INTRODUÇÃO AO CÁLCULO PARA FUNÇÕES COM PARÂMETRO FUZZY

Michael Macedo Diniz, Rodney Carlos Bassanezi

IFSP. UNICAMP

{michael.diniz@ifsp.edu.br,rodney@ime.unicamp.br}

Resumo

O processo de modelagem matemática de um fenômeno envolve o estudo e a análise de parâmetros. Estes parâmetros muitas vezes são desconhecidos e o seu cálculo pode possuir dificuldades de diversas naturezas (informações vagas, impossibilidade de medições, entre outras). Em certos casos, podemos usar a teoria fuzzy para modelar esses parâmetros e assim, incorporar ao modelo a vaguesa de informação atribuida a este. Portanto, nestes casos lidamos com modelos/funções cujos parâmetros são conjuntos fuzzy. Neste mini-curso estudamos propriedades das funções fuzzy que são definidas a partir de modelos clássicos com parâmetros fuzzy. Dentre as propriedades abordadas trataremos das noções de espaços métricos, continuidade, diferenciabilidade, integrabilidade e noções sobre extremos.

Objetivo: Este mini-curso é de nível introdutório e destina-se a alunos de graduação e pós-graduação que estão iniciando seus estudos sobre teoria fuzzy.

Este texto está organizado da seguinte forma:

Na Seção 1 discutimos sucintamente conceitos fundamentais relacionados à teoria fuzzy, como por exemplo, a definição de número fuzzy, distância de Pompeiu-Hausdorff [2], espaços métricos fuzzy [9], extensão de Zadeh e o Teorema de Nguyen. Ainda nesta seção, discutimos o conceito de vizinhança de números fuzzy e relação de ordem entre números fuzzy.

Na Seção 3 iniciamos o estudo da otimização de funções fuzzy. Definimos os conceito de minimizador para funções com contradomínio no conjunto dos números fuzzy, definimos a função ponto extremos para funções com parâmetros fuzzy e o conceito de região de otimalidade.

Por fim, na Seção 4, apresentamos alguns teoremas preliminares relativos a otimização de funções fuzzy e como resultado principal (Teorema 12), mostramos

16-18 de Novemebro de 2016, Campinas - SP, Brasil.

que a extensão de Zadeh da função ponto extremo, sob certas hipóteses, de fato minimiza (ou maximiza) a função em questão, de acordo com a relação de ordem estabelecida para números fuzzy.

1 Conceitos básicos sobre subconjuntos fuzzy e funções fuzzy.

1.1 Conceitos preliminares

Um subconjunto fuzzy pode ser definido da seguinte forma:

Definição 1. Seja U um conjunto (clássico). Um subconjunto fuzzy F de U é caracterizado por uma função

$$\mu_F(x): U \to [0,1]$$

pré-fixada, chamada **função de pertinência** do subconjunto fuzzy F.

Podemos dizer que um subconjunto fuzzy F de U é dado por um conjunto clássico de pares ordenados.

$$F = (x, \mu_F(x)), \quad \text{onde} \quad x \in U$$
 (1)

Definição 2. O subconjunto clássico de U definido por

$$suppF = \{x \in U : \mu_F(x) > 0\}$$

é denominado suporte de F.

Assim como o conjunto suporte, outra caracterização dos conjuntos fuzzy, muito importante na relação entre a teoria clássica e teoria fuzzy, são os α -níveis. De modo coloquial, um α -nível de um conjunto fuzzy A é o subconjunto do suppA (portanto um subconjunto clássico) que contem todos os elementos cujo grau de pertinência a A é maior ou igual a α . De modo formal, podemos introduzir a seguinte definição de α -nível:

Definição 3. Seja A um subconjunto fuzzy de U e $\alpha \in [0,1]$. O α - nível de A é o subconjunto clássico de U definido por

$$[A]^{\alpha} = \{x \in U : \mu_A(x) \geq \alpha\} \text{ para } 0 \text{ ; } \alpha \leq 1$$

16-18 de Novemebro de 2016, Campinas - SP, Brasil.

definimos $[A]^0 = \overline{suppA}$.

Uma classe de conjuntos fuzzy bastante importante e com boas propriedades são os chamados *números fuzzy*, que podem ser definidos da seguinte forma:

Definição 4. [5] Um subconjunto fuzzy A é chamado de número fuzzy quando o conjunto universo no qual μ_A está definida é o conjunto dos números reais \mathbb{R} e satisfaz às condições

- 1. todos os α -niveis de A são não vazios, com $0 \le \alpha \le 1$;
- 2. todos os α -niveis de A são intervalos fechados de \mathbb{R} ;
- 3. $supp A = \{x \in \mathbb{R} : \mu_A(x) > 0\}$ é limitado.

O espaço dos números fuzzy será denotado neste texto por $\mathcal{F}(\mathbb{R})$.

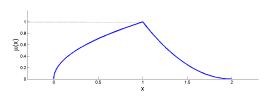


Figura 1: Função de pertinência de um número fuzzy. Note que todas as propriedades da Definição 4 são satisfeitas.

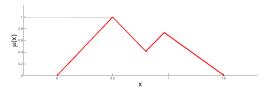


Figura 2: Função de pertinência de um conjunto fuzzy que não é número fuzzy. A propriedade 2 da Definição 4 não é satisfeita.

A Figura 1 representa o gráfico da função de pertinência de um número fuzzy e a Figura 2 representa o gráfico da função de pertinência de um conjunto fuzzy que não é número fuzzy.

Segundo [2], o conjunto $\mathcal{F}(\mathbb{R})$ define um espaço métrico com a métrica d_{∞} induzida através da *métrica de Pompeiu-Hausdorff* sobre os conjuntos compactos de \mathbb{R} .

Sendo $\mathcal{K}(X)$ o conjunto formado pelos subconjuntos compactos não vazios do espaço métrico (X,d), dados dois elementos A,B de $\mathcal{K}(X)$, então a distância entre eles pode ser definida por:

$$dist(A, B) = \sup_{a \in A} \inf_{b \in B} d(a, b)$$
 (2)

Segundo [9], a distância definida conforme (2) é uma pseudométrica, pois dist(A, B) = 0 se e somente se, $A \subset B$, sem necessariamente serem iguais. A

16-18 de Novemebro de 2016, Campinas - SP, Brasil.

Figura 3 ilustra através de diagramas a distância definida em 2. Notamos que a distância entre dois conjuntos pode ser zero sem a necessidade de serem iguais.

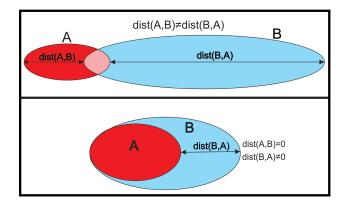


Figura 3: Pseudométrica entre conjuntos. O diagrama superior ilustra o fato de $dist(A,B) \neq dist(B,A)$. O diagrama inferior ilustra o caso onde é possível ter dist(A,B) = 0 e $dist(B,A) \neq 0$.

Entretando, podemos definir a distância entre $A,B\subset\mathcal{K}(X)$ da seguinte forma:

$$d_{H}(A, B) = \max\{\sup_{a \in A} \inf_{b \in B} d(a, b), \sup_{b \in B} \inf_{a \in A} d(a, b)\} = \max\{dist(A, B), dist(B, A)\}$$
(3)

neste caso, d_H é uma métrica para o conjunto $\mathcal{K}(X)$.

Usualmente, d_H é a chamada distância de Pompeiu-Hausdorff. Através da métrica de Pompeiu-Hausdorff, podemos definir uma métrica para o conjunto $\mathcal{F}(X)$, que denotaremos aqui por d_{∞} .

Definição 5. Dados dois conjuntos $\widehat{u}, \widehat{v} \in \mathcal{F}(X)$, a distância entre \widehat{u} e \widehat{v} é definida por

$$d_{\infty}(\widehat{u},\widehat{v}) = \sup_{\alpha \in [0,1]} d_H([\widehat{u}]^{\alpha}, [\widehat{v}]^{\alpha})$$
(4)

onde d_{∞} é conhecida como distância de Pompeiu-Hausdorff.

É facil verificar que d_{∞} satisfaz as propriedades de métrica e portanto, $(\mathcal{F}(\mathbb{R}), d_{\infty})$ é um espaço métrico, além disso, esse espaço é completo (ver [2] e [9]). A Figura 4 representa a distância de Hausdorff aplicada a cada α -nível de um conjunto

16-18 de Novemebro de 2016, Campinas - SP, Brasil.

fuzzy. A distância entre os números fuzzy u e v é dada pelo supremo entre essas distâncias.

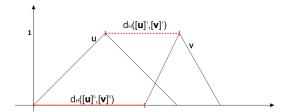


Figura 4: Métrica de Pompeiu-Hausdorff para cada α -nível de um número fuzzy. O supremo dessas distâncias define a métrica entre os números fuzzy.

Ao longo deste texto necessitamos frequentemente estender conceitos da teoria clássica para teoria fuzzy. Segundo [5], o método de Extensão de Zadeh é uma das ideias básicas que promove a extensão de conceitos matemáticos não fuzzy em fuzzy.

O princípio da Extensão de Zadeh para uma função $f: \mathbb{X} \to \mathbb{Z}$ indica como deve ser a imagem de um subconjunto fuzzy A de \mathbb{X} por meio de f.

Definição 6. [5] (Principio de Extensão de Zadeh). Seja a função $f: X \to Z$ e A um subconjunto fuzzy de X. A extensão de Zadeh de f é a função \widehat{f} que, aplicada a A, fornece o subconjunto fuzzy $\widehat{f}(A)$ de Z cuja função de pertinência é dada por

$$\mu_{\widehat{f}(A)}(z) = \begin{cases} \sup_{z=f^{-1}(z)} \mu_A(x) & \text{se} \quad f^{-1}(z) \neq \emptyset \\ 0 & \text{se} \quad f^{-1}(z) = \emptyset \end{cases}$$

onde $f^{-1}(z) = \{x: f(x) = z\}$ é a pré-imagem de z.

O processo gráfico para obtenção da imagem da extensão \widehat{f} é dado pela Figura 5.

16–18 de Novemebro de 2016, Campinas – SP, Brasil.

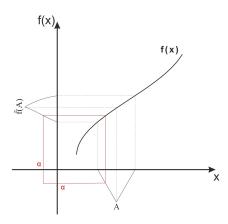


Figura 5: O gráfico representa geometricamente o processo de extensão de Zadeh.

É importante observamos que a extensão de Zadeh pode ser aplicada a qualquer tipo de função, isto é, não existe nenhuma restrição quanto ao domínio, contradomínio e continuidade da função.

Para funções de duas variáveis, o princípio de extensão de Zadeh pode ser enunciado como segue:

Definição 7. [5] Sejam a função $f: X \times Y \to Z$ e A e B subconjuntos fuzzy de X e Y respectivamente. A extensão de Zadeh \widehat{f} de f, aplicada a A e B, \acute{e} o subconjunto fuzzy $\widehat{f}(A,B)$ de Z cuja função de pertinência \acute{e} dada por

$$\mu_{\widehat{f}(A,B)}(z) = \begin{cases} \sup_{x=f^{-1}(z)} \min[\mu_A(x), \mu_B(y)] & \text{se} \quad f^{-1}(z) \neq \emptyset \\ 0 & \text{se} \quad f^{-1}(z) = \emptyset \end{cases}$$

onde $f^{-1}(z) = \{(x,y): f(x) = z\}$ é a pré-imagem de z.

Neste texto trabalharemos com funções cuja imagem é denotada por $f(x,\lambda)$, onde x é uma variável independente e λ é um parâmetro. Quando estendermos a função para o caso onde λ é um número fuzzy trataremos de dois tipos de funções:

- $f: \mathbb{R} \to \mathcal{F}(\mathbb{R})$
- $f: \mathcal{F}(\mathbb{R}) \to \mathcal{F}(\mathbb{R})$

No primeiro caso, apenas λ é fuzzy. A imagem da função f é calculada fixando-se a variável independente $x = \overline{x}$ e aplicando a extensão de Zadeh em $f(\overline{x}, \lambda)$, cuja imagem será denotada por $\widehat{f}(\overline{x}, \widehat{\lambda})$.

16-18 de Novemebro de 2016, Campinas - SP, Brasil.

No segunto caso, tanto o parâmetro λ quanto a variável independente x são fuzzy, portanto a extensão de Zadeh de $f(x,\lambda)$ é denotada por $\widehat{f}(\widehat{x},\widehat{\lambda})$ e é calculada conforme a Definição 7.

O próximo resultado, Teorema 1, fornece uma importante relação entre os α -níveis das imagens e a imagem dos α -níveis de \widehat{f} e f respectivamente.

Teorema 1. (Teorema de Nguyen)[14] Sejam $f: X \to Z$ uma função contínua e A um subconjunto fuzzy de X. Então, para todo $\alpha \in [0,1]$ vale

$$[\widehat{f}(A)]^{\alpha} = f([A]^{\alpha}). \tag{5}$$

De acordo com [6], o Teorema de Nguyen também é válido quando $X = \mathbb{R}^n$. O próximo teorema é ainda mais geral, garante a validade do Teorema de Nguyen para espaços topológicos de Hausdorff.

Teorema 2. ([11]) Sejam \mathbb{X} e \mathbb{Y} espaços de Hausdorff. Se $f: \mathbb{X} \to \mathbb{Y}$ é contínua, então a extensão de Zadeh $\widehat{f}: \mathcal{F}_{\mathcal{K}}(\mathbb{X}) \to \mathcal{F}_{\mathcal{K}}(\mathbb{Y})$ está bem definida e vale

$$[\widehat{f}(\boldsymbol{u})]^{\alpha} = f([\boldsymbol{u}]^{\alpha}) \tag{6}$$

para todo $\alpha \in [0, 1]$, onde $\mathcal{F}_{\mathcal{K}}(\mathbb{X})$ denota a família de todos os subconjuntos fuzzy de \mathbb{X} com α -níveis compactos e não vazios.

As definições e resultados apresentados são cruciais e frequentemente utilizados ao longo do texto. Podemos definir o conceito de vizinhança para $\widehat{x} \in \mathcal{F}(\mathbb{R})$ da seguinte forma

Definição 8. Dizemos que $\widehat{x} \in \mathcal{F}(\mathbb{R})$ pertence a $\widehat{B}(\widehat{x}^*, \epsilon)$ se

$$d_{\infty}(\widehat{x}, \widehat{x}^*) < \epsilon \tag{7}$$

onde d_{∞} é a distância de Pompeiu-Hausdorff conforme Definição 5.

Isto é, $\widehat{B}(\widehat{x}^*,\epsilon)$ é o conjunto de todos os números fuzzy que estão a uma distância menor que ϵ de x^* . Na Figura 6, qualquer número fuzzy \widehat{x} que estiver entre os limitares tracejados está a uma distância menor que ϵ do conjunto \widehat{x}^* .

No Teorema 3, mostramos que a extensão de Zadeh da composição de funções é igual a composição de funções estendidas pelo método de Zadeh.

16-18 de Novemebro de 2016, Campinas - SP, Brasil.

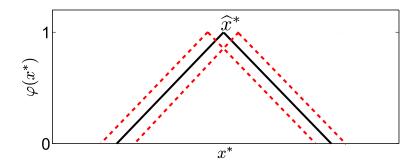


Figura 6: Perturbação Fuzzy. O gráfico ilustra os limites de uma perturbação de um número fuzzy. Qualquer número fuzzy com função de pertinência entre as linhas tracejadas está a uma distância menor do que ϵ do número fuzzy central.

Teorema 3. Seja $f: D_x \subset \mathbb{R} \longrightarrow D_y \subset \mathbb{R}$, $g: D_y \subset \mathbb{R} \longrightarrow D_z \subset \mathbb{R}$, $h: D_x \subset \mathbb{R} \longrightarrow D_z \subset \mathbb{R}$ e $h = f \circ g$. Seja $A \in \mathcal{F}(D_x)$, então

$$\widehat{h}(\mathbf{A}) = \widehat{g}(\widehat{f}(\mathbf{A}))$$

onde "^" denota a extensão de Zadeh da função.

Demonstração. Pela definição de extensão de Zadeh podemos escrever:

$$\mu_{\widehat{h}(\mathbf{A})}(z) = \sup_{x = h^{-1}(z)} \mu_{\mathbf{A}}(x)$$

Escrevemos a extensão de Zadeh de cada termo da composição da seguinte forma:

$$\mu_{\widehat{f}(\mathbf{A})}(y) = \sup_{x = f^{-1}(y)} \mu_{\mathbf{A}}(x) \qquad \text{ e } \qquad \mu_{\widehat{g}(\widehat{f}(\mathbf{A}))}(z) = \sup_{y = g^{-1}(z)} \mu_{\widehat{f}(\mathbf{A})}(y)$$

Com isso, temos:

$$\mu_{\widehat{g}(\widehat{f}(\mathbf{A}))}(z) = \sup_{y = g^{-1}(z)} \{ \sup_{x = f^{-1}(y)} \mu_{\mathbf{A}}(x) \} = \sup_{x = f^{-1}(g^{-1}(z))} \mu_{\mathbf{A}}(x) = \sup_{x = h^{-1}(z)} \mu_{\mathbf{A}}(x)$$

e assim, concluímos a demonstração.

16-18 de Novemebro de 2016, Campinas - SP, Brasil.

No próximo teorema, vamos mostrar que a extensão de Zadeh de uma função contínua, leva números fuzzy em números fuzzy.

Teorema 4. Seja $f: \mathbb{R} \longrightarrow \mathbb{R}$ uma função contínua. Se $\widehat{x} \in \mathcal{F}(\mathbb{R})$ então $\widehat{f}(\widehat{x}) \in \mathcal{F}(\mathbb{R})$.

Demonstração. Claramente, o universo onde $\widehat{f}(\widehat{x})$ está definida é o conjunto dos números reais, pois o contradomíno de f é o próprio conjunto dos reais. Sendo assim, segundo a definição de número fuzzy 4, temos que demonstrar os seguintes itens.

• Todos os α -niveis de $\widehat{f}(\widehat{x})$ são não vazios, com $0 \le \alpha \le 1$. Como f é contínua, podemos escrever

$$[\widehat{f}(\widehat{x})]^{\alpha} = f([\widehat{x}]^{\alpha})$$

como \widehat{x} é um número fuzzy, então $[\widehat{x}]^{\alpha} \neq \emptyset, \forall \alpha \in [0,1], \log_{} f([\widehat{x}]^{\alpha}) \neq \emptyset$.

• Todos os α -niveis de $\widehat{f}(\widehat{x})$ são intervalos fechados de \mathbb{R} . Segundo [13], a imagem de uma função contínua de um compacto é compacta, como $[x]^{\alpha}$ é compacto então, pela continuidade de f, $f([x]^{\alpha})$ é um conjunto compacto, portanto, fechado, já que $f([x]^{\alpha}) \subset \mathbb{R}$.

Além disso, $[x]^{\alpha}$ é conexo, como a imagem contínua de conexo é conexa, então $f([x]^{\alpha})$ é um conjunto conexo. Como $f([x]^{\alpha})$ é um conjunto conexo de \mathbb{R} , então $f([x]^{\alpha})$ é um intervalo, (ver [18]).

• $supp(\widehat{f}(\widehat{x})) = \{x \in \mathbb{R} : \mu_{\widehat{f}(\widehat{x})}(x) > 0\}$ é limitado.

$$supp(\widehat{f}(\widehat{x})) \subset \overline{supp(\widehat{f}(\widehat{x}))} = [\widehat{f}(\widehat{x})]^0 = f([\widehat{x}]^0)$$
 (8)

Pelo item anterior, temos que $f([\widehat{x}]^0)$ é limitada, logo $f([supp(\widehat{x})])$ também é limitada.

• $0 \le \alpha \le \beta \le 1 \Leftrightarrow [A]^{\beta} \subset [A]^{\alpha}$.

$$[\widehat{f}(\widehat{x})]^{\beta} \subset [\widehat{f}(\widehat{x})]^{\alpha} \Leftrightarrow f([\widehat{x}]^{\beta}) \subset \widehat{f}([\widehat{x}]^{\alpha}) \Leftrightarrow [\widehat{x}]^{\beta} \subset [\widehat{x}]^{\alpha} \Leftrightarrow 0 \leq \alpha \leq \beta \leq 1$$
(9)

16-18 de Novemebro de 2016, Campinas - SP, Brasil.

1.2 Relação de ordem em $\mathcal{F}(\mathbb{R})$

Neste texto vamos estudar algumas relações de ordem parciais em $\mathcal{F}(\mathbb{R})$, este estudo será importante para fundamentarmos o conteúdo relacionado a otimização fuzzy. Inicialmente apresentamos uma relação de ordem não estrita, estabelecendo o que seria \leq ("menor ou igual") entre números fuzzy. Posteriormente, baseando-se nesta relação de ordem não estrita, iremos apresentar uma relação de ordem estrita, estabelecendo o que seria \prec ("menor") entre números fuzzy.

Primeiramente, introduzimos a relação de ordem intervalar que iremos utilizar ao longo do texto.

Definição 9. Sejam [a, b] e [c, d] intervalos fechados.

- Dizemos que $[c,d] \leq [a,b]$ se e somente se, $c \leq a$ e $d \leq b$ (Ordem de Kulish-Miranker).
- Dizemos que $[c,d] \prec [a,b]$ se e somente se,

$$(c < a, d \le b)$$
 ou $(c \le a, d < b)$

Definição 10. Sejam \widehat{u} e \widehat{v} números fuzzy. Dizemos que $\widehat{u} \preceq \widehat{v}(\widehat{u} \prec \widehat{v})$ se e somente se $[\widehat{u}]^{\alpha} \preceq [\widehat{v}]^{\alpha} ([\widehat{u}]^{\alpha} \prec [\widehat{v}]^{\alpha}$, respectivamente) para todo α .

Esta relação de ordem é a que se encontra com mais frequência na literatura [1], [3], [4], [7], [15], [16]. A Figura 7 ilustra a interpretação desta relação de ordem:

16-18 de Novemebro de 2016, Campinas - SP, Brasil.

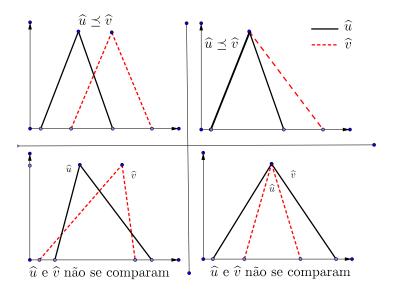


Figura 7: Relação de ordem parcial fuzzy clássica. Os gráficos superiores ilustram exemplos de números fuzzy comparáveis, enquanto que os gráficos inferiores ilustram casos de números fuzzy incomparáveis.

A relação definida em 10 não é a única ordenação parcial que podemos fazer em $\mathcal{F}(\mathbb{R})$, uma vez que podemos estabelecer diversos critérios para comparar dois números fuzzy. Por exemplo, em [8], os números fuzzy são comparados através de diversas propriedades, como *fuzzyness* e ambiguidade. Neste texto vamos utilizar uma outra relação de ordem, bastante similar com a relação definida em 10, porém mais adequada aos estudos que faremos posteriormente neste capítulo.

Definição 11. Sejam A e B números fuzzy, $com [A]^{\alpha} = [A_L^{\alpha}, A_R^{\alpha}]$ e $[B]^{\alpha} = [B_L^{\alpha}, B_R^{\alpha}]$. Dizemos que $A \preceq_F B$ se $\forall \alpha \in [0, 1]$, $A_L^{\alpha} \leq B_L^{\alpha}$ e, $caso\ A_L^{\alpha} = B_L^{\alpha}$, $\forall \alpha \in [0, 1]$, $dizemos\ que\ A \preceq_F B$ se $\forall \alpha \in [0, 1]$, $A_R^{\alpha} \leq B_R^{\alpha}$.

A Figura 8 ilustra alguns casos de conjuntos fuzzy comparados através da relação de ordem definida em 11.

16-18 de Novemebro de 2016, Campinas - SP, Brasil.

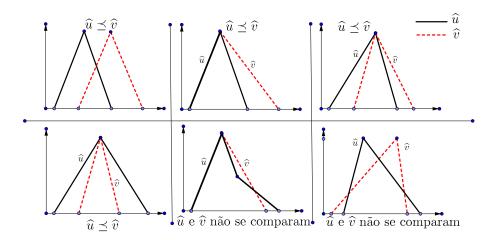


Figura 8: Relação de ordem parcial fuzzy alternativa. Na figura são ilustrados quatro casos de números fuzzy comparáveis e dois casos onde não é possível fazer a comparação pela relação de ordem definida em 11.

Baseando-se na relação de ordem não estrita estabelecida em 11, podemos apresentar uma relação de ordem estrita.

Definição 12. Sejam A e B números fuzzy, $com [A]^{\alpha} = [A_L^{\alpha}, A_R^{\alpha}]$ e $[B]^{\alpha} = [B_L^{\alpha}, B_R^{\alpha}]$. Dizemos que $A \prec_F B$ se $\forall \alpha \in [0, 1]$, $A_L^{\alpha} \leq B_L^{\alpha}$ e $\exists \alpha \in [0, 1]$ tal que $A_L^{\alpha} < B_L^{\alpha}$ e, $caso A_L^{\alpha} = B_L^{\alpha}$, $\forall \alpha \in [0, 1]$. Dizemos que $A \prec_F B$ se $\forall \alpha \in [0, 1]$, $A_R^{\alpha} \leq B_R^{\alpha}$ e $\exists \alpha \in [0, 1]$ tal que $A_R^{\alpha} < B_R^{\alpha}$.

Estas relações de ordem propostas não são totais, isso significa que existem pares de números fuzzy que não são comparáveis.

1.3 Funções fuzzy

Podemos entender como função fuzzy qualquer função que tenha como contradomínio $\mathcal{F}(\mathbb{R})$, isto é, qualquer função com valor em números fuzzy:

$$f: \mathbb{X} \mapsto \mathcal{F}(\mathbb{R}) \tag{10}$$

Um estudo mais detalhado sobre funções fuzzy pode ser encontrado em [10] e [11]. Neste capítulo trabalhamos com dois tipos de funções fuzzy, $f: \mathbb{R} \mapsto \mathcal{F}(\mathbb{R})$ e $f: \mathcal{F}(\mathbb{R}) \mapsto \mathcal{F}(\mathbb{R})$.

16-18 de Novemebro de 2016, Campinas - SP, Brasil.

Uma maneira de "construírmos" funções fuzzy do tipo $f:\mathbb{R}\to\mathcal{F}(\mathbb{R})$ é considerarmos uma função $f(x,\widehat{\lambda})$, onde $\widehat{\lambda}\in\mathcal{F}(\mathbb{R})$ é um parâmetro fuzzy fixo. A imagem dessa função pode ser interpretada, pelo menos, de duas formas diferentes.

Na primeira delas, vamos considerar que existe uma aplicação $\phi: X \to E$ onde X é o conjunto dos possíveis valores do parâmetro λ e E é um espaço de funções.

Se considerarmos $\widehat{\lambda} \in \mathcal{F}(X)$, aplicamos a extensão de Zadeh à ϕ , para cada $\widehat{\lambda}$ fuzzy obtemos um subconjunto fuzzy de funções de E, denotado por $\widehat{f}_{\widehat{\lambda}}(.) \in \mathcal{F}(E)$, onde cada função possui um grau de pertinência referente ao valor de λ a que está associada, conforme definição do princípio de extenção de Zadeh. Dessa forma podemos escrever

$$\mu_{\hat{f}_{\hat{\lambda}}(.)}(f_{\lambda}(.)) = \sup\{\mu_{\hat{\lambda}}(\lambda) : \phi(\lambda) = f_{\lambda}(.)\}$$
(11)

A partir deste conjunto fuzzy de funções, podemos definir uma função $\hat{f}_{\hat{\lambda}}$: $\mathbb{R} \to \mathcal{F}(\mathbb{R})$, onde, dado um $x \in \mathbb{R}$, é obtido um conjunto fuzzy como imagem, cuja função de pertinência é dada por:

$$\mu_{\hat{f}_{\hat{\lambda}}(x)}(y) = \sup\{\mu_{\hat{f}_{\hat{\lambda}}(.)}(f_{\lambda}(.)) : f_{\lambda}(x) = y\}$$
(12)

É importante observar que definimos uma função $\hat{f}_{\hat{\lambda}}: \mathbb{R} \to \mathcal{F}(\mathbb{R})$ a partir de um conjunto fuzzy de funções. Nós poderíamos fazer isso com qualquer conjunto fuzzy de funções, mesmo aqueles não provenientes de uma função $\phi(\lambda)$.

Uma segunda abordagem seria considerar que, para um dado \overline{x} fixo, fosse feita a extensão de Zadeh da função $f(\overline{x},\lambda)$ que, neste caso, ficaria dependendo unicamente de λ já que \overline{x} é fixo. Neste caso, o valor da função de pertinência do conjunto fuzzy imagem, seria dado pela seguinte igualdade:

$$\mu_{\hat{f}(\overline{x},\hat{\lambda})}(y) = \sup\{\mu_{\hat{\lambda}}(\lambda) : \lambda = f^{-1}(y,\overline{x})\}$$
(13)

Definição 13. Um conjunto de funções E é chamado de **conjunto de funções parametrizável**, se for possível estabelecer uma aplicação que a cada número real associa uma função diferente em E. Esta aplicação pode ser escrita da seguinte forma:

$$\phi: [a,b] \subset \mathbb{R} \longrightarrow \mathbb{E}
\lambda \longrightarrow f_{\lambda}$$
(14)

onde \mathbb{E} é um conjunto de funções quaisquer.

16-18 de Novemebro de 2016, Campinas - SP, Brasil.

Neste texto, trabalhamos também com o caso em que $f:\mathcal{F}(\mathbb{R})\to\mathcal{F}(\mathbb{R})$ e, neste caso, consideramos a imagem de f como sendo $\widehat{f}(\widehat{x},\widehat{\lambda})$, onde $\widehat{\lambda}$ é um parâmetro fuzzy fixo e \widehat{x} é uma variável fuzzy. Neste contexto, podemos pensar como no caso anterior, que temos uma faixa de funções, onde cada função possui um grau de pertinência, porém, a entrada não é mais um número crisp mas sim um conjunto fuzzy.

Se a função $x(t,\lambda)=x_\lambda(t)$ for contínua em relação a ambas as variáveis, a aplicação ϕ , definida por

$$\phi: [a,b] \subset \mathbb{R} \longrightarrow E([c,d],\mathbb{R})$$

$$\lambda \longrightarrow x_{\lambda}(.)$$
(15)

também é contínua, onde $E([a,b],\mathbb{R})$ é um espaço de funções reais definidas em [a,b] arbitrário . Sendo assim, podemos enunciar o Teorema 5:

Teorema 5. Seja ϕ uma função contínua definida como

$$\phi: [a,b] \subset \mathbb{R} \longrightarrow E([c,d],\mathbb{R})$$

$$\lambda \longrightarrow x_{\lambda}(.)$$

se $\widehat{\lambda} \in \mathcal{F}(\mathbb{R})$ então a extensão de Zadeh de ϕ em relação a $\widehat{\lambda}$ possui as seguintes propriedades:

- 1. $[\widehat{\phi}(\widehat{\lambda})]^{\alpha}$ é compacto e conexo para qualquer $\alpha \in [0,1]$;
- 2. $[\widehat{\phi}(\widehat{\lambda})]^1 \neq \emptyset$;
- 3. $0 \le \alpha \le \beta \le 1 \Leftrightarrow [\widehat{\phi}(\widehat{\lambda})]^{\beta} \subset [\widehat{\phi}(\widehat{\lambda})]^{\alpha}$.
- 4. $O supp(\widehat{\phi}(\widehat{\lambda})) = \{x_{\lambda}(.) \in E([a,b],\mathbb{R}) : \mu_{\widehat{\phi}(\widehat{\lambda})}(x_{\lambda}(.)) > 0\}$ é limitado.

Demonstração. 1. Como $\widehat{\lambda} \in \mathcal{F}(\mathbb{R})$, então $[\widehat{\lambda}]^{\alpha}$ é compacto e conexo para todo $\alpha \in [0, 1]$, como ϕ é contínua, podemos escrever pelo Teorema 2:

$$[\widehat{\phi}(\widehat{\lambda})]^{\alpha} = \phi([\widehat{\lambda}]^{\alpha}) \tag{16}$$

Pela topologia, [18], temos que qualquer imagem contínua de compacto é compacta e qualquer imagem contínua de conexo é conexa, logo $\phi([\widehat{\lambda}]^{\alpha}) = [\widehat{\phi}(\widehat{\lambda})]^{\alpha}$ é conexo e compacto.

16-18 de Novemebro de 2016, Campinas - SP, Brasil.

2. Como $\widehat{\lambda} \in \mathcal{F}(\mathbb{R})$, então $[\widehat{\lambda}]^1 \neq \emptyset$, logo $\phi([\widehat{\lambda}]^1) = [\widehat{\phi}(\widehat{\lambda})]^1 \neq \emptyset$.

3.

$$[\widehat{\phi}(\widehat{\lambda})]^{\beta} \subset [\widehat{\phi}(\widehat{\lambda})]^{\alpha} \Leftrightarrow \phi([\widehat{\lambda}]^{\beta}) \subset \phi([\widehat{\lambda}]^{\alpha}) \Leftrightarrow [\widehat{\lambda}]^{\beta} \subset [\widehat{\lambda}]^{\alpha} \Leftrightarrow 0 \leq \alpha \leq \beta \leq 1$$

4. Temos

$$supp(\widehat{\phi}(\widehat{\lambda})) \subset \overline{supp(\widehat{\phi}(\widehat{\lambda}))} = [\widehat{\phi}(\widehat{\lambda})]^0 = \phi([\widehat{\lambda}]^0)$$

Como $\widehat{\lambda} \in \mathcal{F}(\mathbb{R})$, então $[\widehat{\lambda}]^0$ é limitado. Como a imagem contínua de limitado é limitada, temos que $\phi([\widehat{\lambda}]^0)$ é limitado, logo $supp(\widehat{\phi}(\widehat{\lambda})) \subset \phi([\widehat{\lambda}]^0)$ é limitado.

Teorema 6. Seja f uma função contínua tal que $f: E([a,b],\mathbb{R}) \longrightarrow \mathbb{R}$. Se $\widehat{x}(.)$ \acute{e} um conjunto fuzzy de funções em $E([a,b],\mathbb{R})$, tal que $[\widehat{x}(.)]^{\alpha}$ seja compacto e conexo para $\forall \alpha \in [0,1]$, $[\widehat{x}(.)]^1 \neq \emptyset$, então

$$\widehat{f}(\widehat{x}(.)) \in \mathcal{F}(\mathbb{R}) \tag{17}$$

onde, $\widehat{f}(\widehat{x}(.))$ é a extensão de Zadeh de f em relação a $\widehat{x}(.)$.

Demonstração. Claramente, o universo onde $\widehat{f}(\widehat{x})$ está definida é o conjunto dos números reais, pois o contradomíno de f é o próprio conjunto dos reais. Sendo assim, segundo a definição de número fuzzy 4, temos que demonstrar os seguintes itens.

• Todos os α -niveis de $\widehat{f}(\widehat{x})$ são não vazios, com $0 \leq \alpha \leq 1$. Para mostrarmos a condição acima, basta mostrarmos que $[\widehat{f}(\widehat{x})]^1 \neq \emptyset$. Como f é contínua e $E([a,b],\mathbb{R})$ é um espaço de Hausdorff, pelo Teorema 2 podemos escrever

$$[\widehat{f}(\widehat{x})]^{\alpha} = f([\widehat{x}]^{\alpha})$$

como $[\widehat{x}]^1 \neq \emptyset,$ então $f([\widehat{x}]^1) = [\widehat{f}(\widehat{x})]^1 \neq \emptyset$.

• Todos os α -niveis de $\widehat{f}(\widehat{x})$ são intervalos fechados de \mathbb{R} . Segundo [13], a imagem de uma função contínua de um fechado é fechada como $[\widehat{x}]^{\alpha}$ é fechado, então, pela continuidade de f, $f([x]^{\alpha})$ é um conjunto fechado.

16-18 de Novemebro de 2016, Campinas - SP, Brasil.

Além disso, $[\widehat{x}]^{\alpha}$ é conexo, como a imagem contínua de conexo é conexa, então $f([\widehat{x}]^{\alpha})$ é um conjunto conexo. Como $f([x]^{\alpha})$ é um subconjunto conexo de \mathbb{R} , então $f([x]^{\alpha})$ é um intervalo, (ver [18]).

• $supp(\widehat{f}(\widehat{x})) = \{x(.) \in E([a,b],\mathbb{R}) : \mu_{\widehat{f}(\widehat{x})}(x(.)) > 0\}$ é limitado.

$$supp(\widehat{f}(\widehat{x}(.))) \subset \overline{supp(\widehat{f}(\widehat{x}(.)))} = [\widehat{f}(\widehat{x}(.))]^0 = f([\widehat{x}(.)]^0)$$

Como, por hipótese, $[\widehat{x}(.)]^0$ é compacto, então é $[\widehat{x}(.)]^0$ limitado já que $[\widehat{x}(.)]^0$ é um subconjunto de um espaço métrico. Como a imagem contínua de limitado é limitada, temos que $f([\widehat{x}(.)]^0)$ é limitado, portanto $supp(\widehat{f}(\widehat{x}(.)))$ é limitado.

Além disso, precisamos mostrar que $0 \le \alpha \le \beta \le 1 \Leftrightarrow [\widehat{f}(\widehat{x}(.))]^{\beta} \subset [\widehat{f}(\widehat{x}(.))]^{\alpha}$, podemos escrever:

$$[\widehat{f}(\widehat{x}(.))]^{\beta} \subset [\widehat{f}(\widehat{x}(.))]^{\alpha} \Leftrightarrow f([\widehat{x}(.)]^{\beta}) \subset [f([\widehat{x}(.)]^{\alpha}) \Leftrightarrow [\widehat{x}(.)]^{\beta} \subset [\widehat{x}(.)]^{\alpha} \Leftrightarrow 0 \leq \alpha \leq \beta \leq 1$$

A primeira equivalência é garantida pelo Teorema 2 e a última equivalência é garantida por hipótese.

Observação 1. Note que analogamente ao que foi feito, poderíamos provar o Teorema 6 para funções do tipo $f: E([a,b],\mathbb{R}) \times ... \times E([a,b],\mathbb{R}) \longrightarrow \mathbb{R}$.

2 Derivada e integral de funções com parâmetros fuzzy

2.1 Derivada de funções com parâmetro fuzzy

A derivada de uma função real com parâmetro fuzzy é dada conforme Definição 14.

Definição 14. Seja $x_{\lambda}(t)$ uma função real parametrizada por $\lambda \in [\lambda_L, \lambda_R] \subset \mathbb{R}$, se $x_{\lambda}(t)$ for diferenciável para todo $\lambda \in [\lambda_L, \lambda_R]$ então a derivada de $\widehat{x}_{\widehat{\lambda}}(t)$ é dada por:

$$\frac{d\widehat{x}_{\widehat{\lambda}}(t)}{dt} = \frac{\widehat{dx}_{\widehat{\lambda}}(t)}{dt}.$$
(18)

16-18 de Novemebro de 2016, Campinas - SP, Brasil.

onde, $\widehat{\lambda} \in \mathcal{F}([\lambda_L, \lambda_R])$, $\widehat{x}_{\widehat{\lambda}}(t)$ denota a extensão de Zadeh de $x_{\lambda}(t)$ em relação a λ e $\frac{\widehat{dx}_{\widehat{\lambda}}(t)}{dt}$ denota a extensão de Zadeh de $\frac{dx_{\lambda}(t)}{dt}$ em relação a λ . Ou seja, definimos a derivada da extensão de Zadeh de $\widehat{x}_{\widehat{\lambda}}(t)$ como sendo a extensão de Zadeh da derivada de $x_{\lambda}(t)$.

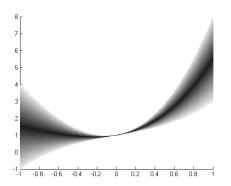
A seguir, apresentamos um exemplo de aplicação dessa definição.

Exemplo 1. Seja $x_{\widehat{\lambda}}(t)=t^3+\widehat{\lambda}t^2+t+1$, então o cálculo de $\frac{\widehat{dx}_{\widehat{\lambda}}(t)}{dt}$ pode ser efetuado da seguinte forma:

Como $x_\lambda(t)=t^3+\lambda t^2+t+1$ então $\frac{dx_\lambda(t)}{dt}=3t^2+2\lambda t+1$, aplicando a extensão de Zadeh em relação a λ na última equação obtemos

$$\frac{\widehat{dx}_{\widehat{\lambda}}(t)}{dt} = 3t^2 + 2\widehat{\lambda}t + 1 \tag{19}$$

Observamos que a Equação (19) é apenas uma notação para representar a extensão de Zadeh de $3t^2+2\lambda t+1$ em relação a λ . Não são realizadas operações com números fuzzy durante o cálculo de $\widehat{\frac{dx_{\widehat{\lambda}}(t)}{dt}}$.



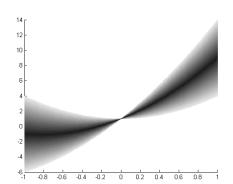


Figura 9: Gráfico da função com parâmetro Fuzzy.

Figura 10: Gráfico da derivada da função com parâmetro fuzzy.

Nas Figuras 9 e 10 apresentamos os gráficos das funções fuzzy $x_{\widehat{\lambda}}(t)$ e $\frac{\widehat{dx}_{\lambda}(t)}{dt}$, respectivamente.

16-18 de Novemebro de 2016, Campinas - SP, Brasil.

Por fim, vamos promover uma comparação entre a derivada apresentada na Definição 14 e a derivada de Hukuhara (Definição 15).

Considerando a função

$$u: [a, b] \longrightarrow \mathcal{F}(\mathbb{R}), \qquad a \ge 0.$$
 (20)

a derivada de Hukuhara é estabelecida na Definição 15.

Definição 15. (Derivada de Hukuhara) [5]. A função $u':[a,b] \longrightarrow \mathbb{F}(\mathbb{R})$ cujos α -níveis são dados por

$$[u'(t)]^{\alpha} = [(u_L^{\alpha})'(t), (u_R^{\alpha})'(t)] \tag{21}$$

para todo $\alpha \in [0,1]$, é a derivada da função fuzzy u(t), conhecida como derivada de Hukuhara. Estamos suponto a existência das derivadas clássicas $(u_L^{\alpha})'(t)$ e $(u_R^{\alpha})'(t)$.

A derivada de Hukuhara não é aplicada a qualquer função fuzzy, pois o valor da derivada pode ser invertido e não definir um intervalo. A função do Exemplo 1 não é derivável segundo Hukuhara, para exemplificar este problema, seja $\hat{\lambda}$ o conjunto fuzzy triangular $\hat{\lambda} = [0, 2.5, 5]$, tomemos $\alpha = 0.5$, sendo assim, temos

$$x(t)_L^{\alpha} = x(t)_L^{0.5} = x(t, [\lambda]_L^{0.5}) = x(t, 1.25) = t^3 + 1.25t^2 + t + 1$$
 (22)

$$x(t)_L^{\alpha} = x(t)_R^{0.5} = x(t, [\lambda]_L^{0.5}) = x(t, 3.75) = t^3 + 3.75t^2 + t + 1$$
 (23)

Pela Definição 15 da derivada de Hukuhara temos

$$[x'(t)]^{\alpha} = [(u_L^{\alpha})'(t), (u_R^{\alpha})'(t)] = [3t^2 + 2.5t + 1, 3t^2 + 7.5t + 1]$$
 (24)

sendo $x':[a,b]\longrightarrow \mathbb{F}(\mathbb{R}).$ Entretanto, se tomarmos t=-0.5 temos o seguinte

$$[x'(-0.5)]_L^{0.5} = 2 (25)$$

$$[x'(-0.5)]_R^{0.5} = 0.5 (26)$$

Porém isso não define um intervalo, pois $[x'(-0.5)]_R^{0.5} < [x'(-0.5)]_L^{0.5}$, logo a derivada de Hukuraha não é aplicada a este caso. Porém, vimos no exemplo 1 que a derivada definida conforme 14 pode ser aplicada a este caso. A derivada definida em 14 é um caso particular da derivada fuzzy estudada em [11]. Para maiores informações sobre derivadas de funções fuzzy o leitor pode consultar os seguintes textos ([9], [12], [17]).

16-18 de Novemebro de 2016, Campinas - SP, Brasil.

2.2 Integral de funções com parâmetro fuzzy

Da mesma maneira, podemos definir a integral para funções com parâmetros fuzzy da seguinte forma:

Definição 16. Seja $x_{\lambda}(t)$ uma função real parametrizada por $\lambda \in [\lambda_L, \lambda_R] \subset \mathbb{R}$, se x(t) for integrável para todo $\lambda \in [\lambda_L, \lambda_R]$ então a integral de $\widehat{x}_{\widehat{\lambda}}(t)$ pode ser dada por:

$$\int_{a}^{b} \widehat{x}_{\widehat{\lambda}}(t)dt = \widehat{\int_{a}^{b}} x_{\widehat{\lambda}}(t)dt. \tag{27}$$

onde, $\lambda \in \mathcal{F}([\lambda_L, \lambda_R])$, $\widehat{x}_{\widehat{\lambda}}(t)$ denota a extensão de zadeh de $x_{\lambda}(t)$ em relação a λ e $\widehat{\int_a^b} x_{\widehat{\lambda}}(t) dt$ denota a extensão de Zadeh de $\int_a^b x_{\lambda}(t) dt$ em relação a λ .

Exemplo 2. Vamos calcular a integral da seguinte função

$$\widehat{x}_{\widehat{\lambda}}(t) = \widehat{\lambda}t + sen^2(t) \tag{28}$$

onde, $\widehat{\lambda}=(1;2;3)$, que representa o número triangular fuzzy com suporte em $[1,3]\subset\mathbb{R}.$

O gráfico dessa função fuzzy pode ser dado pelo gráfico da Figura 12.

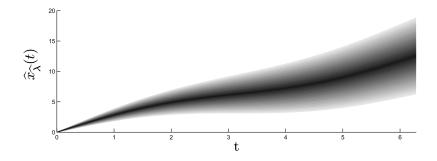


Figura 11: Função fuzzy que será integrada.

Para calcular a integral desta função segundo a Definição 16 fazemos o cálculo da mesma, utilizando a integral de Riemann e consideramos o parâmetro fuzzy como sendo uma constante, portanto, temos que

$$\int_0^x (\widehat{\lambda}\tau + sen^2(\tau))d\tau = \frac{1}{2} \left(\widehat{\lambda}x^2 + x - sen(x)\cos(x)\right). \tag{29}$$

16-18 de Novemebro de 2016, Campinas - SP, Brasil.

O gráfico da integral é dado na Figura 12:

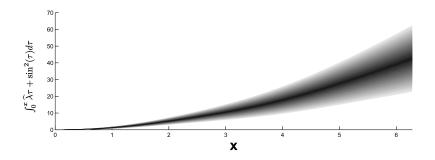


Figura 12: A cada valor de x associamos um conjunto fuzzy que representa a área abaixo do gráfico de $\widehat{x}_{\widehat{\lambda}}(t)$ para $t \in [0, x]$.

Por exemplo, se estabelecermos que os limites de integração serão 0 e 2π , então a integral será dada por

$$\int_0^{2\pi} \widehat{\lambda}t + \sin^2(t)dt = \pi(2\widehat{\lambda}\pi + 1)$$
(30)

e portanto, a integral da função fuzzy com limites definidos é um conjunto fuzzy cujo gráfico é dado na Figura 13

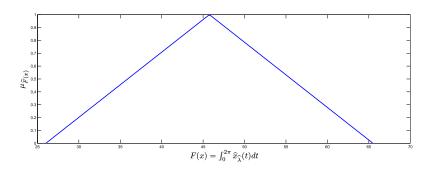


Figura 13: Conjunto fuzzy referente à integral da função fuzzy $\widehat{x}_{\widehat{\lambda}}(t)=\widehat{\lambda}t+\sin^2(t)$ com limites de integração 0 e 2π .

Geometricamente, como a função integrada é fuzzy, a área abaixo de seu gráfico também é, sendo assim, o conjunto fuzzy da Figura 13, representa á área abaixo do gráfico da função $\widehat{x}_{\widehat{\lambda}}(t) = \widehat{\lambda}t + \sin^2(t)$ com limites de integração 0 e 2π .

16-18 de Novemebro de 2016, Campinas - SP, Brasil.

3 Otimização de funções fuzzy

Definição 17. Seja (M,d) um espaço métrico e \mathbb{P} um conjunto parcialmente ordenado segundo a relação de ordem \leq_P . Considere uma função $f:M\longrightarrow \mathbb{P}$ e $x^*\in \Omega\subset M$. Dizemos que x^* é um minimizador local de f em Ω quando existe um $\delta>0$, tal que, $f(x^*)\preceq_P f(x)$, para todo $x\in B(x^*,\delta)\cap\Omega$. Caso $f(x^*)\preceq_P f(x)$, para todo $x\in\Omega$, x^* é dito minimizador global de f em Ω .

Na definição 17 estabelecemos o conceito de minimizador de funções do tipo $f: M \longrightarrow \mathbb{P}$, onde M é uma espaço métrico e \mathbb{P} é um conjunto parcialmente ordenado. Nesta seção faremos uso desta definição para estabelecermos o minimizador de funções $f: \mathcal{F}(\mathbb{R}) \longrightarrow \mathcal{F}(\mathbb{R})$. Onde $\mathcal{F}(\mathbb{R})$ é um espaço métrico definido pela métrica de Pompeiu-Hausdorff e um conjunto parcialmente ordenado através da relação 10. Portanto, podemos apresentar a seguinte definição

Definição 18. Considere uma função $\widehat{f}: \mathcal{F}(\mathbb{R}) \longrightarrow \mathcal{F}(\mathbb{R})$ e $\widehat{x}^* \in \Omega \subset \mathcal{F}(\mathbb{R})$. Dizemos que \widehat{x}^* é um minimizador local de \widehat{f} em Ω quando existe um $\delta > 0$, tal que, $\widehat{f}(\widehat{x}^*) \preceq_F \widehat{f}(\widehat{x})$, para todo $\widehat{x} \in \widehat{B}(\widehat{x}^*, \delta) \cap \Omega$. Caso $\widehat{f}(\widehat{x}^*) \preceq_F \widehat{f}(\widehat{x})$, para todo $\widehat{x} \in \Omega$, \widehat{x}^* é dito minimizador global de \widehat{f} em Ω .

É importante ressaltar que esta definição de minimizador se basea no conceito de menor elemento. Apesar da relação de ordem ser parcial, o minimizador precisa ser comparável com todos os elementos de $\widehat{B}(\widehat{x}^*, \delta)$.

Com a Definição 18 em mãos, podemos estudar os pontos extremos de funções $\widehat{f}(\widehat{x},\widehat{\lambda})$, onde \widehat{x} e $\widehat{\lambda}$ são números fuzzy e $\widehat{\lambda}$ é fixo.

3.1 Extensão de Zadeh para pontos extremos

Neste texto tratamos de funções que possuam algum parâmetro λ fuzzy. Portanto, podemos escrever essas funções como sendo $f(x,\lambda)$. Naturalmente, a classificação de um ponto extremo pode ser alterada em função do parâmetro λ . O exemplo a seguir ilustra essa situação:

Exemplo 3. Seja $f(x,\lambda)=\lambda x^3+2x^2-3x-4$. A condição necessária que deve ser satisfeita para que um ponto x seja extremo é:

$$\frac{df}{dx}(x) = 0 \Rightarrow 3\lambda x^2 + 4x - 3 = 0$$

Portanto, podemos escrever os valores críticos como sendo

16-18 de Novemebro de 2016, Campinas - SP, Brasil.

$$x_1 = \frac{-4 + \sqrt{16 + 36\lambda}}{6\lambda}$$
 $x_2 = \frac{-4 - \sqrt{16 + 36\lambda}}{6\lambda}$. (31)

Note que, x_1 e x_2 são pontos críticos reais de f se $16 + 36\lambda \ge 0$, isto é:

$$\lambda \ge -\frac{16}{36} \tag{32}$$

Vamos concentrar a análise em x_1 . Para cada valor de λ associamos um valor x_1 . Para classificar o ponto x_1 , devemos analisar uma segunda condição, por exemplo, para que x_1 seja mínimo é necessário que $\frac{df^2}{dx^2}(x_1) > 0$.

$$\frac{df^2}{dx^2}(x_1) = 6\lambda x_1 + 4 > 0 (33)$$

Substituindo (31) em (33), temos:

$$6\lambda \left(\frac{-4 + \sqrt{16 + 36\lambda}}{6\lambda}\right) + 4 > 0$$
$$\lambda > -\frac{16}{36}$$

Portanto, para $\lambda > -\frac{16}{36}$ o ponto x_1 é um ponto de mínimo, enquanto que para $\lambda \leq -\frac{16}{36}$ não pode ser classificado de tal forma. Portanto $\Omega_x^I = \left(-\frac{16}{36}, +\infty\right) - \{0\}$ é o que chamaremos de *conjunto admissível I* de λ para que x_1 seja um ponto de mínimo. Note que a análise que fizemos é em relação a um ponto extremo particular, no caso x_1 .

O conjunto admissível I será denotado por Ω_x^I e suas limitações dependem do domínio da primeira derivada da função em relação a x e do conjunto para o qual o ponto extremo possui a mesma nomenclatura, isto é, é mínimo ou máximo.

As equações em (31) estabelecem uma relação entre o parâmetro λ e os pontos extremos x_1 e x_2 . Essas funções serão chamadas de *função ponto extremo* de x_1 e x_2 e serão denotadas por $\rho_{x_1}(\lambda)$ e $\rho_{x_2}(\lambda)$ respectivamente.

É importante salientar que nem sempre será possível descrever explicitamente o valor de um ponto extremo em função do parâmetro. Nestes casos, o valor do extremo será definido implicitamente por λ através da função $g(x,\lambda)=\frac{\partial f}{\partial x}(x,\lambda)=\frac{\partial f}{\partial x}(x,\lambda)$

16–18 de Novemebro de 2016, Campinas – SP, Brasil.

0. O teorema a seguir nos dá condições para obtermos os valores dos extremos explicitamente em função de λ .

Teorema 7. (Teorema da função implícita) Suponha g(x,y) de classe C^1 num aberto $\Omega \subset \mathbb{R}^2$, com $(x_0,y_0) \in \Omega$, tal que

$$g(x_0, y_0) = 0 e \frac{\partial g}{\partial y}(x_0, y_0) \neq 0. (34)$$

Nestas condições, existe um aberto $\Omega_1 \subset \mathbb{R}^2$, com $(x_0, y_0) \in \Omega_1$, e uma única função y = h(x) definida e de classe C^1 num intervalo aberto I, $x_0 \in I$, $(x, h(x)) \in \Omega_1$, e

$$g(x, h(x)) = 0 (35)$$

A partir deste teorema podemos estabeler algumas definições.

Definição 19. Seja $g(x,\lambda)=\frac{\partial f}{\partial x}(x,\lambda)$ uma função que satisfaz as hipóteses do Teorema 7, então por este teorema existe uma função ρ_x tal que $x=\rho_x(\lambda)$, com $\lambda\in\Omega_x^{II}\subset\mathbb{R}$. Chamamos a função $x=\rho_x(\lambda)$ de função ponto extremo de x e chamamos o conjunto Ω_x^{II} de **conjunto admissível II de x**.

Note que o conjunto Ω_x^{II} é o maior conjunto tal que se consegue expressar explicitamente o ponto extremo em função do parâmetro. Entretanto, esta não é a única limitação do parâmetro, como vimos no exemplo, podem existir valores de parâmetros para os quais a função ponto extremo não está definida ou valores para os quais a classificação deste ponto muda de nome.

Definição 20. Sejam $f(x, \lambda)$ uma função tal que $\frac{\partial f}{\partial x}(x, \lambda)$ satisfaça as condições do teorema 7, x^* um ponto extremo de $f(x, \lambda)$ e $\widehat{\lambda} \in \mathcal{F}(\Omega_{x^*})$, onde $\Omega_{x^*} = \Omega_{x^*}^I \cap \Omega_{x^*}^{II}$ é o conjunto admissível de x^* . Nestas condições, denotamos por **extensão do ponto extremo** o conjunto fuzzy $\widehat{x}^* = \widehat{\rho}_{x^*}(\widehat{\lambda})$, onde $\widehat{\rho}_{x^*}$ é a extensão de Zadeh da função ponto extremo em relação a $\widehat{\lambda}$.

Observamos que para podermos estabeler a extensão de um ponto extremo devemos ter $[\widehat{\lambda}]^0 \subset \Omega_{x^*}$, ou seja, se houver algum elemento do suporte de $\widehat{\lambda}$ que não estiver em Ω_{x^*} , não será possível definir o ponto extremo fuzzy dessa função.

No Exemplo 3, o conjunto admissível para x_1 é dado por $\Omega_{x_1}=\left(-\frac{16}{36},+\infty\right)-\{0\}$ e a função ponto extremo é dada por

16-18 de Novemebro de 2016, Campinas - SP, Brasil.

$$\rho_{x_1}(\lambda) = \frac{-4 + \sqrt{16 + 36\lambda}}{6\lambda} \tag{36}$$

Portanto, se tivéssemos $\widehat{\lambda}=(1;2;3)$, a extensão do ponto extremo seria a extensão de Zadeh de $\rho_{x_1}(\lambda)$ em relação a $\widehat{\lambda}$. Por outro lado, não poderíamos ter $\widehat{\lambda}=(-1;0;1)$ pois $0\notin\Omega^I_{x_1}$.

3.2 Região de otimalidade

Na Seção 2.3, mostramos que $\widehat{x}^* = \widehat{\rho}_{x^*}(\widehat{\lambda})$ de fato, é um minimizador, segundo a Definição 18 da função $f(\widehat{x},\widehat{\lambda})$. Entretanto, este mínimo é de carater local, ou seja, deve existir um número ϵ^* , tal que, para qualquer $\widehat{x} \in B(\widehat{x}^*, \epsilon^*)$, temos

$$\widehat{f}(\widehat{x}^*, \widehat{\lambda}) \leq_F \widehat{f}(\widehat{x}, \widehat{\lambda}) \tag{37}$$

Sendo assim, vamos discutir nessa subseção qual seria este valor de ϵ^* . Vale lembrar que cada $x^* \in [\widehat{x}^*]^0$ é um mínimo local da função $f(x,\lambda)$ para um determinado λ fixo. Iniciamos com a seguinte definição:

Definição 21. Denotamos por $\epsilon(x^*)$ o maior intervalo real tal que x^* seja ponto de mínimo (ou máximo) de $f(x, \lambda^*)$ e não exista $x \in \epsilon(x^*)$ tal que x seja ponto extremo de $f(x, \lambda^*)$.

Na Definição 21 estamos considerando que λ^* é fixo e $x^* = \rho(\lambda^*)$. Além disso, podemos concluir que $\epsilon(x^*)$ é o maior intervalo que contem x^* , tal que não exista outro ponto extremo além de x^* , isto significa que não existe, em $\epsilon(x^*)$, outro ponto de mínimo ou máximo que não seja x^* .

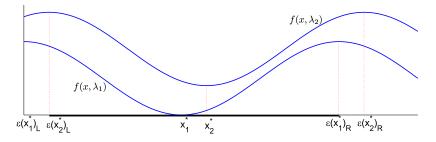


Figura 14: Exemplo de $\epsilon(x)$. Notamos na figura que o valor de $\epsilon(x^*)$ varia de acordo com x^* . O intervalo destacado representa a intersecção de dois conjuntos $\epsilon(x_1^*) \cap \epsilon(x_2^*)$.

16-18 de Novemebro de 2016, Campinas - SP, Brasil.

Na Figura 14, exemplificamos os intervalos $\epsilon(x_1^*)$ e $\epsilon(x_2^*)$. Na Figura 14 também destacamos a intersecção entre $\epsilon(x_1^*)$ e $\epsilon(x_2^*)$, esta intersecção determinará o valor de ϵ^* quando λ for fuzzy. Veja a Definição 22.

Definição 22. Seja, $\epsilon(x)$ conforme Definição 21 e $\widehat{f}(\widehat{x}, \widehat{\lambda})$ com $\widehat{\lambda} \in \mathcal{F}(\mathbb{R})$ fixo e $\widehat{x}^* = \rho(\widehat{\lambda})$. Sendo assim, podemos definir

$$\Omega_{\epsilon} = \bigcap_{x \in [\widehat{x}^*]^0} \epsilon(x) \tag{38}$$

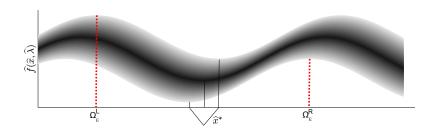


Figura 15: Exemplo de Ω_{ϵ} . O conjunto fuzzy \widehat{x}^* representado é obtido através da extensão de Zadeh da função ponto extremo. As tonalidades de cinza do gráfico indicam o grau de pertinencia para cada valor de x, quanto mais escura for a tonalidade, maior é o grau de pertinência.

Pela Figura 15, podemos notar que para qualquer $\lambda \in [\widehat{\lambda}]^0$, $x^* = \rho(\lambda)$ é o único ponto extremo de $f(x,\lambda)$ para $x \in \Omega_{\epsilon} = (\Omega^L_{\epsilon} \Omega^R_{\epsilon})$.

O objetivo desta subseção é definir o ϵ^* , onde ϵ^* será o raio da bola $B(\widehat{x}^*, \epsilon^*)$ onde \widehat{x}^* é mínimo. Deste modo, vamos definir ϵ^* como sendo:

$$\epsilon^* = \min\{|\Omega_{\epsilon}^L - x_L^{*0}|, |\Omega_{\epsilon}^R - x_R^{*0}|\}$$
 (39)

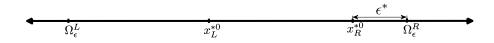


Figura 16: Exemplo de ϵ^* . Este valor garantirá que qualquer perturbação de \widehat{x}^* em $B(\widehat{x}^*, \epsilon^*)$ terá suporte contido em Ω_{ϵ} .

16-18 de Novemebro de 2016, Campinas - SP, Brasil.

Estamos apenas interessados nos casos onde $[\widehat{x}^*]^0 \subset \Omega_{\epsilon}$, isto é, só podemos garantir a otimalidade de \widehat{x}^* se $[\widehat{x}^*]^0 \subset \Omega_{\epsilon}$. Por fim, apresentamos um teorema que relaciona a distância entre dois conjuntos fuzzy e a relação de inclusão entre os seus suportes.

Teorema 8. Sejam
$$\widehat{x} \in \mathcal{F}(\mathbb{R})$$
 e $\widehat{y} \in \mathcal{F}(\mathbb{R})$. Se $d_{\infty}(\widehat{x}, \widehat{y}) = \epsilon$, então $[\widehat{y}]^0 \subset [\widehat{x}_L^0 - \epsilon, \widehat{x}_R^0 + \epsilon]$.

 $Demonstração. \ \ \text{Se} \ d_{\infty}(\widehat{x},\widehat{y}) = \epsilon \Rightarrow \sup_{\alpha \in [0,1]} (d_H([\widehat{x}]^{\alpha},[\widehat{y}]^{\alpha})) = \epsilon, \ \text{portanto podemos}$ escrever

$$d_H([\widehat{x}]^0, [\widehat{y}]^0)) \le \epsilon \Rightarrow \max\{|x_L^0 - y_L^0|, |x_R^0 - y_R^0|\} \le \epsilon$$

$$|x_L^0 - y_L^0| \le \epsilon \Rightarrow x_L^0 - y_L^0 \le \epsilon \Rightarrow x_L^0 - \epsilon \le y_L^0 \tag{40}$$

$$|x_R^0 - y_R^0| \le \epsilon \Rightarrow x_R^0 - y_R^0 \ge -\epsilon \Rightarrow x_R^0 + \epsilon \ge y_R^0 \tag{41}$$

Pela última desigualdade de 40 e 41, podemos concluir que $[\widehat{y}]^0 \subset [\widehat{x}_L - \epsilon, \widehat{x}_R + \epsilon]$.

Este resultado será utilizado ao longo das demonstrações dos teoremas principais deste capítulo.

4 Teoremas preliminares e teorema principal

Nesta seção apresentamos inicialmente alguns resultados referentes à função $\rho_{x^*}(\lambda)$. Estes resultados serão fundamentais para demonstrarmos o teorema principal deste texto.

O primeiro teorema que apresentamos vem mostrar que sob determinadas condições, o valor ótimo da função $f(x,\lambda)$ varia monotonicamente em relação ao ponto extremo.

Teorema 9. Seja $f(x, \lambda)$ uma função monótona em relação a λ tal que $\frac{\partial f(x, \lambda)}{\partial x}$ satisfaça as hipóteses do teorema da função implícita em $Dom(\lambda)$, então $f(x^*, \rho_{x^*}^{-1}(x^*))$ é monótona em relação a x^* em D, onde D é o domínio de $\rho_{x^*}^{-1}(x^*)$.

Demonstração. Como $\frac{\partial f(x,\lambda)}{\partial x}$ satisfaz as hipóteses do teorema da função implícita, então $\rho_{x^*}(\lambda)$ possui inversa para $\lambda \in [\lambda]^0$ e consequentemente, tanto $\rho_{x^*}(\lambda)$ quanto $\rho_{x^*}^{-1}(x^*)$ são monótonas.

16-18 de Novemebro de 2016, Campinas - SP, Brasil.

Para mostrar que $f(x^*, \rho_{x^*}^{-1}(x^*))$ é monótona em relação a x^* em D, basta mostrarmos que para quaisquer x_1 e x_2 arbitrários em D, $f(x_1, \rho_{x^*}^{-1}(x_1)) \leq f(x_2, \rho_{x^*}^{-1}(x_2))$ ou $f(x_1, \rho_{x^*}^{-1}(x_1)) \geq f(x_2, \rho_{x^*}^{-1}(x_2))$. Para isso teremos que considerar 8 casos.

- Caso 1.
 - 1. $f(x, \lambda)$ é crescente em relação a λ ;
 - 2. $\rho_{x^*}^{-1}(x^*)$ é crescente em relação a x^* ;
 - 3. x^* é um ponto de mínimo.

Sejam x_1 e x_2 arbitrários com $x_1 < x_2$. Pelo item

$$f(x_1, \rho_{x^*}^{-1}(x_1)) < f(x_2, \rho_{x^*}^{-1}(x_1))$$

Pelos itens 2 e 3, temos

$$f(x_2, \rho_{x^*}^{-1}(x_1)) < f(x_2, \rho_{x^*}^{-1}(x_2))$$

Logo,

$$f(x_1, \rho_{x^*}^{-1}(x_1)) < f(x_2, \rho_{x^*}^{-1}(x_2))$$

portanto, nessas condições $f(x^*, \rho_{x^*}^{-1}(x^*))$ é monótona e crescente.

- Caso 2.
 - 1. $f(x, \lambda)$ é decrescente em relação a λ ;
 - 2. $\rho_{x^*}^{-1}(x^*)$ é crescente em relação a x^* ;
 - 3. x^* é um ponto de mínimo.

Seja $x_1 < x_2$, temos:

$$f(x_1, \rho_{x^*}^{-1}(x_1)) > f(x_1, \rho_{x^*}^{-1}(x_2)) > f(x_2, \rho_{x^*}^{-1}(x_2))$$

A primeira desigualdade é justificada pelos itens 1 e 2 e a segunda pelo item

3. Neste caso a função é decrescente.

16-18 de Novemebro de 2016, Campinas - SP, Brasil.

- Caso 3.
 - 1. $f(x, \lambda)$ é crescente em relação a λ ;
 - 2. $\rho_{r^*}^{-1}(x^*)$ é decrescente em relação a x^* ;
 - 3. x^* é um ponto de mínimo.

Seja $x_1 < x_2$, temos:

$$f(x_1, \rho_{x^*}^{-1}(x_1)) > f(x_1, \rho_{x^*}^{-1}(x_2)) > f(x_2, \rho_{x^*}^{-1}(x_2))$$

A primeira desigualdade é justificada pelos itens 1 e 2 e a segunda pelo item

- 3. Neste caso a função é decrescente.
- Caso 4.
 - 1. $f(x, \lambda)$ é decrescente em relação a λ ;
 - 2. $\rho_{x^*}^{-1}(x^*)$ é decrescente em relação a x^* ;
 - 3. x^* é um ponto de mínimo.

Seja $x_1 < x_2$, temos:

$$f(x_1, \rho_{x^*}^{-1}(x_1)) < f(x_2, \rho_{x^*}^{-1}(x_1)) < f(x_2, \rho_{x^*}^{-1}(x_2))$$

A primeira desigualdade é justificada pelo item 3 e a segunda pelos itens 2 e 3. Neste caso a função é crescente.

- Caso 5.
 - 1. $f(x, \lambda)$ é crescente em relação a λ ;
 - 2. $\rho_{x^*}^{-1}(x^*)$ é crescente em relação a x^* ;
 - 3. x^* é um ponto de máximo.

Seja $x_1 < x_2$, temos:

$$f(x_1, \rho_{x^*}^{-1}(x_1)) < f(x_1, \rho_{x^*}^{-1}(x_2)) < f(x_2, \rho_{x^*}^{-1}(x_2))$$

A primeira desigualdade é justificada pelos itens 1 e 2 e a segunda pelo item

3. Neste caso a função é crescente.

16-18 de Novemebro de 2016, Campinas - SP, Brasil.

- Caso 6.
 - 1. $f(x, \lambda)$ é decrescente em relação a λ ;
 - 2. $\rho_{r^*}^{-1}(x^*)$ é crescente em relação a x^* ;
 - 3. x^* é um ponto de máximo.

Seja $x_1 < x_2$, temos:

$$f(x_1, \rho_{x^*}^{-1}(x_1)) > f(x_2, \rho_{x^*}^{-1}(x_1)) > f(x_2, \rho_{x^*}^{-1}(x_2))$$

A primeira desigualdade é justificada pelo item 3 e a segunda pelos itens 1 e 2. Neste caso a função é decrescente.

- Caso 7.
 - 1. $f(x, \lambda)$ é crescente em relação a λ ;
 - 2. $\rho_{x^*}^{-1}(x^*)$ é decrescente em relação a x^* ;
 - 3. x^* é um ponto de máximo.

Seja $x_1 < x_2$, temos:

$$f(x_1, \rho_{x^*}^{-1}(x_1)) > f(x_2, \rho_{x^*}^{-1}(x_1)) > f(x_2, \rho_{x^*}^{-1}(x_2))$$

A primeira desigualdade é justificada pelo item 3 e a segunda pelos itens 1 e 2. Neste caso a função é decrescente

- Caso 8.
 - 1. $f(x, \lambda)$ é decrescente em relação a λ ;
 - 2. $\rho_{x^*}^{-1}(x^*)$ é decrescente em relação a x^* ;
 - 3. x^* é um ponto de máximo.

Seja $x_1 < x_2$, temos:

$$f(x_1, \rho_{x^*}^{-1}(x_1)) < f(x_1, \rho_{x^*}^{-1}(x_2)) < f(x_2, \rho_{x^*}^{-1}(x_2))$$

A primeira desigualdade é justificada pelos itens 1 e 2 e a segunda pelo item 3. Neste caso a função é crescente.

16-18 de Novemebro de 2016, Campinas - SP, Brasil.

Portanto, mostramos que, sob as hipóteses apresentadas, $f(x^*, \rho_{x^*}^{-1}(x^*))$ é monótona em relação a x^* .

A seguir vamos apresentar um exemplo que ilustra o caso apresentado

Exemplo 4. Seja $f(x,\lambda)=-x^3-\lambda x^2+5x+3$. Vamos verificar se a função $f(x^*,\rho_{x^*}^{-1}(x^*))$ de fato é monótona.

Incialmente, vamos calcular $\frac{\partial f(x,\lambda)}{\partial x}$.

$$\frac{\partial f(x,\lambda)}{\partial x} = -3x^2 - 2\lambda x + 5 \tag{42}$$

Esta função possui duas raízes em x, estas raizes podem ser dadas em função de λ por :

$$x_1^* = \frac{2\lambda + \sqrt{4\lambda^2 + 60}}{-6}$$
 e $x_2^* = \frac{2\lambda - \sqrt{4\lambda^2 + 60}}{-6}$ (43)

portanto, a função possui dois pontos críticos. Calculamos a segunda derivada da seguinte forma

$$\frac{\partial^2 f(x,\lambda)}{\partial x^2} = -6x - 2\lambda \tag{44}$$

Para que x_2^* seja ponto de mínimo é necessário que $\frac{\partial^2 f(x_2^*,\lambda)}{\partial x^2}$ seja positivo, portanto, fazendo as devidas substuições temos:

$$\frac{\partial^2 f(x_2^*, \lambda)}{\partial x^2} = 4\lambda^2 + 60 > 0 \tag{45}$$

o que é verdade para todo $\lambda \in \mathbb{R}$. Portanto, para qualquer λ real, o ponto x_2^* é um ponto de mínimo.

16-18 de Novemebro de 2016, Campinas - SP, Brasil.

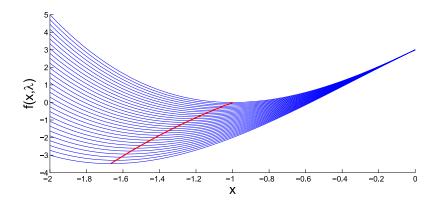


Figura 17: O gráfico apresenta uma curva para cada valor específico de λ . A curva transversal representa a função $f(x^*, \rho_{x^*}^{-1}(x^*))$.

Podemos escrever λ em função de x_2^* conforme Equação 46

$$\lambda = \frac{-3x_2^2 + 5}{2x_2}. (46)$$

Portanto, substituindo a Equação 46 em $f(x,\lambda)$ obtemos a expressão de $f(x^*,\rho_{x^*}^{-1}(x^*))$ que dada pela Equação 47

$$f(x^*, \rho_{x^*}^{-1}(x^*)) = \frac{(x^*)^3}{2} + \frac{5x^*}{2} + 3$$
 (47)

que claramente é uma função monótona crescente.

O gráfico da Figura 17 apresenta as curvas das funções $f(x,\lambda)$, para $x\in[-2,0]$, para λ variando entre entre -1 e 1. Note que a curva em destaque representa a função $f(x^*,\rho_{x^*}^{-1}(x^*))$.

Notamos que $D=\{\rho_{x^*}(\lambda):\lambda\in\Omega_{x^*}\}$ são todos os possíveis valores de ótimo.

O próximo resultado, Teorema 10, garante sob determinadas hipóteses que os extremos esquerdos de cada α -nível da imagem de $\widehat{f}(\widehat{x}^*,\widehat{\lambda})$ são as imagens de algum dos extremos de $[\widehat{x}^*]^{\alpha}$ e $[\widehat{\lambda}]^{\alpha}$.

Teorema 10. Seja $f(x,\lambda)$ uma função contínua e monótona em relação a λ tal que $\frac{\partial f(x,\lambda)}{\partial x}$ satisfaça as hipóteses do teorema da função implícita em $Dom(\lambda)$. Se $f(x,\lambda)$ for crescente em relação a λ então $\forall \alpha \in [0,1]$, $\widehat{f}(\widehat{x}^*,\widehat{\lambda})_L^\alpha = f(x_L^{*\alpha},\lambda_L^\alpha)$

16-18 de Novemebro de 2016, Campinas - SP, Brasil.

ou $f(\widehat{x}^*, \widehat{\lambda})_L^{\alpha} = f(x_R^{*\alpha}, \lambda_L^{\alpha})$. Caso $f(x, \lambda)$ seja decrescente em relação a λ então $f(\widehat{x}^*, \widehat{\lambda})_L^{\alpha} = f(x_L^{*\alpha}, \lambda_R^{\alpha})$ ou $f(\widehat{x}^*, \widehat{\lambda})_L^{\alpha} = f(x_R^{*\alpha}, \lambda_R^{\alpha})$

Demonstração. Inicialmente, vamos supor que $f(x,\lambda)$ seja crescente em relação a λ . Temos também que

$$f(\widehat{x}^*, \widehat{\lambda})_L^{\alpha} = \min\{f([\widehat{x}^*]^{\alpha}, [\widehat{\lambda}]^{\alpha})\}$$
(48)

Como a função é crescente em relação a λ , implica que

$$\min f([\widehat{x}^*]^{\alpha}, [\widehat{\lambda}]^{\alpha}) = \min f([\widehat{x}^*]^{\alpha}, \lambda_L^{\alpha})$$

Pela definição de x^* temos que

$$\min f([\widehat{x}^*]^{\alpha}, \lambda_L^{\alpha}) = f(x_L^{\alpha} *, \lambda_L^{\alpha}) \qquad \text{ ou } \qquad \min f([\widehat{x}^*]^{\alpha}, \lambda_L^{\alpha}) = f(x_R^{\alpha} *, \lambda_L^{\alpha})$$

Analogamente, a demonstração pode ser feita para o caso em que $f(x,\lambda)$ é decrescente em relação a λ .

As Figuras 18 e 19 ilustram os casos abordados.

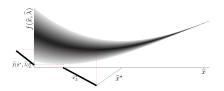


Figura 18: Ilustração do caso onde $f(x^*, \rho_{x^*}^{-1}(x^*))$ é crescente.

Figura 19: Ilustração do caso onde $f(x^*, \rho_{x^*}^{-1}(x^*))$ é decrescente.

Observação 2. Se $f(x^*, \rho_{x^*}^{-1}(x^*))$ for crescente em relação a x^* , então

$$f(x^*, \widehat{\lambda})_L^{\alpha} = f(x_L^{\alpha} *, \lambda_L^{\alpha}) \tag{49}$$

caso seja decrescente

$$f(x^*, \widehat{\lambda})_L^{\alpha} = f(x_R^{\alpha} *, \lambda_L^{\alpha}) \tag{50}$$

16-18 de Novemebro de 2016, Campinas - SP, Brasil.

Teorema 11. Seja $f(x,\lambda)$ uma função tal que $\frac{\partial f(x,\lambda)}{\partial x}$ satisfaça as hipóteses do Teorema 7 e monótona em relação a λ . Se $[\widehat{x}]^0 \in \Omega_{\epsilon}$ então

$$f(\widehat{x}^*, \widehat{\lambda})_L^{\alpha} = f(\widehat{x}, \widehat{\lambda})_L^{\alpha} \quad \Rightarrow \quad x_L^{\alpha} \le x_L^{*\alpha} \text{ ou } x_R^{*\alpha} \le x_R^{\alpha} \quad \forall \alpha \in [0, 1]$$

$$onde \ \widehat{x}^* = \widehat{\rho}_{x^*}(\widehat{\lambda}).$$
(51)

Demonstração. Como $f(x, \lambda)$ é contínua em relação a ambas as variáveis, podemos aplicar o Teorema 1, e escrever a seguinte implicação

$$f(\widehat{x}^*, \lambda)_L^{\alpha} = f(\widehat{x}, \lambda)_L^{\alpha} \quad \Rightarrow \quad \min f([\widehat{x}^*]^{\alpha}, [\widehat{\lambda}]^{\alpha}) = \min f([\widehat{x}]^{\alpha}, [\widehat{\lambda}]^{\alpha}) \quad (52)$$

Vamos supor inicialmente que a monotonicidade da f em relação a λ seja crescente, isso implica que podemos escrever a última igualdade em (52) como sendo

$$\min f([\widehat{x}^*]^{\alpha}, \lambda_L^{\alpha}) = \min f([\widehat{x}]^{\alpha}, \lambda_L^{\alpha}) = f(\widehat{x}^*, \widehat{\lambda})_L^{\alpha}$$
(53)

Supondo que $f(x^*, \rho_{x^*}^{-1}(x^*))$ seja crescente, pelo Teorema 10 e Observação 2, temos que

$$f(\widehat{x}^*, \widehat{\lambda})_I^{\alpha} = f(x_I^{\alpha} *, \lambda_I^{\alpha}) \tag{54}$$

Logo, pela equação 54 e 53, podemos escrever a seguinte igualdade

$$f(x_L^{\alpha}*, \lambda_L^{\alpha}) = \min f([\widehat{x}]^{\alpha}, \lambda_L^{\alpha}) \Rightarrow x_L^{\alpha}* \in [\widehat{x}]^{\alpha} \Rightarrow x_L^{\alpha} \leq x_L^{\alpha}*$$
 (55)

Vamos supor agora que $f(x^*, \rho_{x^*}^{-1}(x^*))$ seja decrescente, mais uma vez, pelo Teorema 10 e Observação 2, temos que

$$f(\widehat{x}^*, \widehat{\lambda})_L^{\alpha} = f(x_R^{\alpha} *, \lambda_L^{\alpha}) \tag{56}$$

Logo, podemos escrever a seguinte igualdade

$$f(x_R^{\alpha}*, \lambda_L^{\alpha}) = \min f([\widehat{x}]^{\alpha}, \lambda_L^{\alpha}) \Rightarrow x_R^{\alpha}* \in [\widehat{x}]^{\alpha} \Rightarrow x_R^{\alpha}* \le x_R^{\alpha}$$
 (57)

No caso em que a função é decrescente em relação a λ , a demonstração é análoga.

16-18 de Novemebro de 2016, Campinas - SP, Brasil.

O próximo resultado, Teorema 12, é o resultado principal deste capítulo, nele mostramos que a extensão de Zadeh de $x^* = \rho_{x^*}(\lambda)$ é de fato um ponto de mínimo local para $f(\widehat{x}, \widehat{\lambda})$ segundo a relação de ordem da Definição 11.

Teorema 12. Seja $f(x,\lambda)$ uma função tal que $\frac{\partial f(x,\lambda)}{\partial x}$ satisfaça as hipóteses do Teorema 7 e monótona em relação a λ . Seja $\widehat{x}^* = \widehat{\rho}_{x^*}(\widehat{\lambda})$, onde $\widehat{\lambda} \in \mathcal{F}(\mathbb{R})$ é tal que $[\widehat{\lambda}]^0 \subset \Omega_{x^*}$ e Ω_{ϵ} seja um intervalo tal que $[\widehat{x}^*]^0 \subset \Omega_{\epsilon}$. Então, \widehat{x}^* é um minimizador local de $\widehat{f}(\widehat{x},\widehat{\lambda})$ em $B(\widehat{x}^*,\epsilon^*)$ segundo a relação de ordem da Definição 11.

Demonstração. Mostraremos que sob as hipóteses descritas

$$\widehat{f}(\widehat{x}^*, \widehat{\lambda}) \leq_F \widehat{f}(\widehat{x}, \widehat{\lambda}) \qquad \forall \widehat{x} \in B(\widehat{x}^*, \epsilon^*)$$
(58)

Vamos supor por absurdo que isto não seja verdade, ou seja, $\exists \widehat{\overline{x}} \in B(\widehat{x}^*, \epsilon^*)$ tal que $f(\widehat{\overline{x}}, \lambda) \prec_F f(\widehat{x}^*, \lambda)$ ou $\exists \widehat{\overline{x}} \in B(\widehat{x}^*, \epsilon^*)$ tal que $\widehat{\overline{x}}$ e \widehat{x}^* não são comparáveis.

De acordo com a relação de ordem apresentada na Definição 11, mostrar que $\exists \widehat{\overline{x}} \in B(\widehat{x}^*, \epsilon^*)$ tal que $f(\widehat{\overline{x}}, \lambda) \prec_F f(\widehat{x}^*, \lambda)$ é o mesmo que mostrar que

- 1. $\exists \alpha \in [0,1]$ tal que $f(\widehat{x},\lambda)^{\alpha}_{L} < f(\widehat{x}^{*},\lambda)^{\alpha}_{L}$;
- 2. Caso $f(\widehat{x},\lambda)_L^{\alpha}=f(\widehat{x}^*,\lambda)_L^{\alpha} \ \forall \alpha \in [0,1]$, então $\exists \alpha \in [0,1]$ tal que $f(\widehat{x},\lambda)_R^{\alpha} < f(\widehat{x}^*,\lambda)_R^{\alpha}$.

Inicialmente vamos supor que o item (1) é verdadeiro, pela continuidade de $f(x,\lambda)$ em relação as duas variáveis podemos aplicar o teorema de Nguyen, e portanto temos que para algum $\alpha \in [0,1]$

$$\min f([\widehat{x}]^{\alpha}, [\widehat{\lambda}]^{\alpha}) < \min f([\widehat{x}^*]^{\alpha}, [\widehat{\lambda}]^{\alpha}) \tag{59}$$

Isso implica que para algum $\lambda^* \in [\lambda]^{\alpha}$, temos que

$$\min f([\widehat{x}]^{\alpha}, \lambda^*) < \min f([\widehat{x}^*]^{\alpha}, \lambda^*)$$
(60)

Por hipótese, $[\widehat{x}^*]^{\alpha} \subset \Omega_{\epsilon}$, além disso, $\widehat{\overline{x}} \in B(\widehat{x}^*, \epsilon^*)$ e portanto, $[\widehat{\overline{x}}]^{\alpha} \subset \Omega_{\epsilon}$, sendo assim, podemos escrever:

$$\min f([\widehat{x}^*]^{\alpha}, \lambda^*) = f(\rho_{x^*}(\lambda^*), \lambda^*) \le \min f([\widehat{\overline{x}}]^{\alpha}, \lambda^*)$$
(61)

Portanto chegamos a uma contradição do item (1). Vamos supor agora que o item (2) seja verdadeiro, isso significa que para algum $\alpha \in [0, 1]$

16-18 de Novemebro de 2016, Campinas - SP, Brasil.

$$\max f([\widehat{\overline{x}}]^{\alpha}, [\widehat{\lambda}]^{\alpha}) < \max f([\widehat{x}^*]^{\alpha}, [\widehat{\lambda}]^{\alpha})$$
(62)

Note que como $f(x,\lambda)$ é monótona em relação a λ o máximo da função será atingido em $\lambda^*=\lambda_L^\alpha$ ou $\lambda^*=\lambda_R^\alpha$, portanto podemos reescrever a igualdade acima como

$$\max f([\widehat{\overline{x}}]^{\alpha}, \lambda^*) < \max f([\widehat{x}^*]^{\alpha}, \lambda^*)$$
(63)

A designaldade acima implica que $\exists \tilde{x} \in [\widehat{x}^*]^{\alpha}$ tal que $\tilde{x} \notin [\widehat{\overline{x}}]^{\alpha}$ e $f(x, \lambda^*) < f(\tilde{x}, \lambda^*) \forall x \in [\widehat{\overline{x}}]^{\alpha}$.

Pelo Teorema 9 sabemos que a função $f(x^*, \rho_{x^*}^{-1}(x^*))$ é monótona em relação a x^* , vamos supor a princípio que seja crescente. Pelo Teorema 11 temos que $\overline{x}_L^{\alpha} \leq x_L^{*\alpha}$, sendo assim, pelo fato de $\tilde{x} \notin [\widehat{\overline{x}}^*]^{\alpha}$, podemos concluir que

$$\overline{x}_R^{\alpha} < \tilde{x} \le x_R^{*\alpha}$$

Pela definição de ϵ^* , $f(x,\lambda^*)$ não possui ponto de máximo em $B(x_R^{*\alpha},\epsilon^*)$, então:

$$\max f([\widehat{x}^*]^{\alpha}, \lambda^*) = f(x_R^{*\alpha}) \qquad \text{ ou } \qquad \max f([\widehat{x}^*]^{\alpha}, \lambda^*) = f(x_L^{*\alpha}, \lambda^*)$$

Porém $x_L^{*\alpha} \neq \tilde{x}$, pois $x_L^{*\alpha} \notin [\widehat{\overline{x}}]^{\alpha}$. Logo

$$\max f([\widehat{x}^*]^{\alpha}, \lambda^*) = f(x_R^{*\alpha}, \lambda^*)$$

Portanto, temos:

$$f(\overline{x}_R^{*\alpha}, \lambda^*) < f(x_R^{*\alpha}, \lambda^*) = f(\rho(\lambda^*), \lambda^*)$$
(64)

A última igualdade é verificada pela monotonicidade crescente de $f(x^*, \rho_{x^*}^{-1}(x^*))$. Mas isso é uma contradição, pois $\overline{x}_R^{*\alpha} \in \Omega_\epsilon$ e $\rho(\lambda^*)$ é minimo de $f(x, \lambda^*)$ para qualquer $x \in \Omega_\epsilon$

Vamos supor agora que $f(x^*, \rho_{x^*}^{-1}(x^*))$ seja decrescente. Pelo Teorema 11, temos que $x_R^{*\alpha} \leq \overline{x}_R^{*\alpha}$. sendo assim, pelo fato de $\tilde{x} \notin [\widehat{\overline{x}}^*]^{\alpha}$, podemos concluir que

$$x_L^{*\alpha} < \tilde{x} \le \overline{x}_L^{\alpha}$$

Portanto,

$$\max f([\widehat{x}^*]^{\alpha}, \lambda^*) = f(x_L^{*\alpha}, \lambda^*)$$

16–18 de Novemebro de 2016, Campinas – SP, Brasil.

Sendo assim, temos

$$f(\rho(\lambda^*), \lambda^*) = f(x_l^{*\alpha}, \lambda^*) > f(\overline{x}_l^{*\alpha}, \lambda^*)$$
(65)

Mas isso é uma contradição, pois $\overline{x}_L^{*\alpha}\in\Omega_\epsilon$ e $\rho(\lambda^*)$ é minimo de $f(x,\lambda^*)$ para qualquer $x\in\Omega_\epsilon$.

Por fim, precisamos mostrar \widehat{x}^* é comparável com qualquer elemento de $B(\widehat{x}^*, \epsilon^*)$. Na realidade, isto já foi feito, pois ao tomarmos um elemento arbitrário de $B(\widehat{x}^*, \epsilon^*)$ para mostrarmos que $\widehat{f}(\widehat{x}^*, \widehat{\lambda}) \preceq_F \widehat{f}(\widehat{x}, \widehat{\lambda}) \ \forall \widehat{x} \in B(\widehat{x}^*, \epsilon^*)$ provamos que é possível comparar $\widehat{f}(\widehat{x}^*, \widehat{\lambda})$ com a imagem de $\widehat{f}(\widehat{x}, \widehat{\lambda})$ avaliada em qualquer elemento de $B(\widehat{x}^*, \epsilon^*)$. Isso conclui a prova do Teorema.

Na seção seguinte apresentamos alguns exemplos que ilustram os resultados estudados.

4.1 Exemplos

Os exemplos que apresentaremos têm o objetivo de ilustrar os conceitos estudados e evidenciar alguns detalhes sutís inerentes nos resultados anteriores.

Exemplo 5. Seja a função $f(x,\lambda)=\lambda x^2-5x+\lambda$. Vamos calcular um minimizador de $\widehat{f}(\widehat{x},\widehat{\lambda})$ para $\widehat{\lambda}=(2;4;6)$.

Se considerarmos $f(x,\lambda)$ como uma função de duas variáveis, seu gráfico é uma superfície representada na Figura 20

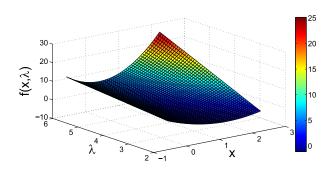


Figura 20: Superfície de $f(x, \lambda)$. Nota-se que para cada λ fixo (Corte em λ), a função possui um minimo local.

16-18 de Novemebro de 2016, Campinas - SP, Brasil.

O gráfico de $\widehat{f}(x, \widehat{\lambda})$ é apresentado na Figura 21:

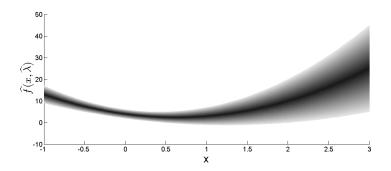


Figura 21: O gráfico de $\widehat{f}(x, \widehat{\lambda})$. A cada $x \in \mathbb{R}$ associa-se um conjunto fuzzy. O grau de pertinência desse conjunto fuzzy é proporcional a tonalidade escura do gráfico.

Pelo gráfico da Figura 21 já é possível notar a monotonicidade de $f(x,\lambda)$ em relação à λ , entretanto em poucos passos é possível verificar algebricamente essa afirmação. Para qualquer $\lambda_1 > \lambda_2$ podemos escrever:

$$f(x, \lambda_1) = \lambda_1 x^2 - 5x + \lambda_1 = \lambda_1 (x^2 + 1) - 5x > \lambda_2 (x^2 + 1) - 5x = f(x, \lambda_2)$$

Portanto, $f(x, \lambda)$ é crescente em relação à λ . O cálculo da primeira e segunda derivada em relação a x é dado por:

$$\frac{\partial f(x,\lambda)}{\partial x} = 2\lambda x - 5 \qquad \text{e} \qquad \frac{\partial^2 f(x,\lambda)}{\partial^2 x} = 2\lambda \tag{66}$$

É fácil verificar que a primeira função em (66) satisfaz as hipóteses do teorema da função implícita (Teorema 7), isto é $\frac{\partial f(x,\lambda)}{\partial x}$ é de classe C^1 e esta função se iguala a zero quando $x=\frac{5}{2\lambda}$, neste ponto a derivada parcial de $f(x,\lambda)$ em relação a λ não se anula.

Sendo assim, a segunda derivada é positiva para valores positivos de λ . Portanto, o conjunto admissível I é dado por $\Omega_x^I=(0,+\infty)$. O conjunto admissível II (Definição 19), é dado por $\Omega_x^{II}=\mathbb{R}-\{0\}$. Portanto, podemos escrever

$$\Omega_{x^*} = \Omega_x^I \cap \Omega_x^{II} = (0, +\infty) \tag{67}$$

O conjunto Ω_{x^*} representa o conjunto admissível para o suporte de $\widehat{\lambda}$, ou seja, só podemos aplicar o Teorema 12 se o suporte de $\widehat{\lambda}$ estiver contido em Ω_{x^*} . A função ponto extremo é dada por

16-18 de Novemebro de 2016, Campinas - SP, Brasil.

$$\rho_{x^*}(\lambda) = \frac{5}{2\lambda} \tag{68}$$

portanto, para aplicarmos o Teorema 12 temos que ter $[\widehat{\lambda}]^0\subset\Omega_{x^*}=(0,+\infty).$

Como $[\widehat{\lambda}]^0=[2,6]\subset (0,+\infty)$ podemos concluir que a extenção de Zadeh de $\rho_{x^*}(\lambda)=\frac{5}{2\lambda}$ é um minimizador local para $\widehat{f}(\widehat{x},\widehat{\lambda})$. A Figura 22 representa $\widehat{\lambda}$ e \widehat{x}^* .

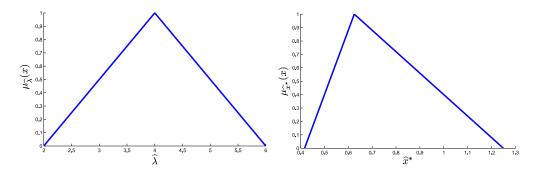


Figura 22: Gráfico da função de pertinência do parâmetro fuzzy $\widehat{\lambda}$ e do ponto de mínimo fuzzy \widehat{x}^* respectivamente.

Vamos aproveitar este exemplo para fazermos alguns experimentos, iremos comparar o valor de $\widehat{f}(\widehat{x}^*,\widehat{\lambda})$ com $\widehat{f}(\widehat{x},\widehat{\lambda})$ para alguns valores de $\widehat{x}\in B(\widehat{x}^*,\epsilon^*)$. Onde ϵ^* é definido conforme Equação 39.

Nas figuras subsequentes, os gráficos da esquerda representam a função de pertinência das variáveis de entrada \widehat{x}^* e \widehat{x} , onde \widehat{x} é uma perturbação do minimizador \widehat{x}^* e os gráficos da direita representam as imagens de $\widehat{f}(\widehat{x},\widehat{\lambda})$ e $\widehat{f}(\widehat{x}^*,\widehat{\lambda})$.

Na Figura 23, apresentamos o primeiro teste. Como todo ponto de mínimo de $f(x,\lambda)$ é global para qualquer valor de λ , então \widehat{x}^* deve ser um minimizador para qualquer perturbação feita.

16-18 de Novemebro de 2016, Campinas - SP, Brasil.

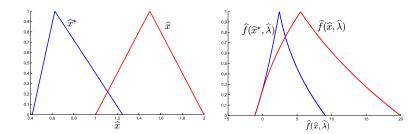


Figura 23: Exemplo de perturbação do ótimo fuzzy. O gráfico da direita confirma que $\widehat{f}(\widehat{x}^*, \widehat{\lambda}) \prec \widehat{f}(\widehat{x}, \widehat{\lambda})$ conforme relação de ordem definida em (10).

Na Figura 24, para qualquer $\alpha \in [0,1]$, temos $[\widehat{f}(\widehat{x},\widehat{\lambda})]^{\alpha} \subset \widehat{f}(\widehat{x}^*,\widehat{\lambda})]^{\alpha}$, entretanto, segundo a relação de ordem definida em (11), temos

$$\widehat{f}(\widehat{x}^*, \widehat{\lambda}) \preceq_F \widehat{f}(\widehat{x}, \widehat{\lambda}) \tag{69}$$

isso porque, para qualquer $\alpha \in [0,1]$, temos $[\widehat{f}(\widehat{x},\widehat{\lambda})]_L^{\alpha} \leq \widehat{f}(\widehat{x}^*,\widehat{\lambda})]_L^{\alpha}$.

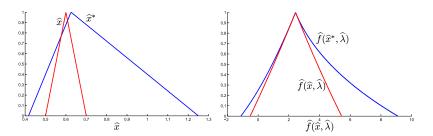


Figura 24: Como para qualquer $\alpha \in [0,1]$, temos $[\widehat{f}(\widehat{x},\widehat{\lambda})]_L^{\alpha} \leq \widehat{f}(\widehat{x}^*,\widehat{\lambda})]_L^{\alpha}$, podemos concluir pela relação de ordem 10 que $\widehat{f}(\widehat{x}^*,\widehat{\lambda}) \prec \widehat{f}(\widehat{x},\widehat{\lambda})$.

A Figura 25 ilustra um caso onde o conjunto fuzzy da perturbação está totalmente a esquerda do minimizador não existindo pontos em comum entre os mesmos, isto é $[\widehat{x}]^0 \cap [\widehat{x}^*]^0 = \emptyset$.

16-18 de Novemebro de 2016, Campinas - SP, Brasil.

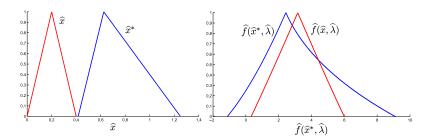


Figura 25: Gráfico de uma perturbação totalmente a esquerda. No gráfico da direita notamos que para qualquer $\alpha \in [0,1]$, temos $[\widehat{f}(\widehat{x},\widehat{\lambda})]_L^{\alpha} < \widehat{f}(\widehat{x}^*,\widehat{\lambda})]_L^{\alpha}$.

A Figura 26 ilustra um caso onde $[\widehat{x}^*]^0 \subset [\widehat{x}]^0$. Notamos que para qualquer $\alpha \in [0,1]$, temos $[\widehat{f}(\widehat{x},\widehat{\lambda})]_L^\alpha = \widehat{f}(\widehat{x}^*,\widehat{\lambda})]_L^\alpha$, entretanto, temos $\widehat{f}(\widehat{x}^*,\widehat{\lambda})_R^\alpha \leq \widehat{f}(\widehat{x},\widehat{\lambda})_R^\alpha$ para qualquer $\alpha \in [0,1]$, o que garante que $\widehat{f}(\widehat{x}^*,\widehat{\lambda}) \preceq_F \widehat{f}(\widehat{x},\widehat{\lambda})$. Este caso também ilustra uma aplicação do Teorema 11.

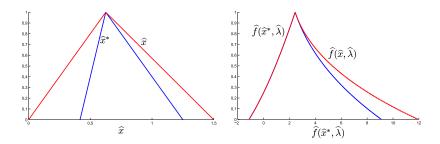


Figura 26: No gráfico da esquerda temos $[\widehat{x}^*]^{\alpha} \subset [\widehat{x}]^{\alpha}$, $\forall \alpha \in [0,1]$. O gráfico da direita representa o caso onde os limites inferiores de cada α -nível da imagem da perturbação e do minimizador são iguais, a desigualdade é decidida pelo extremo superior dos α -níveis da imagem.

Na Figura 27, temos um caso similar ao representado na Figura 24, entretanto, as diferenças entre os limites inferiores dos α -níveis da imagem são muito menores. Na Figura 27, gráfico à esquerda, destacamos com um círculo a parte do gráfico que garante $\widehat{f}(\widehat{x}^*, \widehat{\lambda}) \preceq_F \widehat{f}(\widehat{x}, \widehat{\lambda})$.

16-18 de Novemebro de 2016, Campinas - SP, Brasil.

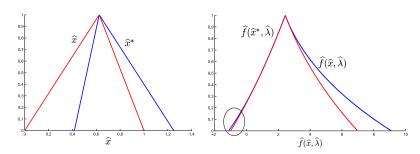


Figura 27: O minimizador \hat{x}^* e a perturbação \hat{x}^* possuem o mesmo elemento com grau de pertinência 1, entretanto se diferenciam pelo suporte.

No exemplo anterior, trabalhamos com um caso onde a função $f(x,\lambda)$ é convexa para qualquer λ fixo, e portanto, o ponto de mínimo considerado é global, fazendo com que $\widehat{f}(\widehat{x}^*,\widehat{\lambda}) \preceq \widehat{f}(\widehat{x},\widehat{\lambda})$ para qualquer \widehat{x} com suporte em \mathbb{R} . No próximo exemplo vamos trabalhar com uma função que não é convexa e por isso, teremos uma limitação na vizinhança de otimalidade de \widehat{x}^* .

Exemplo 6. Seja a função $f(x,\lambda)=2.5\lambda+\cos(x-\lambda)$, com $f:[0,2.5\pi]\longrightarrow\mathbb{R}$. Seja $\widehat{\lambda}$ o número fuzzy triangular (0.7;1.1;1.5). Vamos calcular o mínimo de $\widehat{f}(\widehat{x},\widehat{\lambda})$.

O gráfico de $\widehat{f}(x,\widehat{\lambda})$ pode ser dado por:

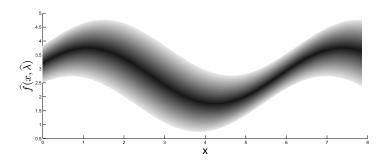


Figura 28: Gráfico de $\widehat{f}(x,\widehat{\lambda})=2.5\widehat{\lambda}+\cos(x-\widehat{\lambda})$. A cada $x\in\mathbb{R}$ associa-se um conjunto fuzzy. O grau de pertinência desse conjunto fuzzy é proporcional a tonalidade escura do gráfico.

Inicialmente, é possível notar pelo gráfico que $f(x,\lambda)$ é monótona em relação a λ no suporte de $\widehat{\lambda}$. Em seguida, é necessário calcularmos a primeira e segunda derivada de $f(x,\lambda)$ em relação a x.

16-18 de Novemebro de 2016, Campinas - SP, Brasil.

$$\frac{\partial f(x,\lambda)}{\partial x} = -sen(x-\lambda) \qquad e \qquad \frac{\partial^2 f(x,\lambda)}{\partial^2 x} = -cos(x-\lambda) \tag{70}$$

Portanto, igualando a primeira derivada a zero, temos a seguinte função ótimo

$$x^* = \rho_{x^*}(\lambda) = \lambda + arcsen(0) = \lambda + \pi$$
 (71)

Obviamente que arcsen(0) possui diversas soluções, $S = \{N\pi : K \in \mathbb{Z}\}$, para cada k temos um ponto crítico associado, vamos estudar o ponto crítico associado a N = 1, sendo assim, vamos considerar que $arcsen(0) = \pi$.

Para que x^* seja um ponto de mínimo temos que ter a segunda derivada positiva, ou seja, $-cos(x^* - \lambda) > 0$, portanto

$$cos(x^* - \lambda) < 0 \Rightarrow \frac{\pi}{2} + 2\pi k < x^* - \lambda < \frac{3\pi}{2} + 2\pi k$$

para qualquer $k \in \{0, 1, 2, ...\}$, fazendo as devidas manipulações devemos ter

$$-\frac{3\pi}{2} - 2\pi k + x^* < \lambda < -\frac{\pi}{2} - 2\pi k + x^* \tag{72}$$

Substituindo x^* pela equação 71, podemos escrever

$$\Rightarrow -\frac{3\pi}{2} - 2\pi k + \lambda + \pi < \lambda < -\frac{\pi}{2} - 2\pi k + \lambda + \pi \tag{73}$$

Portanto, temos a seguinte relação

$$-\frac{\pi}{2} - 2\pi k < 0 < \frac{\pi}{2} - 2\pi k \tag{74}$$

Quando $x^* = \lambda + \pi$ esta relação somente é valida para k = 0. Entretanto, os cálculos mostram (equação 74) que o sinal da segunda derivada não depende da escolha do λ , sendo assim, para qualquer $\lambda \in \mathbb{R}$, $x^* = \lambda + \pi$ é ponto de mínimo.

Como a função está definida em $[0, 2.5\pi]$ devemos ter

$$0 < \lambda + \pi < 2.5\pi \Rightarrow -\pi < \lambda < 1.5\pi \tag{75}$$

Como o suporte de $\hat{\lambda}$ é [0, 7, 1.5], a desigualdade acima é válida.

Pela Equação (71), sabemos que a primeira derivada se anula para $x = \lambda + \pi$, além disso, quando calculamos a derivada de $-sen(x-\lambda)$ obtemos $-cos(x-\lambda)$, substituindo x por $\lambda + \pi$, temos $-cos(\pi) = 1 \neq 0$. Portanto, podemos concluir

16-18 de Novemebro de 2016, Campinas - SP, Brasil.

que a primeira derivada satisfaz as hipóteses do teorema da função implícita para qualquer $\widehat{\lambda}$ com suporte em $[-\pi, 1.5\pi]$.

Pela Figura 29 podemos notar que o conjunto Ω_{ϵ} é um intervalo limitado e fechado dos reais. A Figura 29 representa esse intervalo.

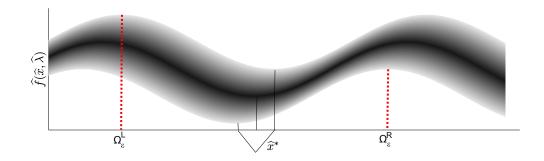


Figura 29: Representação do intervalo Ω_{ϵ} . Este é o intervalo em que x^* é o único ponto crítico para qualquer $\lambda \in [\widehat{\lambda}]^0$.

Nem sempre é possível calcular este intervalo, neste exemplo, é fácil verificar que os extremos do intervalo é dado por

$$cos(x - 0.7) = 1 \Rightarrow x = 2\pi + 0.7$$
 (76)

$$cos(x - 1.5) = 1 \Rightarrow x = \pi + 1.5$$
 (77)

portanto, $\Omega_{\epsilon} = [\pi + 1.5, 2\pi + 0.7].$

Portanto, pelo Teorema 12, podemos garantir que a extensão de Zadeh de $\rho_{x^*}(\lambda) = \lambda + \pi$ tem como imagem um minimizador local de $\widehat{f}(\widehat{x},\widehat{\lambda})$, segundo a Definição 17.

Assim como fizemos no exemplo anterior, vamos apresentar alguns testes que comparam a imagem de \widehat{x}^* à imagem de um ponto da vizinhança dele. É importante notar que neste exemplo não podemos tomar uma perturbação arbitrária de x^* . A função de pertinência de $\widehat{\lambda}$ e \widehat{x}^* é dada nas seguintes figuras

16-18 de Novemebro de 2016, Campinas - SP, Brasil.

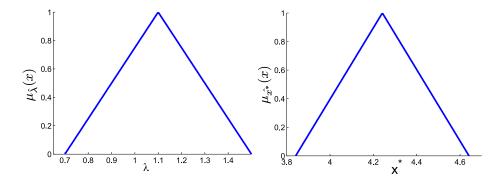


Figura 30: Gráfico da função de pertinência do parâmetro fuzzy $\widehat{\lambda}$ e do ponto de mínimo fuzzy \widehat{x}^* respectivamente.

Sendo assim, o minimizador do problema é o número fuzzy triangular $\widehat{x}^* = [0.7 + \pi, 1.1 + \pi, 1.5 + \pi]$. Com a solução em mãos, vamos fazer algumas pertubações na mesma e verificar que \widehat{x}^* de fato é minimizador de $\widehat{f}(\widehat{x}, \widehat{\lambda})$.

Na Figura 31, realizamos uma perturbação deslocando o minimizador para direita. Claramente, a imagem do minimizador é menor que a imagem da perturbação de acordo com a relação de ordem definida em (10).

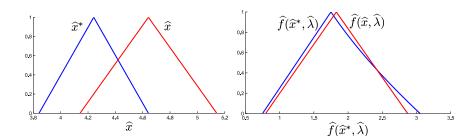


Figura 31: Exemplo de perturbação do ótimo fuzzy. O gráfico da direita confirma que $\widehat{f}(\widehat{x}^*, \widehat{\lambda}) \prec \widehat{f}(\widehat{x}, \widehat{\lambda})$ conforme relação de ordem definida em (10).

Na Figura 32, temos $[\widehat{x}]^0 \subset [\widehat{x}^*]^0$. Segundo a relação de ordem definida em 11, temos

$$\widehat{f}(\widehat{x}^*, \widehat{\lambda}) \preceq_F \widehat{f}(\widehat{x}, \widehat{\lambda}) \tag{78}$$

isso porque, para qualquer $\alpha \in [0,1]$, temos $\widehat{f}(\widehat{x}^*,\widehat{\lambda})_L^{\alpha} \leq \widehat{f}(\widehat{x},\widehat{\lambda})_L^{\alpha}$. Essa desigualdade não é graficamente clara, mas ocorre na região destacada pelo retângulo no gráfico da direita da Figura 32.

16-18 de Novemebro de 2016, Campinas - SP, Brasil.

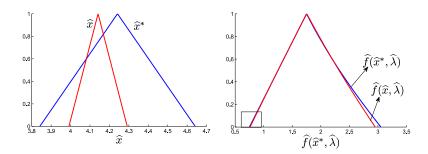


Figura 32: O gráfico da direita ilustra uma diferença muito sutíl entre a imagem do minimizador e da perturbação. Notamos que para α próximo de 0, temos $\widehat{f}(\widehat{x}^*, \widehat{\lambda})_L^{\alpha} < \widehat{f}(\widehat{x}, \widehat{\lambda})_L^{\alpha}$.

Na Figura 33 a perturbação é um deslocamento para direita do minimizador. Nota-se que claramente pelo gráfico da direita que

$$\widehat{f}(\widehat{x}^*, \widehat{\lambda}) \preceq_F \widehat{f}(\widehat{x}, \widehat{\lambda})$$

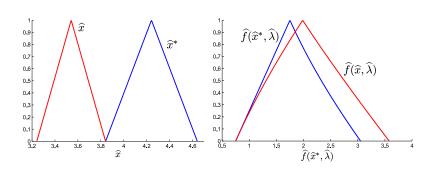


Figura 33: O gráfico da esquerda apresenta a função de pertinência do número fuzzy minimizador, \hat{x}^* e da perturbação \hat{x} . O gráfico da direita mostra claramente a desigualdade esperada.

A Figura 34 ilustra um caso onde $[\widehat{x}^*]^{\alpha} \subset [\widehat{x}]^{\alpha}$ para qualquer $\alpha \in [0,1]$. Notamos que para qualquer $\alpha \in [0,1]$, temos $[\widehat{f}(\widehat{x},\widehat{\lambda})]_L^{\alpha} = \widehat{f}(\widehat{x}^*,\widehat{\lambda})]_L^{\alpha}$, entretanto, temos $[\widehat{f}(\widehat{x}^*,\widehat{\lambda})]_R^{\alpha} \leq \widehat{f}(\widehat{x},\widehat{\lambda})]_R^{\alpha}$ para qualquer $\alpha \in [0,1]$, o que garante que $\widehat{f}(\widehat{x}^*,\widehat{\lambda}) \preceq \widehat{f}(\widehat{x},\widehat{\lambda})$. Este caso também ilustra uma aplicação do Teorema 11.

16-18 de Novemebro de 2016, Campinas - SP, Brasil.

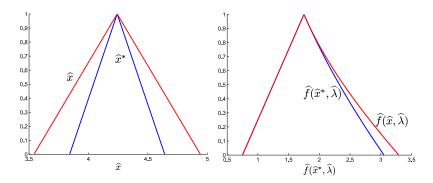


Figura 34: Neste caso, os α -níveis do minimizador estão contidos nos α -níveis da perturbação.

Por fim, apresentamos um caso onde o elemento de maior grau de pertinência é o mesmo para o minimizador e para a perturbação. Este também é um exemplo que ilustra uma aplicação do Teorema 11. Como $[\widehat{f}(\widehat{x},\widehat{\lambda})]_L^{\alpha} = \widehat{f}(\widehat{x}^*,\widehat{\lambda})]_L^{\alpha}$ temos $\widehat{x}_L^{\alpha} < \widehat{x} *_L^{\alpha}$ para qualquer $\alpha \in [0,1]$.

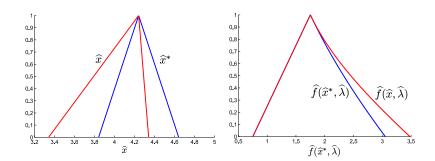


Figura 35: A perturbação é um deslocamento do suporte do minimizador, mantêm o elemento de maior grau de pertinência comum aos dois números fuzzy. A ordem entre as imagens é definida pelo extremo superior dos α -níveis.

Neste exemplo, estamos trabalhando com uma função que possui diversos pontos críticos, fizemos o estudo baseado em ponto de mínimo específico, $x^*=\lambda+\pi.$

16–18 de Novemebro de 2016, Campinas – SP, Brasil.

5 Conclusão

Este texto pode ser separado em duas partes: a primeira traz os conceitos básicos e fundamentais sobre a teoria fuzzy e a segunda parte contempla a proposta de estudo de pontos extremos para funções reais com parâmetros fuzzy.

Em relação à teoria fuzzy apresentamos as definições de α -nível, distância de Pompeiu-Hausdorff, extensão de Zadeh. Apresentamos também o Teorema de Nguyen e sua extensão para espaços de Hausdorff. Realizamos estudos a cerca das funções fuzzy definidas através de funções clássicas com parâmetros fuzzy e por fim estudamos a ideia de derivada e integral dessas funções. Como resultado principal desse estudo apresentamos os Teoremas 5 e 6.

Quanto a otimização de funções fuzzy, apresentamos um estudo sobre as propriedades da extensão de Zadeh da função ponto extremo, denotada por $\rho(\lambda)$. Notamos que, utilizando a relação de ordem definida em 10, podemos concluir que a extensão de Zadeh da função ponto extremo é o minimizador (maximizador) de $\widehat{f}(\widehat{x},\widehat{\lambda})$ no sentido de menor elemento, definido em 17.

Como resultados preliminares, apresentamos os Teoremas 9, 10 e 11 que embasam a demonstração do resultado principal deste texto. Apresentamos como resultado principal o Teorema 12 que garante sob certas condições, que a extensão de Zadeh da função ponto extremo é um minimizador local de $\widehat{f}(\widehat{x},\widehat{\lambda})$.

Por fim, apresentamos dois exemplos que ilustram a aplicação dos principais conceitos e resultados desenvolvidos neste texto.

16–18 de Novemebro de 2016, Campinas – SP, Brasil.

Referências

- [1] ARANA-JIMÉNEZ, M., RUFIÁN-LIZANA, A., CHALCO-CANO, Y., AND ROMÁN-FLORES, H. Generalized convexity in fuzzy vector optimization through a linear ordering. *Information Sciences* 312 (2015), 13–24.
- [2] BEDE, B. Mathematics of fuzzy sets and fuzzy logic. Springer, 2013.
- [3] CHALCO-CANO, Y., LODWICK, W., OSUNA-GÓMEZ, R., AND RUFIÁN-LIZANA, A. The karush-kuhn-tucker optimality conditions for fuzzy optimization problems. *Fuzzy Optimization and Decision Making* (2015), 1–17.
- [4] CHALCO-CANO, Y., ROMÁN-FLORES, H., AND ROJAS-MEDAR, M. A. On the levels of fuzzy mappings and applications to optimization. In *EUS-FLAT Conf.* (2005), Citeseer, pp. 1076–1081.
- [5] DE BARROS, L. C., AND BASSANEZI, R. C. *Tópicos de lógica fuzzy e biomatemática*. Unicamp-IMECC, 2006.
- [6] DE BARROS, L. C., BASSANEZI, R. C., AND TONELLI, P. A. On the continuity of the zadeh's extension. In *Proceedings of the IFSA* (1997), vol. 97.
- [7] DELGADO, M., VILA, M., KAPRZYK, J., AND VERDEGAY, J. Fuzzy optimization: Recent advances. Springer-Verlag New York, Inc., 1994.
- [8] DELGADO, M., VILA, M., AND VOXMAN, W. On a canonical representation of fuzzy numbers. *Fuzzy sets and systems 93*, 1 (1998), 125–135.
- [9] DIAMOND, P., KLOEDEN, P. E., KLOEDEN, P. E., MATHEMATICIAN, A., AND KLOEDEN, P. E. *Metric spaces of fuzzy sets: theory and applications*. World Scientific, 1994.
- [10] DUBOIS, D. J. Fuzzy sets and systems: theory and applications, vol. 144. Academic press, 1980.
- [11] GOMES, L. On fuzzy differential equations. PhD thesis, UNICAMP, 2014.
- [12] KALEVA, O. Fuzzy differential equations. Fuzzy sets and systems 24, 3 (1987), 301–317.
- [13] LIMA, E. L. Curso de Análise, vol. 1. 1976.

16-18 de Novemebro de 2016, Campinas - SP, Brasil.

- [14] NGUYEN, H. T. A note on the extension principle for fuzzy sets. *Journal of Mathematical Analysis and Applications* 64, 2 (1978), 369–380.
- [15] OSUNA-GÓMEZ, R., CHALCO-CANO, Y., HERNÁNDEZ-JIMÉNEZ, B., AND RUIZ-GARZÓN, G. Optimality conditions for generalized differentiable interval-valued functions. *Information Sciences 321* (2015), 136–146.
- [16] OSUNA-GÓMEZ, R., CHALCO-CANO, Y., RUFIÁN-LIZANA, A., AND HERNÁNDEZ-JIMÉNEZ, B. Necessary and sufficient conditions for fuzzy optimality problems. *Fuzzy Sets and Systems* (2015).
- [17] SEIKKALA, S. On the fuzzy initial value problem. *Fuzzy sets and systems* 24, 3 (1987), 319–330.
- [18] SIMMONS, G. F. *Topology and modern analysis*, vol. 1. McGraw-Hill New York, 1963.