
5% most statistically distant points from the center tendency are classified as
outliers, assuming the population distribution is approximately normal.

However, the mean becomes an inappropriate measure of central tendency
when one or more outliers have extreme values that are much larger than the
population average[15]. That would be the case in spectra with peaks that are
considerably larger than others. If the average was used as the measure of central
tendency, it would be displaced accordingly and minor peaks would be discarded,
even though they are sufficiently above the background continuum.

In this regard, some authors[16] recommend the use of median and median
absolute deviation (MAD) as a simple and robust tool for outlier detection.
Therefore, equation 1 can be adapted to use median instead of mean as central
tendency estimator, and MAD instead of standard deviation as a robust measure
of the variability of a univariate sample of quantitative data. However, in order
to use the MAD in place of the standard deviation σ, a scale factor K must ac-
counted to ensure equivalency between these features[17]. Hence, the equivalent
median deviation estimator σ̂ is given by

σ̂ = K · MAD . (2)
Assuming a normal distribution, K is given by 1/(Φ−1(3/4)) ≈ 1.4826, where

Φ−1 is the inverse of the cumulative distribution function for the standard normal
distribution. Therefore, spectra normalization is done by transforming the count
in each channel ci in the input spectrum by a function f as shown:

f(ci) =
ci − median(C)

1.4826× mediani(|ci − medianj(cj)|)
. (3)

Consequently, if the resulting value for ci is so that f(ci) > 1, the channel
should be taken as a relevant signal instead of background noise. This rule is the
core of the membership functions as the normalized input spectrum is passed to
the FIS.

It was empirically observed that f(ci) values larger than 2 are generally a
relevant signal, usually associated to a peak. Likewise, all values below zero will
most certainly stand for background noise. Therefore, to ensure that all input
points lie within the fuzzy rules domain, the resulting normalized spectrum is
scaled so that negative values are set to zero and values larger than 2 are capped
down to 2.

2.2 The algorithm

The algorithm was implemented on MATLAB 7.12.0. The routine uses input
spectra in ASCII format, in which each line represents each channel of the spec-
trum. It then scans the spectrum with a floating window of 3 channels, passing
over their normalized values to the FIS.



2.3 Fuzzy Inference System

The FIS was implemented in MATLAB’s Fuzzy toolbox using a Mamdani ap-
proach. Each channel from the 3-channel window (left, center, and right channel)
is classified as either signal or noise, based on the normalized value calculated
by Eq. 3 and a pair of membership functions (Figure 2).
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Fig. 2. Channel classification according to median-normalized value. The three input
variables (left, center, and right channel) share the same membership functions in this
picture.

It can be noticed that when the normalized count value is 1, the member-
ship functions attribute equal membership values (0.5) to both signal and noise,
thus softening the arbitrariety of the deterministic threshold used in classical
approaches.

Table 1. Rules for channel classification

Rule # Left Center Right Output
1 noise noise noise background
2 noise noise signal edge
3 noise signal noise background
4 noise signal signal peak
5 signal noise noise edge
6 signal noise signal peak
7 signal signal noise peak
8 signal signal signal peak



The fuzzified input is passed over to a Mamdani-type set of rules, which
classifies the central channel based on a visual pattern as shown in Table 1. The
choice of each rule was based on empirical observation of peak behavior.

The reasoning behind Rules #3 and #6 in table 1 are that fluctuations along
the spectra may occur. A lone relevant signal among background noise is most
likely not to be part of a peak, whereas a slightly below threshold signal among
relevant signals is most likely to be a faulty signal which would still fit as a peak.
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Fig. 3. Channel classification output.

The remaining rules seek to find peak edges as they stand out from the
continuum, and afterwards, blend with the continuum as the floating 3-channel
window moves to the right. After all relevant channels are marked as part of a
peak, the values of all channels between the two peak edges are multiplied by a
weight vector composed by their respective FIS defuzzified ouput. Defuzzification
is done with the Largest of Maximum (LOM) method. The peak area is then
calculated by summing the weighted channels and subtracting the baseline region
under the peak.

2.4 Testing
The algorithm was benchmarked against the generalized second difference algo-
rithm[3], a de facto standard peak detection method in several kinds of spectrom-
etry[18]. The test was made with 1000 artificially generated spectra simulating



an energy calibration of 0.5 keV per channel. From this dataset, 50% spectra con-
tained pure background noise, and the other 50% contained background noise
added to a randomly generated gaussian peak. The pure background spectra con-
tained 16 counts per channel in average. In the background spectra with added
peak, the peak was generated based on a FWHM (full width at half-measure) of
1.0 keV, and its true count value is a random number between 0.5 and 1.5 times
the theoretical limit of detection (LD)[19], where:

LD = 2.71 + 4.65×
√
B (4)

B represents the background continuum beneath the peak. A value of 100
was used, which is close to the evaluated background continuum.

Both the second difference and the fuzzy algorithm had their peak detection
performance evaluated by area under ROC (receiver operating characteristic)
curve, and area calculation was evaluated by coefficient of determination (r2),
root-mean-squared error (RMSE), and mean relative deviation.

3 Results

The results of the first part of the performance test, in which the algorithms
should detect the presence of the artificial peak in nearly half the 1000 generated
spectra, is shown in Figure 4.
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Fig. 4. ROC curve of both methods.

ROC curves are used to evaluate performance of binary classifier systems
as their discrimination thresholds are changed[20]. The curves are created by
plotting the false positive rate (1 - specificity) against the true positive rate



(sensitivity) of each model at various threshold settings. Performance then is
numerically expressed as the area under curve (AUC). The dashed line in the
diagonal is equivalent to the ROC curve of a random predictor with AUC of
0.5. The random predictor is commonly used as a baseline to see how useful the
models are compared to pure chance. Therefore, a good model shall approach 1.0
whereas nearly random models shall get closer to 0.5. Given that peak areas were
as near as possible to the theoretical limit of detection, both classical and fuzzy
approaches showed reasonable performance, although the fuzzy model yielded a
significantly better result (AUC = 0.80 and 0.92 respectively).

In the second part of the performance test, in which the algorithms should
estimate the actual count of the generated peak, performance difference was less
pronounceable, as shown in Table 2.

Table 2. Peak count estimation performance

Classical Fuzzy
r2 0.16 0.33

RMSE 15.64 9.63

Both coefficient of determination (r2) and root-mean-squared error (RMSE)
were calculated using only true positive events to give a better perspective of
the algorithms functioning. Either marks were numerically close to each other,
although the fuzzy approach still returns better figures.
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Fig. 5. Scatter plots depicting actual peak area versus calculated peak area by both
(a) second difference algorithm and (b) proposed fuzzy algorithm. The diagonal dashed
line represents the optimal scenario where estimated and actual peak count would be
equal.

As seen in Figure 5a, the classical approach deviates from non-uniformity
around the optimal solution (near to the diagonal line). Also, there is a noticeable



trend of the classical algorithm to overshoot estimated counts when peak size is
close to zero. This effect can be seen more clearly in Figure 6. Nonetheless, the
fuzzy approach (Figure 5b) yielded a more linear correlation between actual and
estimated counts (r2 = 0.16 for classical approach and 0.33 for fuzzy approach).
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Fig. 6. Average relative error (mean absolute deviation divided by peak area value) for
each possible value.

4 Conclusion

This work shows how a minimalist fuzzy system can improve manifold the rate
of false negatives and false positives when dealing with low-activity peaks in
typical gamma-ray spectra. The use of fuzzy thresholds, along with empirical
knowledge from technicians who are able to visually establish patterns of peak
shape, shows that classical methods on signal detection and novel computational
approaches can work together to yield better results in the field of gamma-ray
spectrometry. New problems arise, though, as it is the case where multiplets
are present in the spectrum. As of yet, the implemented fuzzy model is unable
to differentiate convoluted peaks. However, the solution is straightforward and
could be implemented in future works. Also, further studies must be made with
densely populated spectra, as well as peaks with more intense activity.
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