WOWA image filters

L. Torres, J. C. Becceneri, C. C. Freitas, S. J. S. Sant’Anna, and S. Sandri

Instituto Nacional de Pesquisas Espaciais (LAC/INPE),
12227-010 - Sa@o José dos Campos, SP, Brasil

Abstract. We introduce a parametrized family of filters, called WOWA filters,
which are based on the WOWA family of mean operators from the fuzzy sets
literature. These operators make use of two vectors to weight an input data vector:
one whose weights correspond to the same positions in the input, and another
that considers the ordered positions of the input. The focus here is on the use
of WOWA filters to reduce speckle in SAR imagery. We also address learning
the weight vectors with Genetic Algorithms, and compare the proposed filtering
approach to a set of filters from the literature, considering SAR images obtained
with a single polarization, and 3 X 3 windows.

1 Introduction

Synthetic Aperture Radar (SAR) sensors can be used at any time of day or night, unlike
their optical counterparts. Moreover, they are also not so adversely as optical sensors
to atmospheric conditions and the presence of clouds [12]. However, the visual quality
of SAR images are degraded by sudden variations in image intensity with a salt and
pepper pattern, due to the existence of a great amount of multiplicative non-Gaussian
noise, proportional to the intensity of the received signal [16].

In order to reduce this noise, known as speckle, multiple looks in the generation
of the complex images can be employed, leading to degradation in spatial resolution.
Another alternative to reduce speckle is through the use of filters, that can be either
model-independent, such as Ordered Statistical Filters (OSF) [2], or model-dependent,
such the Lee filter [10, 9], the Refined Lee filter [11] and SDNLM (Stochastic Distances
and Nonlocal Means) [24], among others.

In [25] and [26], we introduced OWA filters, based on Ordered Weighted Average
operators (OWA) [30], a family of mean operators that perform a convex combination of
a set of ordered values, using a weight vector w. In the same paper, we investigated the
use of OWA filters to reduce speckle in SAR intensity imagery and proposed strategies
to learn vector w using Genetic Algorithms (GA) [8] [6]. In [25], a single polarization
(HH) was used with 3 x 3 windows, and in [26], 3 polarizations (HH, HV and VV) were
used with 5 x 5 windows.

In the present work, we introduce WOWA filters, based on Weighted OWA operators
(WOWA) [23]. This family of operators makes joint use of two vectors to weigh data: a
vector w, employed by OWA operators, and a vector p, employed by Weighted Means
operators. We focus on the use of WOWA filters in SAR imagery and compare the
proposed approach with filters from the literature, using a series of experiments on
synthetic images for a single polarization (HH), with 3 x 3 windows. Weight vectors



p and w are learned with GAs, having the Normalized Mean Square Error (NMSE) as
fitness measure (see [1]).

This work is organized as follows. Sections 2, 3 and 4 discuss SAR images filters,
WM, OWA and WOWA operators, and GAs, respectively. Sections 5 and 6 respec-
tively describe WOWA filters and how to learn them using GAs. Section 7 presents an
experiment in SAR imagery and Section 8 finally brings the conclusion.

2 Basic concepts on SAR imagery

Optical and SAR sensors measure the amount of energy reflected by a target in various
bands of the electromagnetic spectrum, usually with frequencies found in the 2MHz
to 12.5GHz range, and wavelengths ranging from 2.4cm to Im. SAR systems generate
the image of a target area by moving along a usually linear trajectory, and transmitting
pulses in lateral looks towards the ground, in either horizontal or vertical polarizations
[18], here respectively denoted as H and V.

Before the advent of polarimetric or polarized radars (PolSAR), the reception of
the transmitted energy was made solely on the same polarization of the transmission,
generating images in the HH and V'V polarizations. With PolSAR, information about
intensity and phase of the cross signals are also obtained, generating images in the HV
and VH polarizations.

The imaging can be obtained by gathering all the intensity and phase information
data from the electromagnetic signal after it has been backscattered by the target in a
given polarization [12]. Each polarization in a given a scene generates a complex image,
with the real and imaginary components for each pixel. We denote the complex images
from HH, VV, and HV polarizations as Syy, Suv, and Syy. Multiplying the vector
[Sun  Suv Svy]| by its transposed conjugated vector [Sfyy  Siiv  Svy]’, we obtain
a 3 x 3 covariance matrix. The images in the main diagonal, denoted by Iyy, Iyv, and
Iyv, contain intensity values.

2.1 Filters for SAR imagery

Given a window in an image, a filter substitutes the value of its central pixel by a func-
tion of the values of the pixels in the window. Two of the most weel-known filters are
the mean and median filters, that employ the arithmetic mean and the median, respec-
tively. In SAR imagery, the mean filter tends to reduce the speckle but it also tends
to indiscriminately blur the image [13]. The median filter, on the other hand, reduces
erratic variations by eliminating the lowest and highest pixel values [20].

The simplest filters are linear filters that employ the convolution operation. Given
an image I, whose pixels take values in R, a m x m window around the central pixel
(z,y) in I, and a matrix of coefficients v : {—m, ...,0,...,m}?> — R, the result of
convolution for (x,y) in the filtered image I, is calculated as

Lzy)= > > 65 xI@+iy+j).
i=—m,m j=—m,m

Order Statistics Filters [2] constitute a general class of filters in which the result of
filtering for a given pixel is the linear combination of the ordered values of the pixels



in the window around that pixel. They belong to the larger class of non-linear filters
based on order statistics [17], being an application of L-estimators. An OSF is thus
obtained when a convolution filter is applied on the ordered statistic of the pixel values
in a window.

Other model-independent filters are the directional means filters, in which only pix-
els in one of the twelve regions of the six orthogonal directions are considered (diago-
nals, rows and columns) [20] and the local region filters (see [21]), in which the window
is divided in eight regions based on angular position and the central pixel is replaced by
the mean value of the subregion presenting the lowest variance.

More complex filters are obtained when a noise model is adopted. One of such filters
is the so-called Lee filter, in which speckle reduction is based on multiplicative noise
model using the minimum mean-square error (MMSE) criterion [10, 9]. The Refined
Lee filter [11], here called R-Lee filter, is an improved version of the Lee filter, which
uses a methodology for selecting neighboring pixels with similar scattering character-
istics.

In [3], Buades et al. proposed the Nonlocal Means (NL-means) methodology, which
consists in using similarities between patches as the weights of a mean filter, being
well-suited for decreasing additive Gaussian noise. A more recent model-dependent
approach, the SDNLM (Stochastic Distances and Nonlocal Means) filter [24], is an
adaptive nonlinear extension of the NL-means algorithm filter. In this adaptive linear
filter, overlapping samples are compared based on stochastic distances between distri-
butions, and the p-values resulting from such comparisons are used to build the required
weights.

2.2 Image Quality Assessment for SAR imagery

Assessing the performance of a filter, done by comparing the quality of the unfiltered
and filtered images, is a very difficult task [28]. Two important indices to measure the
quality of filtered images, NMSE and SSIM, are described bellow.

Index NMSE (Normalized Mean Square Error) is a general purpose error measure,
widely used in image processing (see [1]). Let r be the perfect information data and s
an approximation of . NMSE is calculated as:

S (ry —s5)?
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where 7; and s; refer to values in r and s at the same coordinates (the position of a
given pixel in the case of images). NMSE always yield positive values, and the lower
its value, the better is the approximation considered to be.

Index SSIM (Structural SIMilarity) measures the similarity between two scalar-
valued images and can be viewed as a quality measure of one of them, when the other
image is regarded as of perfect quality [29]. It is an improved version of the universal
image quality index proposed proposed by [27]. This index takes into account three
factors: (i) correlation between edges; (ii) brightness distortion; and (iii) distortion con-
trast. Let r and s be the perfect information and its approximation, respectively. SSIM

NMSE = )



is calculated as:
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where 7 and 5 are sample means, 52 and 5> are the sample variances, Cov(r, s) is the
sample covariance between r and s, and constants o, as and ag are used the index
stabilization. SSIM ranges in the [—1, 1] interval, and the higher its value, the better is
the approximation considered to be.

Other measures can be used to evaluate the quality of SAR imagery, such as, for
instance, the equivalent number of looks (ENL), usually applied to intensity images
in homogeneous areas, and index 3,, a correlation measure between the edges of two
images (see [15]).

3 OWA and WOWA operators

The well-known Weighted Mean operators (WM) perform a convex combination of
a set of values, using a weight vector p. In 1988, Yager [30] introduced the Ordered
Weighted Average operators (OWA), in the Fuzzy Sets Theory domain. This family of
mean operators perform a convex combination of a set of ordered values, using a weight
vector w. In WM, the weights in p measure the importance of an information source
with independence of the value that the source has captured, whereas in OWA, weights
measure the importance of a value (in relation to other values) with independence of
the information source that has captured it [23]. Weighted OWA operators (WOWA),
proposed by Torra in 1997 [23], use both vectors p and w to weight data, and aims at
taking advantage of both OWA and WM operators.
Let p be a weighting vector of dimension n (p = [p1 p2 ... px)), such that:

- (1) Di € [07 1]’
- (i) Zip; = 1.

A mapping f;"™ : R" — R is a Weighted Mean Operator (WM) of dimension n,
associated to p, if:

(@, an) = X pi X a;. (3)
Let w be a weighting vector of dimension n (W= [w; wy ... wy]), such that:
- ) w; €10,1];
A mapping fo* : R™ — R is an Ordered Weighted Average operator (OWA) of
dimension n, associated to a weighting vector w, if [30]:

owa
w

(a1, ..., apn) = X w; x Ao (i)s @

where {o(1),...,0(n)} is a permutation of {1, ..., n} such that a,;_1) > a, (s, for all
i ={2,..., n} (i.e., a,(s) is the i-th largest element in {a1,...,an}).



The well-known mean, min, max and median operators are obtained straightfor-
wardly with simple OWA n-ary vectors, denoted W.,ean, Wimins Wmaz, and Wo,eq, re-
spectively. For example, for n = 3, we have: W,eqn = [% % %], Woin = [0 0 1],
Winaz = [1 0 0], and Wy,eq = [0 1 0].

Let p and w be weighting vectors as given above. A mapping f,,/9"* : R" — Risa
Weighted Ordered Weighted Average (WOWA) operator of dimension n, associated to
p and w, if [23]:

wipip (150 Gn) = X Wi X g (i), )

where {o(1),...,0(n)} is a permutation of {1, ..., n}, for all i = {2,..., n}, such that
(p(i—1) = G (7). Weight w; is defined as

Wi :¢(Pa(l)) _¢(Pa(i_1))7 (6)
Pa(i) = Ejgi Po(5)s @)

i

n
1 = 1, n. Function ¢ is required to be a straight line when the points can be interpolated
in a linear way. Torra [23] proves that the w;’s compose a weighting vector of dimension

n(w = [wy ... wy]), such that:

and ¢ is a monotone increasing function that interpolates points (0, 0) and (£, > j<i Wi ),

In [23], we can also find examples of non-linear functions to implement ¢ and the proof
that OWA and WM are particular cases of WOWA operators.

We now present a simple example to illustrate the use of WM, OWA, and WOWA
operators. Let a1 = 10, ay = 20, and ag = 0. We thus have (1) = 2, 0(2) = 1, and
o (3) = 3. Therefore a, (1) = 20, a,(2) = 10, and a,(3) = 0.

Letw=[5.3 2] and p = [} 2 1]. We thus obtain

— fowa(10,20,0) = .5 x 20+ .3 x 10+ .2 x 0 = 13,

w

Let ¢; be a linear by parts function, given by

(r —2p—1)(Yr — Yr—1)
(Tr — 2p—1)

Vr € (xkflv‘rk]ak S {17n}7¢l(x) = Yr-1 + 3 (8)

where {(x;,;)i=1,n} is a set of predetermined points. Using w to obtain the points
{(x4,Yi)i=1,n} as required in Equation 6 and applying them in Equation 8, we then
have ¢1(0) = 0, ¢1(3) = .5, ¢1(3) = .8 and ¢y (1) = 1.

Using o and p above, we have p, (1) = 2, py(2) = ¢, and py(3) = 5. We then obtain
P,(1) = 2, P,(2) = 2, and P,(3) = 1, as well as ¢;(P,(1)) = .8, ¢1(P,(2)) = .9,
and ¢;(P,(3)) = 1. Therefore w; = .8, ws = .1, and w3 = .1. Thus

— fwowa(10,20,0) = .8 x 20 +.1 x 10+ .1 x 0 = 17.

w,p,¢



4 Genetic algorithms

Genetic Algorithms (GA), first proposed in [8] (see also [6]), combine Mendel’s ideas
about the codification of life in genes, with Darwin’s ideas on the survival of the fittest
(natural selection). They are search algorithms that evolve populations of candidate
solutions, according to a fitness function that assesses the quality of these solutions to
solve the problem at hand.

A candidate solution ¢ € C' = {c1,...,c} consists of a set of parameters to a
function sol, that models the problem at hand. Each ¢ can be thought of as a genotype
(chromosome) and sol(c) as its corresponding phenotype. A fitness function fit evalu-
ates the candidate solutions; fit(sol(c)) should be proportional to the capacity of ¢ € C'
in solving the problem at hand.

At each GA iteration, three processes (selection, crossover and mutation) take place,
generating a new population C”. The selection process is such that the fittest candidates
in C have a higher probability of being selected for reproduction. This process is usu-
ally performed by means of a roulette (the larger the fitness of an individual, the larger
its share in the roulette wheel) or a set of tournaments (at each tournament, a set of
individuals are chosen at random from the population and the winner is selected for
reproduction). The reproduction process, called crossover, creates two new candidate
solutions by mixing the genotypes of two selected parent candidate solutions. In the
mutation process, all new candidate solutions can suffer changes, according to a (usu-
ally small) probability, called the mutation rate. Different forms of elitism can be used,
by forcing the best candidates to be remain in the new population and/or to have a
stronger influence on the creation of C".

The first initial population is usually obtained randomly, but in many applications,
the use of a selected set of chromosomes may lead to better results. The stop criterion
is usually a fixed number of iterations. The combination of selection, crossover and
mutation provide GAs with a good equilibrium between exploration and exploitation of
the search space.

5 WOWA filters

In [25] and [26], we introduced a general class of filters, called OWA filters, that consist
in applying OWA weight vectors (see [30]) in the values inside a sliding window over
a given image. In the present paper, we propose the use of WOWA filters F /74", as
described in the procedure below, to obtain a filtered image I;)7"%" from a given image

1, using WOWA operators (see [23]).



Procedure £, (1)

1. Transform a weight matrix M associated to a predefined neighbourhood, into a
vector with n positions p.

2. For each pixel in position (z,y) in the original image I, transform a window I’
around (z,y), according to the predefined neighbourhood, into a vector of n posi-
tions a.

. Using a, derive ¢ and a,,.

. Using wg, po and ¢q, derive weight vector w.

. Calculate f,/9"% (a1, ..., an).

. Make the result become the value for position (x, y) in the filtered image:

[2ows (z,y) = fU24% (ay, ..., ap).

AN B~ W

Given an image [ and a position (x, y) in I, and considering a 3 x 3 window, in step
2 we obtain vector a, with 9 positions, as (I(x — 1,y — 1), I(z — 1,y),I(x — 1,y +
D, I(z,y—1), I(x,y), [(z,y+ 1), [(x+1,y—1), I(zx+1,y), [(x+1,y+1)). Vector
Pp is obtained in a similar way from M in step 1.

OWA and WM filters F*"* and F;’"™ are obtained in a similar but simpler way.
Note that F;’m is a convolution filter, whereas F;"’® is an OSF. A WOWA filter is a
combination of convolution filters and OSFs, enjoying the advantages of both.

6 Learning WOWA filters with GAs

WOWA filters parameters can be can be either given or learned. In the following we
study how to learn weight vectors associated to WOWA operators for SAR imagery
using Genetic Algorithms (see Section 4).

6.1 Strategies for learning WOWA filters

We list below 3 ways to learn a filter F//7"" for a given given image I, generating a

1 wowa
filtered image 1;;)"/"-

— WOWA-GA-wp: Learn vector w for filter F,2"?, then learn vector p, by fixing w.
- WOWA-GA-pw: Learn vector p for filter £, then learn vector w, by fixing p.
— WOWA-GA-p+w: Learn vectors w and p at the same time.

Considering a m x m window, the first two strategies consist of two consecutive
learning processes in which each chromosome has n = m? positions. In the last strat-
egy, each chromosome has n = 2m? positions.

6.2 GA details

Given an image, our experiments have been performed as follows. (a) the parameters of
the distributions associated to the various regions in the image are estimated, (b) a set
of simulated images is randomly created using the distributions parameters, (c) the set
of simulated images is partitioned in two sets, one for training and one for testing, and



(d) the best weight vector found by the GA on the training set is used on the test set for
evaluation.

As fitness function, we take the mean values of a given image index over the set of
simulated images (see Section 2.2). Selection is done by usual methods, such as roulette
or tournament (see Section 4). However, since the weight vectors sum up to 1, mutation
and crossover are not straightforward.

Here crossover is made using a linear combination of the parent chromosomes
weight values. Each chromosome has n positions, each of which containing a real
number (a weight), that sum up to 1 altogether. Given two parents c; and ¢z, and ran-
dom number o € [0,1], we generate two sons c12 and co1, where Vi € {1,...,n},
c12li] = a x 1]i] + (1 — @) x ca[i] and co1[i] = (1 — @) X ¢1[i] + @ X c2]i]. The values
in c15 and co7 are then normalized to guarantee that the weights sum up to 1.

We tested a few strategies for mutation, and in the following we only relate the
experiments on the ones that gave the best results, called A and B. In the experiments
reported here, the mutation rate is not applied for each position but for the chromosome
as a whole. If a chromosome is selected for mutation, then we randomly select a position
1 < ¢ < n in the chromosome to be changed, considering a uniform distribution. Then
the adopted strategies differ as follows:

— Strategy A: the value in position ¢ is multiplied by the mutation rate. The difference
is divided by n — 1 and added to each of the remaining positions.

— Strategy B: the value in ¢ is increased with the value of its neighbour to the right
(considering the chromosome as a ring), and the neighbour receives value 0.

7 Experiments

We conducted a series of experiments using a fragment of a phantom described in [19]
(see Figure 3). In this study, we used only the L-band with wavelengths of [30cm, 1m]
and frequencies of [IMHz, 2GHz].

To learn the weight vectors, we used a set of 50 synthetic images, simulated using
the parameters for Wishart distribution estimated in [22] for an area in the Brazilian
Amazon region, considering intensity images derived from polarization HH. Each sim-
ulated image has 240 x 240 pixels and was generated with 1-look. We used a 3 x 3
window and the weight vectors p and w thus have 9 positions each.

After a series of small experiments with various alternatives, we decided to fully
test the proposed procedure considering the following parametrizations:

— Population size: 18, 36 and 72 elements
Number of generations: 10 and 30
Mutation strategies: A and B

Mutation rates: .2 and .8

Seeds for random numbers: 2, 70 and 271
— Selection type: roulette

For each experiment, we performed a 5-fold cross-validation, using 40 images for train-
ing and 10 for testing in each fold. The elements in the initial population in each exper-
iment were chosen at random. As fitness function for each fold in each parametrization,



we took the means of the quality of the resulting filtered images, according to index
NMSE (see Section 2.2).

Our experiments have shown that, as expected, the larger the number of generations
and the larger the size of the population, the better the results. We have also verified that
the seeds did have a significant influence on the results. In what regards the mutation
strategies (A and B), as well as the mutation rates (.2 and .8), the results were quite
similar.

The WOWA operator found by the GA that issued the best mean NMSE, consider-
ing the five folds, was obtained using seed 271, a population of 72 individuals, 30 gen-
erations, mutation strategy B with mutation rate .2. Table 1 brings the results obtained
with filters whose parameters have been learned with the GAs, as well as other filters,
considering the same type of window and the same number of folds. In the Table 1,
we also report the results for SDNLM and R-Lee filters, with the best parametrizations
chosen after a few experiments, using 5 x 5 filtering window for both filters, with 3 x 3
patches, and significance level of 5% for for SDNLM, and with ENL = 1 for R-Lee.

Table 1. NMSE and SSIM mean and standard deviation for 5 folds

NMSE SSIM

mean std mean std
Simulated (no filter) 0.9969 1.87E-4 0.0685 8.52E-7
SDNLM 0.0796 8.82E-6 0.1662 4.86E-6
R-Lee 0.0790 2.06E-6 0.1557 6.47E-6
OWA-GA 0.1118 1.12e-1 0.1365 4.61E-6
WM-GA 0.1173 2.21E-5 0.1376 4.67E-6
WOWA-GA-pw 0.1179 1.50E-4 0.1355 4.62E-6
WOWA-GA-wp 0.1070 1.71E-4 0,1374 4.55E-6
WOWA-GA-w+p 0.1070 2.69E-4 0.1454 4.20E-6
Mean 0.1151 3.97E-6 0.1373 4.66E-6
Median 0.1893 7.91E-6 0.1076 5.40E-6
Minimum 0.8074 5.26E-6 0.0073 2.45E-7
Maximum 4.9708 1.15E-2 0.0394 1.66E-6

We see in Table 1 that the best NMSE mean results are obtained with Lee and
SDNLM filters, and the worst with the minimum and maximum'. Among the WOWA
filters learned with the GAs, those issued with strategies WOWA-GA-wp and WOWA-
GA-w+p presented the best performance. Although in Table 1 they coincide with mean
0.1070, the exact mean NMSE value for WOWA-GA-wp and WOWA-GA-w+p are
0.1070922 and 0.1070894, respectively. For SSIM, the higher the better, and we see
that a different order of quality is obtained. However, The three first positions are still
held by the model-dependent filters and WOWA-GA-w+p.

! The NMSE values presented in Table 1 are slightly different from those reported in [25] and
[26], due to rounding-up issues in the implementation of NMSE in different computer lan-
guages.



Figure 1 brings an unfiltered image and the filtered images obtained from it us-
ing some of the methods considered here. We note that even though obtaining a lower
NMSE, the image produced by OWA-GA in Figure 5 is visually superior to those ob-
tained with both complex filters; SDNLM produces a blurred image and the Lee filter
yields a pixelated image.
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OWA-GA (0.1094) WOWA-GA-w-p (0.1069)  WOWA-GA-w+p (0.1043)

Fig. 1. Results considering the same HH simulated image, with NMSE inside parentheses

The GA was run on a machine with the following specifications: Intel i7, CPU 2.60
GHz, RAM with 16 GB, Windows 10, Fortran with Force 2.0 compiler. Considering
30 generations and 5 folds, with 10 images in each fold, and 72 elements in the pop-
ulation, the GA processing took approximately 1 hour, for no matter the value of the
other parameters. As expected, the largest number of generations and the largest the
populations, the longer the training process takes. Also, as the number of generations
doubled, so roughly did the training time. Finally, as the size of the populations dou-
bled, the training time was gradually lower than the double. The computational cost of
using Wowa filters is reasonable in the context of the filtering radar images domain, and
is close to the one obstines for Owa filters (see [25]).

The most important results here are:

— Learning w and p at the same time (WOWA-GA-p+w) outperformed the other al-
ternatives, both in terms of quality and computational effort. Learning first w and
then p (WOWA-GA-wp) led to similar quality results as WOWA-GA-p+w, but it
took double the learning time.



— The learned weights for p in all experiments, considering a 3 x 3 window, could
be partitioned in 3 values: one for the central pixel, one for the four pixels in the
corners, and one for the four lateral pixels. This can be used advantageously to
reduce the number of values to be learned by the GA.

8 Conclusions and future work

We have proposed a particular kind of filter based on order statistics, called WOWA
filters. We have also studied how to learn the parameters for these filters (the WOWA
weight vectors) to reduce speckle in SAR imagery using Genetic Algorithms. We have
conducted some experiments on HH intensity images, with simulated images obtained
from a real scene, using 3 x 3 windows. We compared the WOWA filter results with a set
of filters, including OWA filters (a kind of Ordered Statistical Filters) and model-based
filters SDNLM [24] and R-Lee [11]. WOWA filters with 3 x 3 windows outperformed
OWA filters with 3 x 3 windows [25], but yielded worse results than other filters that
used 5 x 5 windows (OWA, SDNLM and R-Lee filters) [26].

Our results point to directions for future research. We will now extend the work us-
ing 5 x 5 windows, the same size of windows used in the model-based filters considered
here, with three polarizations. We expect this should lead to better results, based on past
experiments: SDNLM and R-Lee filters with 5 x 5 windows outperformed OWA filters
with 3 x 3 windows, but were outperformed by OWA filters with 5 x 5 windows.

The experiments performed here have shown us how to reduce the set of parametriza-
tions to be tested when using larger windows, in order to compensate the expected in-
crease in the learning process computational cost. These experiments have also shown
us that instead of learning all the weights in vector p, we can use only a small set of
values that are then conveniently replicated in the window.

In the future, we also intend to study the influence of initial populations in the GA,
and address multi-optimization issues to learn the best weights considering more than
one quality index.
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