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Abstract. Inspired in the mostly known axiomatizations of fuzzy subsethood
measures, we proposed in a previous paper a new axiomatization for fuzzy sub-
sethood measures in such a way that we could construct subsethood grades ag-
gregating implication operators. We continue that study in this paper presenting
the approach of constructing fuzzy subsethood measures by means of aggregating
implication operators. We present a new theorem to construct them.
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1 Introduction

The idea of measuring up to what extent a given fuzzy set is included into another was
firstly given by Zadeh [34] and has led to various axiomatizations over the years. In
general, these axiomatizations propose to indicate the degree of which a fuzzy set A is
included in B, called an inclusion degree or a subsethood measure.

In the literature, fuzzy subsethood measures between fuzzy sets have been used in
different applications, namely in: mathematical morphology [20,29], clustering [11,33],
fuzzy relational databases [19], intelligent systems [22], fuzzy decision [18], image
processing [5,10], formal concept lattice analysis [12], etc.

Such measures arise from the partial order relation given by Zadeh for fuzzy sets,
i.e., given A,B ∈ F (X) with X = {x1, · · · , xn}: A ⊆ B if and only if A(x) ≤
B(x) for all x ∈ X , where F (X) is the set of all fuzzy subsets on a universe X .

Observe that if only a single x ∈ X does not satisfy A(x) ≤ B(x), then A * B.
Clearly, this definition is inherently crisp (given such a harsh condition) and has been
criticized since its introduction. In 1980, Bandler and Kohout [3] took into account this
fact and proposed the following expression to measure the subsethood grade of a set
A in a set B: σ(A,B) = inf

x∈X
J (A(x), B(x)), where J : [0, 1]2 → [0, 1] is such that

J (0, 0) = J (0, 1) = J (1, 1) = 1 and J (1, 0) = 0.
Bandler and Kohout’s proposal has led many authors to consider functions of the

type σ : F (X) × F (X) → [0, 1] such that σ(A,B) quantifies up to what extent a set



A is included in a set B. The conditions (axioms) which are requested to σ will depend
on the application.

We have found at least six different axiomatizations in the literature. Historically,
the most relevant ones are: Kitainik [16], Sinha and Dougherty [28], Young [33], Fan
[11], Bustince [8] and Zhang [35].

In [26], we proposed a new axiomatization for fuzzy subsethood measures in such a
way that we could construct subsethood grades aggregating implication operators. We
continue that study and propose here a theorem to construct fuzzy subsethood measures
on X from A fixed and functions I generated from functions of the type [0, 1]2 → R+.

The structure of this paper is as follows. In the next section we present some basic
concepts used along the text. Next we recall our axiomatization and then we present
our contribution, i.e., the construction of subsethood measure by means of aggregating
implications operators. We finish with some conclusions, acknowledgments and refer-
ences.

2 Preliminaries

In this section we review some concepts and definitions that will be used throughout
this paper. First, we should state that we only deal with finite referential set X =
{x1, . . . , xn} and will denote real variables in the unit interval by x.

Given two fuzzy sets A,B ∈ F (X) we write A ≤ B whenever A(x) ≤ B(x) for
every x ∈ X .

Definition 1. A fuzzy negation is a decreasing function N : [0, 1] → [0, 1] such that
N(0) = 1 and N(1) = 0. A negation N is strong if N(N(x)) = x for all x ∈ [0, 1].

A function A : [0, 1]n → [0, 1] with n ≥ 2 is an aggregation function if it is
increasing and satisfies the boundary conditionsA(0, · · · , 0) = 0 andA(1, · · · , 1) = 1
[4,15]. Nevertheless, in this paper we will follow [9] and consider a definition that is
more restrictive, as follows:

Definition 2. An (n-ary) aggregation function is a function A : [0, 1]n → [0, 1] such
that:

(A1) A(x1, . . . , xn) = 0 if and only if x1 = · · · = xn = 0;
(A2) A(x1, . . . , xn) = 1 if and only if x1 = · · · = xn = 1;
(A3) A is increasing.

An aggregation function A is symmetric if its output does not depend on the order
in which the inputs are considered. That is, if A(x1, · · · , xn) = A(xp(1), · · · , xp(n))
for every permutation p of {1, · · · , n}. Finally, an aggregation functionA is idempotent
if A(x, · · · , x) = x for all x ∈ X .

We now recall the notion of (fuzzy) implication function. An implication function
(in the sense of Fodor and Roubens [13,14], see [1,2,6,21]) is a mapping I : [0, 1]2 →
[0, 1] such that, for every x, y, z ∈ [0, 1]:

(I1) If x ≤ z then I(x, y) ≥ I(z, y) ;



(I2) If y ≤ z then I(x, y) ≤ I(x, z);
(I3) I(0, x) = 1;
(I4) I(x, 1) = 1;
(I5) I(1, 0) = 0.

Other properties can be demanded to implication functions, mostly depending on
the application (see [2]). A non-exhaustive list includes the following

(I6) I(1, x) = x;
(I7) I(x, I(y, z)) = I(y, I(x, z));
(I8) I(x, y) = 1 if and only if x ≤ y;
(I9) I(x, 0) = N(x) is a strong negation;

(I10) I(x, y) ≥ y;
(I11) I(x, y) = I(N(y), N(x)) for a given strong negation N .

The relations that exist between all these properties have been studied in different
works, for instance in [6,27].

3 On fuzzy subsethood measures

In [26], we presented the following definition for fuzzy subsethood measure.

Definition 3. A function σ : F (X) × F (X) → [0, 1] is called a fuzzy subsethood
measure, if σ satisfies the following properties:

(a) σ(A,B) = 1 if and only if A ≤ B;
(b) σ(A,B) = 0 if and only if A(x) = 1 and B(x) = 0 for every x ∈ X;
(c) If A ≤ B, then σ(A,C) ≥ σ(B,C) and σ(C,A) ≤ σ(C,B).

Example 1. 1. Goguen’s subsethood degree,

σG(A,B) =
1

n

n∑
i=1

∧(1, 1−A(xi) +B(xi)) (1)

2.

σ(A,B) =
1

n

n∑
i=1

{
1 if A(xi) ≤ B(xi),
∨(1−A(xi), B(xi))

2
if A(xi) > B(xi).

3.

σ(A,B) =


1 if A ≤ B,
0 if A = 1 and B = 0,
1

2
otherwise.

In Figure 1 [26] it can be seen the relationships between our proposal of fuzzy sub-
sethood measure (σ) as in Definition 3 and the subsethood measures defined according
to Fan (σ∗), Young (σY ), Zhang (σZ) and Bustince (σDI ).

Notice that despite our measure (σ) is the most restrictive one in the literature, we
obtained a simpler axiomatization (by only demanding three axioms) without losing its



σ∗

σY

σZ

σDI

σ

Fig. 1. Relationships between σ and other axiomatizations.

strength, as for instance, we have that Goguen’s measure (Eq. 1) is a specific example
of our proposal.

In [26] we also considered a method following the works by Sanchez [25], Bandler
and Kohout [3], L. Kitainik [16,17], E. Ruspini [24] and Willmott [30,31,32], which
consisted of building fuzzy subsethood measures by aggregating implication operators-

like operators, as in the following equation: σ(A,B) =
n

A
i=1

(I(A(xi), B(xi))).

Proposition 1. [26] Let σ : F (X)× F (X)→ [0, 1] be given by: σ(A,B) =
n

A
i=1

(I(A(xi), B(xi))), where A : [0, 1]n → [0, 1] is an aggregation function and I is a

function of [0, 1]2 → [0, 1] that satisfies I1, I2, I8 and Eq. (2) below.

I(x, y) = 0 if and only if x = 1 and y = 0 (see [7]). (2)

Then σ is a fuzzy subsethood measure on X .

In the two following corollaries we show fuzzy subsethood measures constructed
from functions A and I that satisfy the conditions of Proposition 1 and we use for A,
the constructions studied in [26].

Corollary 1. Let g, h : [0, 1]n → [0, 1] be such that

i) g(x1, · · · , xn) = 0 if and only if xi = 0 for all i ∈ {1, · · · , n};
ii) h(x1, · · · , xn) = 0 if and only if xi = 1 for all i ∈ {1, · · · , n};
iii) g is non decreasing and h is non increasing;
iv) g and h are symmetric.

and let I : [0, 1]2 → [0, 1] be such that it satisfies I1, I2, I8 and Eq. (2).
In these conditions

σ(A,B) =
g(I(A(x1), B(x1)), · · · , I(A(xn), B(xn)))

g(I(A(x1), B(x1)), · · · , ) + h(I(A(x1), B(x1)), · · · , )

is a fuzzy subsethood measure on X .



Proof. By Proposition 1 in [9] we have: A : [1, 0]n → [0, 1] satisfies A1 − A3 if and
only if A(x1, · · · , xn) = g(x1,··· ,xn)

g(x1,··· ,xn)+h(x1,··· ,xn) , where g, h : [0, 1]n → [0, 1] satisfy
i)− iv).

Taking into account that the expression of the statement is obtained by replacing A
with the value above; that is,

σ(A,B) =
n

A
i=1

(I(A(xi), B(xi))) =
g(I(A(x1), B(x1)), · · · , I(A(xn), B(xn)))

g(I(A(x1), B(x1)), · · · , ) + h(I(A(x1), B(x1)), · · · , )

it results that A and I satisfy the conditions of Proposition 1. �

Example 2. In the following examples we take I(x, y) = ∧(1, 1 − x + y) and the
standard negation. In the first column we write the quotient g

h . In the second column we
show the resulting fuzzy subsethood measure.

1)

1

n

n∑
i=1

xi

( 1

n

n∑
i=1

(1 − xi)
2
) 1

2

1
n

n∑
i=1
∧ (1, 1 − A(xi) + B(xi))

1
n

n∑
i=1
∧ (1, 1 − A(xi) + B(xi)) +

(
1
n

n∑
i=1

(∨(0, A(xi) − B(xi)))
2
) 1

2

2)

λ
n∧
i=1

xi + (1 − λ)
n∨
i=1

xi

1 − (λ
n∧
i=1

xi + (1 − λ)
n∨
i=1

xi)

withλ ∈ (0, 1)

λ
n∧
i=1

∧ (1, 1 − A(xi) + B(xi))+

(1 − λ)
n∨
i=1

∧ (1, 1 − A(xi) + B(xi))

Corollary 2. In the same conditions as in the corollary above, ifN is a strong negation,
g(x1, · · · , xn) ≥ h(N(x1), · · · , N(xn)) and I satisfies I10, then

σ(A,B) =
g(I(A(x1), B(x1)), · · · , I(A(xn), B(xn)))

g(I(A(x1), B(x1)), · · · , ) + h(I(A(x1), B(x1)), · · · , )

is a fuzzy subsethood measure on X that satisfies Axiom 10 1 of Sinha and Dougherty
[28].

Proof. Bearing in mind Lemma 1 in [9]; that is, A : [0, 1]n → [0, 1] satisfies A1− A3
and A(x1, · · · , xn) ≥ 1−A(N(x1), · · · , N(xn)) if and only if

A(x1, · · · , xn) =
g(x1, · · · , xn)

g(x1, · · · , xn) + h(x1, · · · , xn)

where g, h : [0, 1]n → [0, 1] satisfy i)− iv) and also satisfy:

v) g(x1, · · · , xn) ≥ h(N(x1), · · · , N(xn)).

1 Sinha and Dougherty considered twelve axioms, among which Axioms 6 is (SD6)
σSD(A,B) = σSD(BN , AN ) and Axiom 10 is (SD10) σSD(A,B) + σSD(AN , BN ) ≥ 1.



Taking into account thatA in these conditions satisfies A1−A3 and the conditions
of the item i) of Corollary 1 and I satisfies I10, then by the same Corollary 1 we have
that

σ(A,B) =
n
A
i=1

(I(A(xi), B(xi))) =
g(I(A(x1), B(x1)), · · · , I(A(xn), B(xn)))

g(I(A(x1), B(x1)), · · · , ) + h(I(A(x1), B(x1)), · · · , )

is a fuzzy subsethood measure on X that satisfies Axiom 10. �

Example 3. In the following examples we take I(x, y) = ∧(1, 1 − x + y) and the
standard negation. In the first column we write the quotient g

h . In the second column we
show the resulting fuzzy subsethood measure.

1)

n∨
i=1

xi

n∨
i=1

(1 − xi)

n∨
i=1
∧ (1, 1 − A(xi) + B(xi))

n∨
i=1
∧ (1, 1 − A(xi) + B(xi)) +

n∨
i=1
∨ (0, A(xi) − B(xi))

2)

n∨
i=1

xi

( 1

n

n∑
i=1

(1 − xi)
2
) 1

2

n∨
i=1
∧ (1, 1 − A(xi) + B(xi))

n∨
i=1
∧ (1, 1 − A(xi) + B(xi)) +

(
1
n

n∑
i=1

(∨(0, A(xi) − B(xi)))
2
) 1

2

3.1 Construction of fuzzy subsethood measures on X from A fixed and
functions I generated from functions of [0, 1]2 in R+

In [26] we analyzed some properties that the fuzzy subsethood measure may have de-
pending on the aggregation functions considered. The theorem below is one of them,

Theorem 1. Let us consider σ : F (X) × F (X) → [0, 1], given by: σ(A,B) =
n

A
i=1

(I(A(xi), B(xi))), for all A,B ∈ F (X), where A : [0, 1]n → [0, 1] is an idem-

potent aggregation function and I is a function I : [0, 1]2 → [0, 1]. Then, σ is a fuzzy
subsethood measure on X if and only if I satisfies I1, I2, I8 and Eq.(2)

Proof. See [26] �
Our main contribution in this work is presented in the following theorem where we
show the way of constructing fuzzy subsethood measures using functions A, functions
of the type [0, 1]2 → [0, 1] and functions of [0, 1]2 → R+.

Theorem 2. Let N be a strong negation and let σ : F (X)× F (X)→ [0, 1], be given

by: σ(A,B) =
n

A
i=1

(I(A(xi), B(xi))) for all A,B ∈ F (X), where A : [0, 1]n →
[0, 1] is a function that satisfies A1, A2, A3, is idempotent such that A(x1, · · · , xn) ≥
1
n

n∑
i=1

xi and I is a function of the type [0, 1]2 → [0, 1]. In these conditions the following

items are equivalent:



i) σ is a fuzzy subsethood measure on X that satisfies Sinha and Dougherty [28]
axioms SD6 and SD10.

ii) I satisfies I1, I8, I11 and{
I(x, y) = 0 if and only if x = 1 and y = 0

I(x, y) + I(x,N(y)) ≥ 1.

iii) σ(A,B) =
n

A
i=1

(
G(N(A(xi)),B(xi))

G(N(A(xi)),B(xi))+H(N(A(xi)),B(xi))

)
,

where the functions G : [0, 1]2 → [0, 1] and H : [0, 1]2 → R+ are such that:
(a’) G(x, y) ≥ H(x,N(y)) for all x, y ∈ [0, 1];
(b’) G(x, y) = 0 if and only if x = y = 0;
(c’) H(x, y) = 0 if and only if x ≥ N(y);
(d’) G is non decreasing in both arguments and H is non increasing

in both arguments;
(e’) G and H are symmetric;
(f’) H(0, 0) = 1.

Proof. i)⇒ii) Similar to the one done in the necessary condition of Theorem 1 and in
the first part of the theorem above. Let us see that I satisfies I(p, q) + I(p,N(q)) ≥ 1
for all p, q ∈ [0, 1].

Let p, q ∈ [0, 1], let us take the sets A = {〈xi, A(xi) = p〉 : xi ∈ X} and B =
{〈xi, B(xi) = q〉 : xi ∈ X}.

Bearing in mind that A is idempotent and σ satisfies SD10 we have

I(p, q) + I(p,N(q)) =
n

A
i=1

(I(p, q)) +
n

A
i=1

(I(p,N(q))) =

n

A
i=1

(I(A(xi), B(xi))) +
n

A
i=1

(I(A(xi), N(B(xi)))) = σ(A,B) + σ(A,BN ) ≥ 1.

ii)⇒iii) Taking into account that σ(A,B) =
n

A
i=1

(I(A(xi), B(xi))) we have

σ(A,B) =
n

A
i=1

(
G(N(A(xi)), B(xi))

G(N(A(xi)), B(xi)) +H(N(A(xi)), B(xi))

)
where functions G : [0, 1] → [0, 1] and H : [0, 1] → R+ are such that (a’), (b’), (c’),

(d’), (e’) and (f’) hold.

iii)⇒i) (a) If σ(A,B) = 1 =
n

A
i=1

(
G(N(A(xi)),B(xi))

G(N(A(xi)),B(xi))+H(N(A(xi)),B(xi))

)
, then by A2

we have G(N(A(xi)),B(xi))
G(N(A(xi)),B(xi))+H(N(A(xi)),B(xi))

= 1 for all i ∈ {1, · · · , n}. That is,
G(N(A(xi)), B(xi)) = G(N(A(xi)), B(xi)) +H(N(A(xi)), B(xi)),

then
H(N(A(xi)), B(xi)) = 0.

Taking into account that H satisfies (c’) we have N(A(xi)) ≥ N(B(xi)); that is
A(xi) ≤ B(xi).

If A(xi) ≤ B(xi) for all i ∈ {1, · · · , n}, then N(A(xi)) ≥ N(B(xi)). By (c’) we
have H(N(A(xi)), B(xi)) = 0. Therefore

G(N(A(xi)), B(xi))

G(N(A(xi)), B(xi)) +H(N(A(xi)), B(xi))
= 1.



Bearing in mind that A satisfies A2 we have that

σ(A,B) =
n

A
i=1

(
G(N(A(xi)), B(xi))

G(N(A(xi)), B(xi)) +H(N(A(xi)), B(xi))

)
= A(1, · · · , 1) = 1.

(b) If σ(A,B) = 0 =
n

A
i=1

(
G(N(A(xi)),B(xi))

G(N(A(xi)),B(xi))+H(N(A(xi)),B(xi))

)
.

ByA1 we have that G(N(A(xi)),B(xi))
G(N(A(xi)),B(xi))+H(N(A(xi)),B(xi))

= 0 for all i ∈ {1, · · · , n}.
Since

G(N(A(xi)), B(xi)) +H(N(A(xi)), B(xi)) 6= 0,

then G(N(A(xi)), B(xi)) = 0. By (b’) we have N(A(xi)) = B(xi) = 0; that is,
A(xi) = 1 and B(xi) = 0 for all i ∈ {1, · · · , n}.

If A(xi) = 1 and B(xi) = 0 for all i ∈ {1, · · · , n}, then N(A(xi)) = B(xi) = 0,
therefore by (b’) G(N(A(xi)), B(xi)) = 0. Then

G(N(A(xi)), B(xi))

G(N(A(xi)), B(xi)) +H(N(A(xi)), B(xi))
= 0

for all i ∈ {1, · · · , n}. Since A satisfies A1 we have

σ(A,B) =
n

A
i=1

(
G(N(A(xi)), B(xi))

G(N(A(xi)), B(xi)) +H(N(A(xi)), B(xi))

)
= A(0, · · · , 0) = 0.

(c) If A ≤ B, then A(xi) ≤ B(xi); that is N(A(xi)) ≥ N(B(xi)) for all i ∈
{1, · · · , n}. By (d’) G is non decreasing in both arguments and H is no increasing in
both arguments, therefore

G(N(A(xi)), C(xi)) ≥ G(N(B(xi)), C(xi)) and H(N(B(xi)), C(xi)) ≥ H(N(A(xi)), C(xi)).

Therefore,
G(N(A(xi)), C(xi))H(N(B(xi)), C(xi)) ≥ G(N(B(xi)), C(xi))H(N(A(xi)), C(xi));

that is,

G(N(A(xi)), C(xi))G(N(B(xi)), C(xi)) +G(N(A(xi)), C(xi))H(N(B(xi)), C(xi)) ≥
G(N(A(xi)), C(xi))G(N(B(xi)), C(xi)) +G(N(B(xi)), C(xi))H(N(A(xi)), C(xi)).

Then

G(N(A(xi)), C(xi))[G(N(B(xi)), C(xi)) +H(N(B(xi)), C(xi))] ≥
G(N(B(xi)), C(xi))[G(N(A(xi)), C(xi)) +H(N(A(xi)), C(xi))]

therefore,

G(N(A(xi)), C(xi))

G(N(A(xi)), C(xi)) +H(N(A(xi)), C(xi))
≥ G(N(B(xi)), C(xi))

G(N(B(xi)), C(xi)) +H(N(B(xi)), C(xi))

that is, bearing in mind that A satisfies A3 we have that σ(A,C) ≥ σ(B,C).
If A ≤ B, then A(xi) ≤ B(xi). As G and H fulfill (d’) we have that

G(N(C(xi)), A(xi)) ≤ G(N(C(xi)), B(xi)) and H(N(C(xi)), B(xi)) ≤ H(N(C(xi)), A(xi)).

Therefore,

G(N(C(xi)), A(xi))H(N(C(xi)), B(xi)) ≤ G(N(C(xi)), B(xi))H(N(C(xi)), A(xi));



that is,

G(N(C(xi)), A(xi))G(N(C(xi)), B(xi)) +G(N(C(xi)), A(xi))H(N(C(xi)), B(xi)) ≤
G(N(C(xi)), A(xi))G(N(C(xi)), B(xi)) +G(N(C(xi)), B(xi))H(N(C(xi)), A(xi)).

then
G(N(C(xi)), A(xi))[G(N(C(xi)), B(xi)) +H(N(C(xi)), B(xi))] ≤
G(N(C(xi)), B(xi))[G(N(C(xi)), A(xi)) +H(N(C(xi)), A(xi))]

therefore

G(N(C(xi)), A(xi))

G(N(C(xi)), A(xi)) +H(N(C(xi)), A(xi))
≤ G(N(C(xi)), B(xi))

G(N(C(xi)), B(xi)) +H(N(C(xi)), B(xi))
;

that is σ(C,A) ≤ σ(C,B).
Since G and H fulfill (e’) and N is a strong negation we have that

σ(BN , AN ) =
n

A
i=1

(
G(B(xi), N(A(xi)))

G(B(xi), N(A(xi))) +H(B(xi), N(A(xi)))

)
=

n

A
i=1

(
G(N(A(xi)), B(xi))

G(N(A(xi)), B(xi)) +H(N(A(xi)), B(xi))

)
= σ(A,B).

We know by (a’) thatG(A(xi), B(xi)) ≥ H(A(xi), N(B(xi))) for all i ∈ {1, · · · , n},
then bearing in mind thatN is involutive we haveG(N(A(xi)), B(xi)) ≥ H(N(A(xi)), N(B(xi)))
and G(N(A(xi)), N(B(xi))) ≥ H(N(A(xi)), B(xi)), therefore

G(N(A(xi)), B(xi))G(N(A(xi)), N(B(xi))) ≥ H(N(A(xi)), B(xi))H(N(A(xi)), N(B(xi))),

then

G(N(A(xi)), B(xi))G(N(A(xi)), N(B(xi))) +G(N(A(xi)), B(xi))H(N(A(xi)), N(B(xi))) ≥
G(N(A(xi)), B(xi))H(N(A(xi)), N(B(xi))) +H(N(A(xi)), B(xi))H(N(A(xi)), N(B(xi))),

that is:

G(N(A(xi)), B(xi))[G(N(A(xi)), N(B(xi))) +H(N(A(xi)), N(B(xi)))] ≥
H(N(A(xi)), N(B(xi)))[G(N(A(xi)), B(xi)) +H(N(A(xi)), B(xi))].

By (b’) and (f’) we have thatG(N(A(xi)), N(B(xi)))+H(N(A(xi)), N(B(xi))) 6= 0
and G(N(A(xi)), B(xi)) +H(N(A(xi)), B(xi)) 6= 0. Therefore

G(N(A(xi)), B(xi))

G(N(A(xi)), B(xi)) +H(N(A(xi)), B(xi))
≥

H(N(A(xi)), N(B(xi)))

H(N(A(xi)), N(B(xi))) +G(N(A(xi)), N(B(xi)))
=

1− G(N(A(xi)), N(B(xi)))

G(N(A(xi)), N(B(xi))) +H(N(A(xi)), N(B(xi)))
,

that is:
G(N(A(xi)), B(xi))

G(N(A(xi)), B(xi)) +H(N(A(xi)), B(xi))
+

G(N(A(xi)), N(B(xi)))

G(N(A(xi)), N(B(xi))) +H(N(A(xi)), N(B(xi)))
≥ 1.



Therefore, since A(x1, · · · , xn) ≥ 1
n

n∑
i=1

xi, we have

σ(A,B) + σ(A,BN ) =
n
A
i=1

(
G(N(A(xi)), B(xi))

G(N(A(xi)), B(xi)) +H(N(A(xi)), B(xi))

)
+

n
A
i=1

(
G(N(A(xi)), N(B(xi)))

G(N(A(xi)), N(B(xi))) +H(N(A(xi)), N(B(xi)))

)
≥

1

n

n∑
i=1

(
G(N(A(xi)), B(xi))

G(N(A(xi)), B(xi)) +H(N(A(xi)), B(xi))

)
+

1

n

n∑
i=1

(
G(N(A(xi)), N(B(xi)))

G(N(A(xi)), N(B(xi))) +H(N(A(xi)), N(B(xi)))

)
=

1

n

n∑
i=1

G(N(A(xi)), B(xi))

G(N(A(xi)), B(xi)) +H(N(A(xi)), B(xi))
+

G(N(A(xi)), N(B(xi)))

G(N(A(xi)), N(B(xi))) +H(N(A(xi)), N(B(xi)))
≥ 1. �

Example 4. Let us take:

G(x, y) =

{
1 if x ≥ 1− y
∨(x, y) if x < 1− y

H(x, y) =

{
0 if x ≥ 1− y
∧(1− x, 1− y) if x < 1− y.

In these conditions,
A = σ(A,B) =

1)
1

n

n∑
i=1

xi
1

n

n∑
i=1

{
1 if A(xi) ≤ B(xi)
∨ (1−A(xi), B(xi)) if A(xi) > B(xi)

Corollary 3. In the same conditions as in the theorem above, if f : [0, 1] → R is a
continuous, strictly increasing and convex function, then

σ(A,B) = f−1

(
1

n

n∑
i=1

f

(
G(N(A(xi)), B(xi))

G(N(A(xi)), B(xi)) +H(N(A(xi)), B(xi))

))
is a fuzzy subsethood measure on X that satisfies axioms SD6 and SD10 of Sinha and
Dougherty.

Proof. We only need to take into account the theorem above, and item (a) in section 6.1
of [9] by which if f is convex we have Ak(x1, · · · , xn) > 1

n

∑n
i=1 xi. And Theorem 5

in [9], by which: A(x1, · · · , xn) = f−1
(

1
n

∑n
i=1 f(xi)

)
�

Example 5. Construction of fuzzy subsethood measures on X from functions of [0, 1]
in R and functions I generated from functions of [0, 1]2 in R+.

f = σ(A,B) =

1)
xλ

λ > 1

(
1

n

n∑
i=1

({
1 if A(xi) ≤ B(xi)
∨ (1−A(xi), B(xi)) if A(xi) > B(xi)

)λ) 1
λ



4 Conclusions

In this paper, we have introduced a theorem by which we could construct fuzzy subet-
hood measures using functions with certain properties. The importance of using differ-
ent ways to construct fuzzy subsethood measures comes from the fact that they can be
used to obtain other measures namely, entropies, similarity measures, penalty functions,
etc. [26]. Besides, we use functions I with properties very similar to those of implication
operators in order to construct fuzzy subsethood measures. Thus we can benefit from
all the studies regarding such operators [2,6,23].
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2. M. Baczyński, B. Jayaram, Fuzzy Implications, Studies in Fuzziness and Soft Computing, vol.
231, Springer, Berlin, Heidelberg, 2008.

3. W. Bandler, L. Kohout, Fuzzy power sets and fuzzy implication operators, Fuzzy Sets and
Systems 4 (1980) 13–30.

4. G. Beliakov, A. Pradera, T. Calvo, Aggregation Functions: A Guide for Practitioners. Springer,
Berlin, Heidelberg, 2007.

5. H. Bustince, E. Barrenechea, M. Pagola, Relationship between restricted dissimilarity func-
tions, restricted equivalence functions and normal EN -functions: Image thresholding invari-
ant, Pattern Recognition Letters 29 (4) (2008) 525–536.

6. H. Bustince, P. Burillo, F. Soria, Automorphisms, negations and implication operators, Fuzzy
Sets and Systems 134 (2003) 209–229.

7. H. Bustince, J. Fernandez, J. Sanz, M. Baczyński, R. Mesiar, Construction of strong equality
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