On the existence of self-dual codes invariant under permutation groups

Tendai . M. Mudziiri Shumba

School of Maths, Stats and Computer Science, UKZN

January 2015
Given a group G and a finite field F of characteristic p, p prime, how do we determine the self-dual codes invariant under G of a given length n over F?

A result by Harada et al shows that a special construction $C(G, \Omega) = \langle \text{Fix}(\sigma) | \sigma \in \text{Inv}(G) \rangle^\perp$ is such that every self-orthogonal code C of length $|\Omega|$ is a subcode of $C(G, \Omega)$.

Further every G-invariant self-dual code C of length $|\Omega|$ is such that $C(G, \Omega)^\perp \subseteq C \subseteq C(G, \Omega)$.
Regarding a code as an FG-module, we find all FG modules satisfying the last inclusion using GAP and MAGMA and then filter all such whose dimensions are exactly $|Ω|/2$.

These are the G-invariant self-dual codes of length $Ω$.

$a priori$ one can determine whether there are self-dual codes invariant under a given group using representation and character theory of groups.

However this does not mean the enumeration is easy.
We use this scheme to determine self-dual codes of various lengths invariant under some sporadic simple and almost simple groups as well as symmetric and alternating groups.

We found that there are no self-dual codes of length n invariant under the symmetric group S_n.

Tatenda!