Universidade Estadual de Campinas

Workshop in Stochastic Analysis and Applications

Francys Andrews de Souza

Unicamp - Brazil
francysouz@gmail.com

Method to Find a ϵ-Optimal Control Non-Markovian Systems

Abstract

We present a general solution for finding the epsilon-optimal controls for non-Markovian stochastic systems as stochastic differential equations driven by Brownian motion. Our theory provides a concrete description of a rather general class, among the principals, we can highlight financial problems such as portfolio control, hedging, super-hedging, pairs- rading and others. The pathwise analysis was made through a discretization structure proposed by Leão e Ohashi[1] jointly with measurable selection arguments, has provided us with a structure to transform an infinite dimensional problem into a finite dimensional. The theory is applied to stochastic control problems based on path-dependent SDEs where both drift and diffusion components are controlled. We are able to explicitly show optimal control with our method [2].

[1] Leão, D. and Ohashi, A. (2013). Weak approximations for Wiener functionals. Ann. Appl. Probab, 23, 4, 1660-1691
[2] Leão, D. Ohashi, A. and Souza, F. (2017). STOCHASTIC NEAR-OPTIMAL CONTROLS FOR PATHDEPENDENT SYSTEMS. arXiv: 1707.04976.

Universidade Estadual de Campinas

Workshop in Stochastic Analysis and Applications

David Alexander Chipana Mollinedo

UTFPR - Brazil
davida@utfpr.edu.br

$W^{1, p}$-solutions of the transport equation by stochastic perturbation

Abstract

In this work we study the stochastic transport equation given by:

$$
\begin{equation*}
\partial_{t} u(t, x)+\left(b(t, x)+\frac{d B_{t}}{d t}\right) \nabla u(t, x)=0,\left.\quad u\right|_{t=0}=u_{0} \tag{1}
\end{equation*}
$$

where $(t, x) \in[0, T] \times \mathbb{R}^{d}, \omega \in \Omega, b: \mathbb{R}_{+} \times \mathbb{R}^{d} \rightarrow \mathbb{R}^{d}$ is a vector field (drift) and $B_{t}=\left(B_{t}^{1}, \ldots, B_{t}^{d}\right)$ is a standard Brownian motion in \mathbb{R}^{d}. Indeed, considering a Holder continuous, possibly unbounded, divergence-free drift we will prove well-posedness of the Cauchy problem (1), namely, we show existence, uniqueness and strong stability of $W^{1, p}$-weak solutions. In particular, this result implies the persistence of regularity for initial conditions $u_{0} \in W^{1, p}\left(\mathbb{R}^{d}\right)$, with $1<p<\infty$.

