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Abstract. In this paper we consider the notions of t-norm, t-conorm,
fuzzy negation and De Morgan triples and prove some new results about
them. We define t-(co)norm SN (TN ) N -dual of S (T ) and prove that TN
is a t-conorm and SN is a t-norm. We prove if (T, S,N) is a De Morgan
triple, then (T, S,N−1) is a De Morgan triple, and if N is strict, then
(SN , TN , N) = (T, S,N). Also, if (T, S,N) is a De Morgan triple and ρ
an automorphism, then (T ρ, Sρ, Nρ) is a De Morgan triple.
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1 Introduction

There are several ways to extend the propositional classical connectives for a
set [0, 1], but not always these extentions preserve the properties of the classi-
cal conectives. Triangular norms (t-norms) and triangular conorms (t-conorms)
were first studied by Menger [16] and, Scheweizer and Sklar [19] in probabilistic
metric spaces in which triangular inequalities were extended using t-norms and
t-conorms theory.

The name triangular norm refers to the fact that in the framework of prob-
abilistic metric spaces t-norms are used to generalize triangle inequality of ordi-
nary metric spaces and t-conorms are dual to t-norms under the order-reversing
operation. The defining conditions of the t-norm are exactly those of the partially
ordered Abelian monoid on the real unit interval [0, 1].

T-norms are used to represent logical conjunction in fuzzy logic and intersep-
tion in fuzzy set theory, whereas t-conorms are used to represent logical disjunc-
tion in fuzzy logic and union in fuzzy set theory. A t-norm (t-conorm) is a binary
operation defined in [0, 1], which is commutative, associative, nondecreasing and
with neutral element 1 (0).

In 19th century, De Morgan introduced the De Morgan’s laws which in propo-
sitional logic and boolean algebra is a pair of transformation rules that are both



valid rules of inference. This rules allow the expression of conjunctions and dis-
junctions purely in terms of each other via negation. In formal language, these
rules can be expressed as “the negation of a conjunction is the disjunction of
the negations” and “the negation of a disjunction is the conjunction of the nega-
tions”. De Morgan’s laws are also apply in the more general context of Boolean
algebra and, in particular, in the Boolean algebra of set theory. In fuzzy logic,
the triples formed by a t-norm, t-conorm and standard complement is called
De Morgan triples if it fulfills De Morgan laws. De Morgan triples were first
introduced by Zadeh in 1965.

In this contribuition, our aim is prove some new important results about
t-norm and t-conorm theory or that they are not readily found in the literature.
In this paper, we define t-(co)norm TN (SN ) N -dual of T (S) and prove that
TN is a t-conorm and SN is a t-norm. We demonstrate that if (T, S,N) is a
De Morgan triple, then (T, S,N−1) is a De Morgan triple, and if N is strict,
then (SN , TN , N) = (T, S,N). Also, if (T, S,N) is a De Morgan triple and ρ an
automorphism, then (T ρ, Sρ, Nρ) is a De Morgan triple and we prove the same
for supremum and infimum of the t-norm and t-conorm.

2 Preliminaries

In this section, we will briefly review some basic concepts which are necessary
for the development of this paper. The definitions and additional results can be
found in [1], [2], [4], [5], [7], [8],[10], [12], [14].

2.1 t-norms, t-conorms and fuzzy negations

Definition 1. A function T : [0, 1]2 → [0, 1] is a t-norm if, for all x, y, z ∈ [0, 1],
the following axioms are satisfied:

1. Symmetric: T (x, y) = T (y, x);
2. Associative: T (x, T (y, z)) = T (T (x, y), z);
3. Monotonic: If x ≤ y, then T (x, z) ≤ T (y, z);
4. One identity: T (x, 1) = x.

A t-norm T is called positive if satifies the condiction: T (x, y) = 0 iff x = 0
or y = 0.

Example 1. Some examples of t-norms:

1. Gödel t-norm: TG(x, y) = min(x, y);
2. Product t-norm: TP (x, y) = x.y;
3. Lukasiewicz t-norm: TL(x, y) = max(0, x+ y − 1);
4. Drastic t-norm:

TD(x, y) =

{
0 if (x, y) ∈ [0, 1[2;
min(x, y) otherwise.



Definition 2. A function S : [0, 1]2 → [0, 1] is a t-conorm if, for all x, y, z ∈
[0, 1], the following axioms are satisfied:

1. Symmetric: S(x, y) = S(y, x);
2. Associative: S(x, S(y, z)) = S(S(x, y), z);
3. Monotonic: If x ≤ y, then S(z, x) ≤ S(z, y);
4. Zero identity: S(x, 0) = x.

A t-conorm S is called positive if satifies the condiction: S(x, y) = 1 iff x = 1
or y = 1.

Example 2. Some examples of t-conorms:

1. Gödel t-conorm: SG(x, y) = max(x, y);
2. Probabilistic sum: SP (x, y) = x+ y − x.y;
3. Lukasiewicz t-conorm: SL(x, y) = min(x+ y, 1);
4. Drastic sum:

SD(x, y) =

{
1 if (x, y) ∈]0, 1]2;
max(x, y) otherwise.

A function N : [0, 1]→ [0, 1] is a fuzzy negation if

N1: N(0) = 1 and N(1) = 0;
N2: Decreasing: If x ≤ y, then N(x) ≥ N(y), for all x, y ∈ [0, 1].

A fuzzy negations N is strict if it is continuous and strictly decreasing, i.e.,
N(x) < N(y) when y < x. A fuzzy negations N that satisfying the condition N3
is called strong

N3: Involutive: N(N(x)) = x for each x ∈ [0, 1].

A fuzzy negation is called crisp if satisfies N4

N4: Crisp: For all N(x) ∈ {0, 1} iff x = 0 or x = 1.

Example 3. Some examples of fuzzy negations:

1. Standard negation: NS(x) = 1− x;
2. Strict non-strong negation: NS2(x) = 1− x2;
3. Bottom negation:

N⊥(x) =

{
0 if x > 0
1 if x = 0

4. Top negation:

N>(x) =

{
0 if x = 1
1 if x < 1



In [11], Dimuro et.al. define Nα and Nα as

Nα(x) =

{
0 if x > α
1 if x ≤ α (1)

Nα(x) =

{
0 if x ≥ α
1 if x < α

(2)

According to [11], a fuzzy negation N is crisp iff there exists a α ∈ [0, 1] such
that N = Nα or N = Nα.

Note that:

1. If N is strong then it has an inverse N− which also is a strict fuzzy negation;
2. If N is strong then N is strict.

Definition 3. [3, Definitions 2.3.8 and 2.3.14] Let T be a t-norm, S be a t-
conorm and N be a fuzzy negation. The pair (T,N) satisfies the law of contra-
diction if

T (x,N(x)) = 0, ∀ x ∈ [0, 1] (LC)

The pair (S,N) satisfies the law of excluded middle if

S(x,N(x)) = 1, ∀ x ∈ [0, 1] (LEM)

The supremum and infimum of the t-norms T1 and T2 is defined as

T1 ∧ T2(x, y) = min{T1(x, y), T2(x, y)}
T1 ∨ T2(x, y) = max{T1(x, y), T2(x, y)}.

Similarly, we define the supremum and infimum of the t-conorms S1 and S2.

Proposition 1. Let T1 and T2 be t-norms. Then, T1 ∧ T2 and T1 ∨ T2 are sym-
metric, increasing and have 1 as neutral element.

Proof. Let T1 and T2 be t-norms. Then, for all x, y, z ∈ [0, 1],

1. Symmetry:

T1 ∧ T2(x, y) = min{T1(x, y), T2(x, y)}
= min{T1(y, x), T2(y, x)}
= T1 ∧ T2(y, x).

2. Monotonicity: If x ≤ y then, since T is a t-norm, T1(x, z) ≤ T1(y, z) and
T2(x, z) ≤ T2(y, z). Thus, min{T1(x, z), T2(x, z)} ≤ min{T1(y, z), T2(y, z)}.
Therefore, T1 ∧ T2(x, z) ≤ T1 ∧ T2(y, z).



3. Border Condition: For all x ∈ [0, 1], we have that

T1 ∧ T2(x, 1) = min{T1(x, 1), T2(x, 1)}
= min{x, x}
= x.

Analogously we prove that T1∨T2 is symmetric, increasing and have 1 as neutral
element.

Notice that, not always T1 ∧ T2 and T1 ∨ T2 are associative and therefore,
t-norms.

Proposition 2. Let S1 and S2 be t-conorms. Then, S1 ∧ S2 and S1 ∨ S2 are
symmetric, increasing and have 1 as neutral element.

Proof. Analogous from Proposition 1.

Definition 4. Let T be a t-norm, S be a t-conorm and N be a strict fuzzy nega-
tion. TN is the N -dual of T if, for all x, y ∈ [0, 1], TN (x, y) = N−1(T (N(x), N(y))).
Similarly, SN is the N -dual of S if, for all x, y ∈ [0, 1], SN (x, y) = N−1(S(N(x), N(y))).

Proposition 3. Let T be a t-norm, S be a t-conorm and N be a fuzzy negation.
Then, TN is a t-conorm and SN is a t-norm.

Proof. Let T be a t-norm and N be a fuzzy negation. Then, for all x, y, z ∈ [0, 1],

1. Symmetry:

TN (x, y) = N−1(T (N(x), N(y)))

= N−1(T (N(y), N(x)))

= TN (y, x).

2. Associativity:

TN (x, TN (y, z)) = N−1(T (N(x), N(N−1(T (N(y))))))

= N−1(T (N(x), T (N(y))))

= N−1(T (T (N(x), N(y))))

= N−1(T (N(N−1(T (N(x), N(y))))))

= TN (TN (x, y), z)

3. Monotonicity: If y ≤ z, then N(z) ≤ N(y). Since T is a t-norm, then
T (N(x), N(z)) ≤ T (N(x), N(y)). Thus,N−1(T (N(x), N(y))) ≤ N−1(T (N(x), N(z))).
Therefore, TN (x, y) ≤ TN (x, z).



4. Border Condition: For all x ∈ [0, 1], we have that

TN (x, 0) = N−1(T (N(x), N(0)))

= N−1(T (N(x), 1))

= N−1(N(x))

= x.

Therefore, TN is a t-conorm. Analogously we prove that SN is a t-norm.

Definition 5. A function ρ : [0, 1]→ [0, 1] is an automorphism if it is bijective
and increasing, i.e., for each x, y ∈ [0, 1], if x ≤ y, then ρ(x) ≤ ρ(y).

According with [8, Definition 0], a function ρ : U → U is an automorphism
if it is continuous, strictly increasing and verifies the boundary conditions ρ(0)=0
and ρ(1) = 1, i.e., if it is an increasing bijection on U , meaning that for each
x, y ∈ [0, 1], if x ≤ y, then ρ(x) ≤ ρ(y). The set of all automorphisms on [0, 1]
will be denoted by Aut([0, 1]).

Automorphisms are closed under composition if ρ, ρ′ ∈ Aut([0, 1]), then ρ ◦
ρ′ ∈ Aut([0, 1]), where ρ ◦ ρ′(x) = ρ(ρ′(x)). In addition, the inverse ρ−1 of an
order automorphism ρ is also an order automorphism.

The function T ρ (Sρ), called as the ρ-conjugate of a t-(co)norm T (S), is
obtained by action of ρ ∈ Aut([0, 1]) on T (S) and defined in the following:

T ρ(x, y) = ρ−1(T (ρ(x), ρ(y))), (3)

Sρ(x, y) = ρ−1(S(ρ(x), ρ(y))), ∀ x, y ∈ [0, 1]. (4)

2.2 De Morgan triples

According to [14], the triple (T, S,N) where T is a t-norm, S is a t-conorm and N
a fuzzy negation is called De Morgan triples if satisfies the following conditions:

T (x, y) = N(S(N(x), N(y)));

S(x, y) = N(T (N(x), N(y))),

which naturally imply that N is a strong fuzzy negation.
There are several different notions of De Morgan triples as we can see in [6],

[9], [13], [15], [17], [18]. In this paper we will use the definition of De Morgan
triples laws as done in [10], [15], [18], [20] which not implies in involution of the
fuzzy negation. Thus,

Definition 6. Let T is a t-norm, S a t-conorm, N a fuzzy negation. Then
(T, S,N) is a De Morgan triple if, for each x, y ∈ [0, 1],

N(T (x, y)) = S(N(x), N(y)); (5)

N(S(x, y)) = T (N(x), N(y)). (6)



Example 4. (TG, SG, NS), (TP , SP , N⊥) and (TL, SL, NS) are examples of De
Morgan triples.

Definition 7. (T, S,N) is a semi De Morgan triple if satify the Eq. (5) for each
x ∈ [0, 1] or (6) for each x ∈ [0, 1].

3 New results

In this section, we will prove some propositions using definitions introduced on
the previous section.

Proposition 4. Let T be a t-norm, S be a t-conorm and α ∈ [0, 1]. If, T (x, y) >
α⇔ x, y > α and S(x, y) ≤ α⇔ x, y ≤ α, then (T, S,Nα) is a De Morgan triple.

Proof. Suppose that x, y > α, then T (x, y) > α and Nα(T (x, y)) = 0. On the
other hand, S(Nα(x), Nα(y)) = S(0, 0) = 0;

If x ≤ α, then T (x, y) ≤ α and therefore, Nα(T (x, y)) = 1. On the other
hand, S(Nα(x), Nα(y)) = S(1, Nα(y)) = 1;

If y ≤ α, the proof is analogous. Therefore, Nα(T (x, y)) = S(Nα(x), Nα(y)).

Now, we will prove that Nα(S(x, y)) = T (Nα(x), Nα(y)). Suppose that x, y ≤
α, then S(x, y) ≤ α and Nα(S(x, y)) = 1. On the other hand, T (Nα(x), Nα(y)) =
T (1, 1) = 1;

If x > α, then S(x, y) > α and therefore, Nα(S(x, y)) = 0. On the other
hand, T (Nα(x), Nα(y)) = T (0, Nα(y)) = 0;

If y > α, the proof is analogous. Therefore, Nα(S(x, y)) = T (Nα(x), Nα(y)).
Therefore, (T, S,Nα) is a De Morgan triple.

Corollary 1. Let T be a positive t-norm and S be a positive t-conorm. Then,
(T, S,N⊥) is a De Morgan triple.

Proof. Analogous from Proposition 4.

Proposition 5. Let T be a t-norm, S be a t-conorm and α ∈ [0, 1]. If, T (x, y) ≥
α⇔ x, y ≥ α and S(x, y) < α⇔ x, y < α, then (T, S,Nα) is a De Morgan triple.

Proof. Analogous from Proposition 4.

Corollary 2. Let T be a positive t-norm and S be a positive t-conorm. Then,
(T, S,N>) is a De Morgan triple.

Proof. Analogous from Proposition 4.



Proposition 6. Let (T, S,N) be a De Morgan triple. If N is strict then (T, S,N−1)
is also De Morgan triple.

Proof. Let x, y ∈ [0, 1], then

N−1(T (x, y)) = N−1(T (N(N−1(x)), N(N−1(y))))

= N−1(N(S(N−1(x), N−1(y))))

= S(N−1(x), N−1(y)).

Analogously we prove that N−1(S(x, y)) = T (N−1(x), N−1(y)).

The following lemmas will give us important results for to prove the propo-
sitions envolving contradiction law and law of excluded middle.

Lemma 1. Let T be a t-norm and N be a strict fuzzy negation. (T,N) satisfies
(LC) iff (T,N−1) satisfies (LC).

Proof. Since N is strict then it has an inverse strict fuzzy negation N−1.
(⇒) Since (T,N) satisfies (LC), then T (N(x), N−1(N(x))) = 0, for all x ∈ [0, 1].
So, for all x ∈ [0, 1], T (x,N(x)) = T (N(x), x) = T (N(x), N−1(N(x))) = 0.
(⇐) Analogous.

Lemma 2. Let S be a t-conorm and N be a strict fuzzy negation. (S,N) satisfies
(LEM) iff (S,N−1) satisfies (LEM).

Proof. Analogous from Lemma 1.

Proposition 7. Let (T, S,N) be a semi De Morgan triple with respect the Eq.
(5) and N be a strict fuzzy negation. If (T,N) satisfies (LC) then (S,N) satisfies
(LEM).

Proof. Let x ∈ [0, 1]. Since (T,N) satisfies (LC), then T (x,N(x)) = 0. So,
N−1(T (x,N(x))) = 1, for all x ∈ [0, 1]. By Eq. (5) and Proposition 6, S(N−1(x),
N−1(N(x))) = 1 and therefore, S(N−1(x), x) = 1, for all x ∈ [0, 1]. Thus, by
Lemma 2, S(N(x), x) = 1. Therefore, (S,N) satisfies (LEM).

Proposition 8. Let (T, S,N) be a semi De Morgan triple with respect the Eq.
(6) and N be a strict fuzzy negation. If (S,N) satisfies (LEM) then (T,N)
satisfies (LC).

Proof. Let x ∈ [0, 1]. Since (S,N) satisfies (LEM), then S(N(x), x) = 1 and
then N−1(S(N(x), x)) = 0, for all x ∈ [0, 1]. So, by Eq. (6) and Proposition
6, T (N−1(N(x)), N−1(x)) = 0 and hence, T (x,N−1(x)) = 0, for all x ∈ [0, 1].
Thus, by Lemma 1, T (x,N(x)) = 0. Therefore, (T,N) satisfies (LC).



Corollary 3. Let (T, S,N) be a De Morgan triple and N be a strict fuzzy nega-
tion. Then, (T,N) satisfies (LC) iff (S,N) satisfies (LEM).

Proof. Straighforward from Propositions 7 and 8.

Proposition 9. Let (T, S,N) be a De Morgan triple. If N is strict then (SN , TN , N) =
(T, S,N).

Proof. SinceN is strict, then SN (x, y) = N−1(S(N(x), N(y))) =N−1(N(T (x, y))) =
T (x, y). Analogously we prove that TN (x, y) = S(x, y).

Proposition 10. Let (T, S,N) be a De Morgan triple. If N is strict, then
(SN , TN−1 , N) and (SN−1 , TN , N) are semi De Morgan triple.

Proof. Let N be a strict fuzzy negation and x, y ∈ [0, 1]. Then

N(SN (x, y)) = N(N−1(S(N(x), N(y))))

= S(N(x), N(y))

= N(T (x, y))

= N(T (N−1(N(x)), N−1(N(y))))

= TN−1(N(x), N(y)).

Thus, (SN , TN−1 , N) satisfies the Eq. (6) and therefore, it is a semi De Morgan
triple. Analogously, we prove that (SN−1 , TN , N) satisfies Eq. (5).

Now, using the notion of automorphism ρ from t-norms, t-conorms and fuzzy
negation, we show that the triple (T ρ, Sρ, Nρ) is a De Morgan triple.

Proposition 11. Let (T, S,N) be a De Morgan triple and ρ be an automor-
phism. Then, (T ρ, Sρ, Nρ) is a De Morgan triple.

Proof. Let x, y ∈ [0, 1], then

Nρ(T ρ(x, y)) = Nρ(ρ−1(T (ρ(x), ρ(y))))

= ρ−1(N(ρ(ρ−1(T (ρ(x), ρ(y))))))

= ρ−1(N(T (ρ(x), ρ(y))))

= ρ−1(S(N(ρ(x)), N(ρ(y))))

= ρ−1(S(ρ(ρ−1(N(ρ(x)))), ρ(ρ−1(N(ρ(y))))))

= Sρ(ρ−1(N(ρ(x))), ρ−1(N(ρ(y))))

= Sρ(Nρ(x), Nρ(y)).

Analogously we prove that Nρ(Sρ(x, y)) = T ρ(Nρ(x), Nρ(y)).



Proposition 12. Let (T1, S1, N) and (T2, S2, N) be De Morgan triples. Then,
T1 ≤ T2 iff S1 ≥ S2.

Proof. (⇒) Let T1 ≤ T2 and x, y ∈ [0, 1]. Then, N(S1(x, y)) = T1(N(x), N(y)) ≤
T2(N(x), N(y)) = N(S2(x, y)). Therefore, S1(x, y) ≥ S2(x, y).

(⇐) Analogous.

Proposition 13. Let (T1, S1, N) and (T2, S2, N) be De Morgan triples. If T1∧T2
and S1 ∨ S2 are t-norm and t-conorm, respectively, then (T1 ∧ T2, S1 ∨ S2, N)
is a De Morgan triple. Dually, if T1 ∨ T2 and S1 ∧ S2 are t-norm, t-conorm,
respectively, then (T1 ∨ T2, S1 ∧ S2, N) is a De Morgan triple.

Proof. Let x, y ∈ [0, 1]. Then,

N(T1 ∧ T2(x, y)) = N(min{T1(x, y), T2(x, y)})
= max{N(T1(x, y)), N(T2(x, y))}
= max{S1(N(x), N(y)), S2(N(x), N(y))}
= S1 ∨ S2(N(x), N(y)).

Analogously we prove that N(S1 ∨ S2(x, y)) = T1 ∧ T2(N(x), N(y)). Therefore,
(T1 ∧ T2, S1 ∨ S2, N) is a De Morgan triple.

Dually, we prove that (T1 ∨ T2, S1 ∧ S2, N) is a De Morgan triple.

4 Conclusion

In this paper we consider the notions of t-norm, t-conorm, fuzzy negation and
De Morgan triples and prove some new results about them as, if (T, S,N) is a
De Morgan triple, then (T, S,N−1) is a De Morgan triple, and if N is strict,
then (SN , TN , N) = (T, S,N). Also, if (T, S,N) is a De Morgan triple and ρ an
automorphism, then (T ρ, Sρ, Nρ) is a De Morgan triple.

As further work, we will prove other results as the ordinal sum of De Morgan
triples is De Morgan triple.
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