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Abstract. The last few decades have witnessed rapid progress in the
field of type-2 fuzzy systems and in particular interval type-2 fuzzy sys-
tems. Encouraged by this progress, we present in this paper some theoret-
ical foundations and applications of interval-valued fuzzy morphological
associative memories (IV-FMAMs) as a rule-based system. We perform
simulations concerning the application of IV-FMAMs to the prediction
of the monthly rate of participation of certain age groups in the work
force of the metropolitan area of São Paulo. The performance in terms
of mean squared prediction errors of the IV-FMAM approach is then
compared with the one of a conventional type-2 fuzzy inference system.

1 Introduction

Type-2 fuzzy sets, and in particular interval type-2 fuzzy sets have found a
wide variety of applications in engineering, control, computing with words, and
approximate reasoning [8,16,17]. Although interval-valued fuzzy sets (IV fuzzy
sets) are related to interval type-2 fuzzy sets [2], these concepts are different.
In fact, interval-valued fuzzy sets correspond to closed interval type-2 fuzzy sets
whose secondary membership functions are characteristic functions of closed
intervals [14]. To our knowledge, all interval type-2 fuzzy systems that have
appeared in the literature and are used in practice represent closed interval
type-2 fuzzy systems.

Like general type-2 fuzzy sets and (closed) interval type-2 fuzzy sets, interval-
valued fuzzy sets can be employed to model the inherent uncertainties regarding
fuzzy set membership functions. An approach for dealing with interval-valued
fuzzy data is given by IV-FMAMs [24], a recent extension of fuzzy morphological
associative memories. The latter can be used to implement fuzzy rule-based
systems, in particular for applications in time-series prediction [22,27]. In this
paper, we apply the proposed IV-FMAM model to the problem of predicting
the monthly percentages of participation of certain age groups in the work force
of the metropolitan area of São Paulo [4]. Solving this prediction problem may
offer decision support for government, industry and trade unions.
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The paper is organized as follows. Section 2 provides a brief review of per-
tinent notions on lattice theory, L-fuzzy logical operators and L-fuzzy mathe-
matical morphology. In Section 3, we present the interval-fuzzy morphological
associative memories (IV-FMAMs), that yield associations between IV fuzzy
sets. Section 4 describes an application of the IV-FMAMs as rule-based systems
to a social index time-series prediction. The results are compared with the ones
obtained using a Mamdani(-Assilian) type-2 fuzzy system [13], followed by some
concluding remarks.

2 Theoretical background

2.1 Some Relevant Concepts of Lattice Theory and Mathematical
Morphology

A complete lattice L is a partially ordered set such that every subset X ∈ L
has an infimum

∧
X and a supremum

∨
X in L. Recall that a partial order

is a reflexive, antisymmetric, and transitive binary relation “≤” [7]. The unit
interval [0, 1] with the usual (total) ordering yields an example of a complete
lattice. Another example is given by I = {u = [u, u] ⊆ [0, 1]} if we consider the
following partial order:

u ≤ v ⇔ u ≤ v and u ≤ v . (1)

A component-wise partial order can also be defined on Ln by setting

(a1, . . . , an) ≤ (b1, . . . , bn)⇔ ai ≤ bi, i = 1, . . . , n. (2)

If L is a (complete) lattice, then Ln is also a (complete) lattice. Similarly, we
have that if L is a (complete) lattice then the class of functions X → L, LX , is
also a (complete) lattice. Here, the partial order on LX is given as follows for all
f, g ∈ LX :

f ≤ g ⇔ f(x) ≤ g(x) ∀x ∈ X. (3)

Let L be a complete lattice and X 6= ∅. The partial order on LX of Equation
3 induces a partial order on FL(X), the class of L-fuzzy sets over the universe X.
Recall that an L-fuzzy set A consists of a universe X together with a membership
function µA : X → L [6]. For L-fuzzy sets A and B, we have A ≤ B if and only
if µA ≤ µB . The class of fuzzy sets over the universe X,F(X), and the class of
interval-valued fuzzy sets over the universe X,FI(X), represent particular classes
of L-fuzzy sets for particular choices of L.

It is well established that complete lattices form an appropriate framework for
mathematical morphology (MM) [19,26]. Although MM was originally conceived
as a theory for image and signal processing based on geometrical and topological
concepts, its operators naturally adhere to the lattice theory as their algebraic
framework [10,20].



In this framework, the basic operators of MM are the (algebraic) erosion,
ε : L → M and the (algebraic) dilation, δ : L → M, that satisfies, respectively,
the equations below for all M ⊆ L:

ε(
∧
M) =

∧
ε(M) and δ(

∨
M) =

∨
δ(M). (4)

The concept of an adjunction, that is also known as a monotone or isotone
Galois connection [1] plays a very prominent role in MM [10].

Definition 1. A pair (ε, δ) consisting of mappings ε : M→ L and δ : L→M is
called an adjunction between M and L if and only if for all x ∈ L and all y ∈M:

δ(x) ≤ y ⇔ x ≤ ε(y). (5)

If the pair (ε, δ) is an adjunction then ε is an erosion and δ a dilation [11].

2.2 L-Fuzzy Operators

The purpose of this section is to recall the definitions of some morphological
operators and matrix products on the complete lattice FL(X) [24]. Let us begin
by the definition of L-fuzzy conjunctions and implications [5]:

Definition 2. Let L be a complete lattice.

– A conjunction on L or L-fuzzy conjunction is defined as an increasing map-
ping C : L × L → L that satisfies C(0L, 0L) = C(0L, 1L) = C(1L, 0L) = 0L
and C(1L, 1L) = 1L. In particular, a commutative and associative L-fuzzy
conjunction T : L × L → L that satisfies T (x, 1L) = x for every x ∈ L is
called triangular norm or simply t-norm on L.

– An operator I : L × L → L that is decreasing in the first argument and
that is increasing in the second argument is called an implication on L or
L-fuzzy implication if the equations I(0L, 0L) = I(0L, 1L) = I(1L, 1L) = 1L
and I(1L, 0L) = 0L are satisfied.

– In the special case where L = I, we speak of interval-valued fuzzy (IV fuzzy)
operators, in particular of IV fuzzy conjunctions, t-norms, and implications.

Several types of matrix products arise from L-fuzzy operators including the
following ones [24]:

Definition 3. Given an L-fuzzy conjunction C and an L-fuzzy implication I,
the sup-C product of A ∈ Lm×k and B ∈ Lk×n, denoted by E = A ◦C B,
and the inf-I product, denoted by G = A ~ B are defined, respectively, for all
i = 1, . . . ,m and j = 1, . . . , n, as follows:

eij =

k∨
ξ=1

C(aiξ, bξj), and gij =

k∧
ξ=1

I(bξj , aiξ) . (6)

The following proposition holds for every complete lattice L:



Proposition 1 The operator δW : Ln → Lm that are given by

δW (x) = W ◦ x, ∀x ∈ Ln. (7)

represents a dilation for every W ∈ Lm×n from the complete lattice Ln to the
complete lattice Lm if and only if C(w, ·) : L→ L represents a dilation for every
w ∈ L.

As we shall point out in the next section for the interval-valued case, the
output of an interval-valued fuzzy associative memory can be modeled by means
of Equation 7. Furthermore, the model given by Equation 7 will be called mor-
phological. The next section focuses on interval-valued fuzzy morphological as-
sociative memories.

3 Interval-Valued FMAMs

In this section we will present an associative memory model for interval-valued
fuzzy sets. Consider initiallyX and Y arbitrary universes and

{(
pξ,qξ

)
: ξ ∈ K

}
⊆

FI(X)×FI(Y ) a set of pairs or associations, the set
{(

pξ,qξ
)

: ξ ∈ K
}

is called
the fundamental memory set and its elements are called fundamental memories.

An IV fuzzy associative memory (IV -FAM) is an input-output system given
by a mapping W : FI(X) → FI(Y ) that should ideally satisfy the following
conditions [9]:

1. W(pξ) = qξ for all ξ ∈ K;
2. W(p̃ξ) = qξ for p̃ξ ≈ pξ.

Since our objective is to employ IV-FAMs in order to implement rule-based
systems, it would be more adequate to replace items 1 and 2 with the following
condition:

p̃ξ ≈ pξ ⇒W(p̃ξ) ≈ qξ . (8)

For simplicity, we concentrate on the case where X, Y , and K are finite.
Let |X| = n, |Y | = m, and |K| = k. Thus, we view an IV-FAM as a mapping
W : In → Im. We say that W represents a sup-C IV-FAM if W(x) = δW (x) =
W ◦C x, ∀x ∈ In, for some W ∈ Im×n.

In this paper we focus on the construction of IV-FMAMs based on repre-
sentable IV fuzzy conjunctions and their adjoint implications [5,23]. We will
now present a recipe for constructing IV fuzzy conjunctions and their adjoint
implications, beginning by the definition of a representable IV fuzzy conjunction
[5]:

Proposition 2 If C is a fuzzy conjunction, then the operator CrC , that is defined
as follows for all u = [u, u], v = [v, v] ∈ I, yields an IV fuzzy conjunction.

CrC(u, v) = [C(u, v), C(u, v)]. (9)

Definition 4. The IV fuzzy conjunction CrC of Equation 9 is referred to as the
representable conjunction with representative C.



Let CrC be a representable interval-valued fuzzy conjunction with representa-
tive C and I the adjoint fuzzy implication of C. The adjoint IV fuzzy implication
of CrC can be obtained by means of Equation 10, as follows [23]:

InI (u, v) = [I(u, v) ∧ I(u, v), I(u, v)]. (10)

An example of dilative fuzzy conjunction is the cross-ratio uninorm [30],
denoted using the symbol CF . The formulas for CF and its adjoint implication
IF can be found below:

CF (x, y) =

{
1, if (x, y) = (0, 1) or (1, 0)

xy
(1−y)(1−x)+xy) , otherwise.

(11)

IF (x, y) =

{
1, if (x, y) = (0, 0) or (1, 1)

(1−x)y
y(1−x)+x(1−y) , otherwise.

(12)

Observe that the representable IV fuzzy conjunction CrCF
and its adjoint

implication InIF , given by means of Equation 10, represents a pair consisting of
an erosion and a dilation. Hence, an IV-FAM based on CrCF

, that will be denoted
here by Wr

F , will be morphological.
In this research paper, we will employ sup-CrC matrix products in the re-

call phases of IV-FAMs, in particular sup-CrC matrix products that give rise to
dilations and, therefore, IV-FMAMs.

Let P = [p1, ...,pk] ∈ In×k, Q = [q1, ...,qk] ∈ Im×k be matrices which
columns are formed by the pairs (pj ,qj) of fundamental memories and let CrC
be an IV fuzzy conjunction. Consider the problem of determining the weight
matrix W of a sup-CrC IV-FMAM given by the dilation δW . As an extension of
the fuzzy learning by adjunction [22] for sup-C FMAMs to IV fuzzy learning by
adjunction (IV-FLA) for sup-CrC FMAMs, we propose to construct its weight
matrix W ∈ In×k as follows:

W = Q~n,I P
t, (13)

where the IV fuzzy implication used in the Inf-I product is the adjoint pair of
CrC . Finally, upon presentation of an input pattern x ∈ In, the output pattern
y ∈ Im of the corresponding IV-FMAM can be calculated by the sup-CrC product
of W and x. In the following section, we employ the IV-FMAM Wr

F in order to
implement a IV fuzzy inference system for a time series prediction problem.

4 An IV-FMAM Approach Towards Time Series
Prediction

4.1 Experimental Setup for the IV-FMAM Approach

In this section, we present the experimental setup regarding the use of sup-CrC IV-
FMAMs in a time-series forecasting problem, namely the Economically Active



Population Index (PEA), a socio-economic index used by Brazilian governmental
and non-governmental sectors for strategic decision making [4]. Specifically, a
sup-CrF IV-FMAM was employed to model a rule-based system consisting of k
rules, each one having a IV fuzzy antecedents and b IV fuzzy consequents. To
this end, the crisp training data, that are contained along with the testing data
in a finite universe U × V ⊆ Ra × Rb, were clustered by means of the IV fuzzy
c-means clustering technique (IV-FCM) [12]. More precisely, given a number k
of clusters and a “fuzzifier parameter m = [m1,m2], IV fuzzy c-means clustering
produces the cluster centers cγp ∈ Ra and cξq ∈ Rb with respective component-

wise standard deviations σp ∈ Ra and σq ∈ Rb of IV fuzzy Gaussian membership
functions pξ and qξ for ξ = 1, . . . , k.

The antecedents pξ and the consequents qξ are respectively contained in
FI(U) and FI(V), where U = {u1, . . . ,um} and V = {v1, . . . ,vn}. Their compo-
nents can be calculated as follows:

pξj = exp

−1

2

a∑
l=1

∣∣∣∣∣
(
uj
)
l
−
(
cξp
)
l

(σp)l

∣∣∣∣∣
2

m2−1

,−1

2

a∑
l=1

∣∣∣∣∣
(
uj
)
l
−
(
cξp
)
l

(σp)l

∣∣∣∣∣
2

m1−1

 , (14)

qξi = exp

−1

2

b∑
l=1

∣∣∣∣∣
(
vi
)
l
−
(
cξq
)
l

(σq)l

∣∣∣∣∣
2

m2−1

,−1

2

b∑
l=1

∣∣∣∣∣
(
vi
)
l
−
(
cξq
)
l

(σq)l

∣∣∣∣∣
2

m1−1

 . (15)

In principle, the pairs (pξ,qξ) corresponding to the training data can be used
to compute the weight matrix W ∈ Im×n by means of Equation 13.

Training:

1. Apply the IV-FCM clustering technique with k centers and fuzzifier param-
eter m to the training data in U ×V ⊆ Ra ×Rb in order to obtain k centers
cγp ∈ Ra and cξq ∈ Rb with respective component-wise standard deviations

σp ∈ Ra and σq ∈ Rb;
2. Create the discrete intervalar gaussian antecedents pξ in FI(U) and conse-

quents qξ in FI(V) using Equations 14 and 15;
3. Compute the weight matrix W ∈ Im×n by means of the inf-I product W =

(qξ)t ~ pξ.

The test is performed as follows. Given the weight matrix W , for each p in
the test data set, do:

1. Compute the sup-C product q = W ◦ p to obtain an interval-valued fuzzy
vector;

2. Average q component-wise to type-reduce it (Nie-Tan type-reduction method
[18]);

3. Defuzzify the type-reduced vector using the centroid defuzzification method
to obtain a real valued output.



However, an explicit construction of W is not required since the represen-
tation as an IV fuzzy set of the antecedent part of a crisp test datum ud in U
yields an input pattern p ∈ FI(U) of the form p = [0I, . . . , 0I, eI, 0I, . . . , 0I]

T .

More precisely, we have pj =

{
eI, if j = d

0I, otherwise.
. Here, the symbol eI denotes the

identity element [0.5, 0.5] of the IV fuzzy conjunction CrF . For p ∈ FI(U) ' Im
of this form, q = W ◦r,F p has the following components for i = 1, . . . ,m:

qi = W ◦r,F pi =

n∨
j=1

CrF (wij , pj) = wid =

k∧
ξ=1

InF (pξj , q
ξ
i ) . (16)

We obtain a final, crisp prediction value from q after an application of type-
reduction and defuzzification. For computational reasons, we employed the Nie-
Tan method, which is nearly as fast as a conventional fuzzy centroid defuzzifica-
tion [28]. The Nie-Tan method consists of a type-reduction procedure followed
by a centroid defuzzification of the resulting type-1 fuzzy set.

4.2 Prediction of a Brazilian Socioeconomic Index

The Economically Active Population Index (PEA) refers to the percentage of
economically active persons, i.e., people who are currently employed or actively
looking for a job, within certain age groups. The data for the computation of the
PEA index are collected by DIEESE, the “Inter-Union Department of Statistics
and Socio-Economic Studies”, a creation of the Brazilian trade union movement.
DIEESE was founded in 1955 to develop research on which workers’ demands
could be based [4].

The PEA index, since its conception, has provided guidance - not only to
some governmental sectors such as the social security office but also to trade
unions and private corporations since this index yields valuable information con-
cerning the current state of the workforce. This information can also be used as
a decision making tool for politicians to avoid future social and economical prob-
lems. The PEA index is computed monthly as part of some other more compre-
hensive indices, such as the Monthly Employment Survey Index (PME/IBGE)
and the Employment and Unemployment ResearchIndex (PED/DIEESE), in the
metropolitan area of São Paulo and other major Brazilian metropolitan areas.

Here, we employed the methodology described in order to forecast the PEA
index of the metropolitan area of São Paulo from January 1985 to December
2012. The population under consideration comprises approximately 17 million
inhabitants and is divided into the following age brackets: 10-15, 16-24, 25-39,
40-49, 50-59 and 60+. The PEA index values are given by the percentage of the
working age population that includes every person older than nine.

Note that the PEA index includes 10 to 15 year old economically active
children that are part, albeit illegally, of Brazil’s working population. Thus, the
PEA index serves to aide governmental and non-governmental organizations to
understand and remedy the child labor problem. Since the insertion of the 10-15



years age group in the PEA index, initiatives such as the creation of the Statute
of the Child and the Adolescent (“Estatuto da Criança e do Adolescente”) and
several non-governmental campaigns helped to decrease the amount of child
labor from more than 20% in 1985 to 4.5% at the end of 2012.

We chose to use one predictor model for each month and for age-group, in
view of seasonal differences in the PEA values. We standardized the original
data to lie within the range [−5, 5] by subtracting the mean and dividing by the
standard deviation. Let sγ ∈ R be samples of the seasonal time series. The goal
is to estimate the value of sq from a subset of the past values {s1, s2, ..., sq−1}. In
particular, we simply used the last three monthly PEA indices {sγ−3, sγ−2, sγ−1}
to predict the next index sγ .

Given a fuzzifier parameter m and a number of clusters k, IV-FCM clustering
produced cluster centers cξp ∈ R3 and cξq ∈ R with respective component-wise
standard deviations σp ∈ R3 and σq ∈ R. We considered finite universes of
discourse U = {u1, . . . ,um} and V = {v1, . . . ,vn} comprising m = 503 and
n = 50 equally spaced points in [−5, 5]3 and [−5, 5], respectively. The values

cξp, σp, c
ξ
q, and σq can be used to compute the entries pξj = [pξj , p

ξ
j ] and qξi =

[qξi , q
ξ
i ] of the finite Gaussian IV fuzzy sets pξ ∈ FI(U) ' In and qξ ∈ FI(V) ' Im

via Equations 14 to 15.
The performance of the IV-FMAM approach suggested in this paper depends

on the choices of the number of clusters and a fuzzifier parameter m = [m1,m2]
as inputs to the IV-FCM clustering algorithm. We employed a fixed number of
clusters k = 10 for all monthly models. We considered three different options of
m, namely [2.0 − α, 2.0 − α] for α = 0, 0.1, 0.2. Note that m = [2.0, 2.0] yields
fuzzy Gaussian membership functions pξ ∈ F(U) and qξ ∈ F(V) and therefore
Wr
C corresponds to WC for every commutative and dilative fuzzy conjunction

C. Since WF achieved the best validation performance in previous experiments
concerning time-series prediction [27], we only performed simulations usingWr

F .
The fuzzifier parameter m was selected by means of leave-one-out cross-

validation on the data from January 1985 to December 2002, according to the
Table 1 for each age bracket. Here, the performance was measured in terms of
the mean absolute error (MAE), the root mean squared error (RMSE), the mean
percentage error (MPE), and the correlation coefficient ρ (the higher the values
of ρ, the better the performance).

We compared the prediction results produced by the sup-CrF IV-FMAM
model with m = [1.9, 2.1] with the ones produced by an interval type-2 fuzzy
inference system (IT-2 FIS) with the same fuzzifier parameter m = [1.9, 2.1]
using the test data from January 2003 to December 2012. Note that the IT2-FIS
with m = [2.0, 2.0] corresponds to a conventional type-1 fuzzy inference system
[15]. Tables 2 and 3 display the testing errors and the correlation coefficients pro-
duced by the Wr

F and the interval type-2 fuzzy inference system, respectively.
Note that the IV-FMAMWr

F evidently outperformed the IT-2 FIS in these sim-
ulations. Figures 1 and 2 illustrate the prediction results obtained by Wr

F and a
conventional interval type-2 fuzzy system, respectively, in comparison with the
real data for the testing period.



Table 1. Leave-one-out cross-validation errors from 1985 to 2003.

Age Bracket m MAE RMSE MRE(%) ρ

[2.0, 2.0] 1.70 2.77 11.10 0.798
10-15 [1.9, 2.1] 1.70 2.75 10.97 0.802

[1.8,2.2] 1.68 2.75 10.91 0.803

[2.0, 2.0] 3.17 8.25 4.79 0.231
16-24 [1.9,2.1] 3.04 8.10 4.74 0.233

[1.8, 2.2] 3.11 8.32 4.87 0.230

[2.0, 2.0] 3.03 7.80 4.40 0.278
25-39 [1.9,2.1] 3.00 7.76 4.38 0.283

[1.8, 2.2] 3.04 7.96 4.46 0.2801

[2.0, 2.0] 2.45 6.00 3.69 0.334
40-49 [1.9,2.1] 2.45 5.99 3.69 0.335

[1.8, 2.2] 2.54 6.30 3.89 0.330

[2.0, 2.0] 2.44 5.35 4.95 0.418
50-59 [1.9,2.1] 2.45 5.34 4.95 0.425

[1.8, 2.2] 2.48 5.45 5.05 0.417

[2.0, 2.0] 1.32 2.53 6.87 0.144
60+ [1.9,2.1] 1.32 2.51 6.86 0.144

[1.8, 2.2] 1.34 2.54 6.92 0.148

Table 2. Testing errors produced by the Wr
F for the each age group of the PEA index.

Age Bracket MAE RMSE MRE(%) ρ

10-15 0.90 0.60 8.66 0.870
16-24 0.62 0.50 0.66 0.861
25-39 0.50 0.35 0.41 0.809
40-49 0.62 0.46 0.58 0.876
50-59 0.91 0.70 1.13 0.920
60+ 0.83 0.66 3.04 0.624

Table 3. Testing errors produced by the IT2 Mamdani inference system for the each
age group of the PEA index.

Age Bracket MAE RMSE MRE(%) ρ

10-15 1.15 0.91 13.16 0.791
16-24 0.78 0.63 0.84 0.754
25-39 0.60 0.45 0.53 0.710
40-49 0.82 0.64 0.81 0.804
50-59 1.40 1.17 1.87 0.849
60+ 0.97 0.76 3.49 0.447



Fig. 1. Predictions obtained by Wr
F (top row) and the IT2-FIS (bottom row) for the

age groups: 10-15, 16-24 and 25-39, from left to right.

Fig. 2. Predictions obtained by Wr
F (top row) and the IT2-FIS (bottom row) for the

age groups: 40-49, 50-59 and 60+, from left to right.

5 Concluding Remarks

Type-2 fuzzy systems have been successfully employed in a variety of applications
for their capability of handling uncertainties that are intrinsic in real-world data
better then traditional (type-1) fuzzy systems [3]. In particular, interval-valued
FSs have found far more applications then full type-2 FS due to their simplicity
and to the merely linear increase in computational complexity in comparison to
type-1 fuzzy systems [13,25].



We applied in this paper our alternative approach towards an IV fuzzy sys-
tem, namely the sup-CrC IV-FMAM, to the problem of forecasting the monthly
rates of participation of given age groups in the work force of the metropolitan
area of São Paulo. To this purpose, we generated an IV fuzzy inference system
based on the aforementioned IV-FMAMs. The same methodology was employed
in conjunction with an Mamdani(-Assilian) IT-2 FIS. In our simulations the sup-
CrC IV-FMAM approach exhibited significantly better results than the interval
type-2 fuzzy system with respect to four different performance measures.

Note that the IV-FMAM approach presented in this paper depends on the
complete lattice structure of I and in particular on the fact that elements of
I were partially ordered in terms of Equation 1. In the future, we intend to
investigate the suitability of other partial orders in conjunction with IV-FAMs.
Furthermore, we plan to develop full type-2 fuzzy associative memories (T2-
FAMs) as particular cases of L-fuzzy associative memories and use them to
build full type-2 fuzzy inference systems.
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