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ABSTRACT: A sequence of metrics {D,.,} is said to be additive and matched to a discrete 
memoryless channel (DMC) if DN is the sum on its coordinates of N single letter metrics 
and if the maximum likelihood decoder for sequences of length N is a minimum 
D,-distance decoder. Necessary and sufficient conditions on the transition probabilities of 
a DMC for the existence of a sequence of additive metrics matched to it are given. In the 
case of the binary channel these are shown to be equivalent to the channel being 
symmetric. Explicit transition probabilities are given for a large class of ternary DMCs with 
an associated sequence of additive matched metrics. The problem solved here may be 
considered a generalization of the problem of finding the DMCs matched to the Lee metric 
solved by Chiang and Wolf in 1971 (2). 

Nomenclature 

A channel alphabet 
A size of A 
AN set of N-tuples over A 
C 

PN 
D 

DN 
P 
P 
E 
> 

block code over A 
transition probability 
a metric on AN 
a metric on AN 
transition probability 
transition probability 
belongs to 
greater than 

measure for sequences of length N 

measure 
matrix 

2 greater than or equal to 
< less than 
5 less than or equal to 
log logarithm to the base e. 

I. Introduction 

In a discrete communication system the time axis is subdivided into succes- 
sive time slots each of duration T s. During any one of these time slots a signal 
Si(t), taken from a finite set {So(t), S,(t), . . . , Shl-l(t)}, is transmitted over a 

t Part of this paper was presented at the 1977 International Symposium on Informa- 
tion Theory, Cornell University, Ithaca, New York. 
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FIG. 1. Discrete channel. 

waveform channel. At the receiver end the demodulator receives a signal r(r) 
[a corrupted version of Si(t)] from which it must decide the value of “i”. This 
being the case we usually coalesce the modulator, the waveform channel and 
the demodulator into one block called a discrete channel (see Fig. 1) 

The discrete channel is characterized by an input alphabet A which we may 

take to be the canonical alphabet (0, 1, . . . . , A- l}, an output alphabet, which 
in this paper we take to be also A but in general is an augmented version of A, 
and a set of transition probabilities p(j/i), j, i E A. If the noise in the waveform 
channel is independent from one time slot to another [for example in the 
additive white Gaussian noise channel (3)] then the resulting discrete chan- 
nel is memoryless. In this case if x =[x(O), x(l), . . . , x(N- l)] and 

Y =[y(O), Y(l), . . . , Y( N 1 are two N-tuples over A then p,(y/x) = - )I 
flf-’ p[y(n)/x(n)]. The study of discrete memoryless channels (DMC) occupies 
a large part of the literature in Information and Communication Theory [see 
for example the recent text by Viterbi and Omura (4)]. 

The object of a communication system is to transmit information reliably 
from a source to a destination. This can be achieved, as shown by Shannon (!I), 
through coding. We transmit then, not individual letters from A, but N-tuples 
x over A, i.e. elements from AN. In this case not all x terms from AN are 

allowed but only those x terms belonging to a subset C = {x0, x1, . . . . , xMII} of 
AN, called a code , are allowed to be transmitted. In this case the output of the 
DMC is an N-tuple y over A and from this y the decoder must decide which xi 

was transmitted. If x was transmitted and i is decoded then the probability of 
error P(E) is simply Pr(i# x) and the objective is to find a code C and a 
decoder which will make P(E) small. The situation just described is depicted in 

Fig. 2. 
For most channels one may restrict the decoder to be a maximum likelihood 

decoder (MLD), i.e. a decoder which decodes y into xk where k is that value of 

i which maximizes 

piV(Ylxi)* (1) 

If the codewords xi are equally likely to be transmitted then the MLD is known 
to be optimum (4). 
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FIG. 2. System with coding. 
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A minimum D-distance decoder (MDD) is one which decodes y into xk 

where k is that value of i which minimizes 

D(y, xi) (2) 

and where D is a metric on A N i.e. D is real valued function such that: 

(1) D(x, y) 2 0 with equality if and only if x = y 

(2) D(x, Y) = WY, XL vx, Y E AN 
(3) Db, z) 5 D(x, Y) + WY, z), Vx, Y, 2 E AN. 

If there exists a metric D for which the minimum D-distance decoder makes 
the same decision as the MLD, i.e. if 

D(x, y) < D(x, z) if and only if p,(x/y) >pN(x/z), (3) 

then D is said to be matched (more precisely matched at N) to the DMC in 
question. Actually our definition differs slightly from that given by Massey (1) 
and is what Chiang and Wolf (2) call strictly matched. For example, the 
Hamming metric is matched to the binary symmetric channel provided its 
cross-over probability, E, is less than i. 

Some of the advantages which accrue from having a metric D matched to a 
DMC are the following. Since we have a metric D (or a distance function) then 
we can associate with a given code C its minimum distance D,,, = min D(x, y) 
minimized over all x, y E C, x# y. We then have at our disposition the bounds 
of Hamming and Gilbert which relate D,,, and the rate of the code. Secondly, 
we can use bounded discrepancy decoding (6), hence reducing the complexity 
of the decoder (over that of MDD) at the cost of an increase in P(E). Lastly, it 
may be possible to develop algorithms for constructing codes with a certain 
guaranteed minimum distance. For these reasons and possibly others it is of 
interest to know under what conditions a DMC has a metric matched to it. 

Chiang and Wolf (2) have determined the class of symmetric DMC for which 
the Lee metric is matched. The Lee distance between the integers i and j, 
OIiIA-l,O~jIA-l,issimply6,(i,j)=min(li-jl,A-li-jl)andtheLee 
distance between two N-tuples x and y is DL(x, y) = IF-’ S,[x(n), y(n)]. The 
Lee metric was introduced by Lee (7) in 1958. 

Before proceeding further we make the following definitions. First a sequ- 
ence of metrics {DN} is said to be matched to a DMC if DN is matched to the 
saidchannelatNforN=1,2,.... A metric D on AN is said to be additive if 

D(x, Y) = f k[x(nL y(n)1 
n=l 

where 6, is a metric on A. 
In this paper we establish a set of necessary and sufficient conditions on the 

transition probabilities of a DMC for the existence of a sequence of additive 
metrics matched to it. This is a generalization of the work of Chiang and Wolf 
since first we do not constrain the channel to be symmetric and secondly we do 
not limit the metric to be the Lee metric. 
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lX Matched Metrics 

First we will show that we can limit ourselves to permutation invariant 
metrics which we define as follows. 

Definition 1. A metric D on AN is said to be permutation invariant if 

D(c% cry) = DC% y) (4) 

for every permutation u on the N objects {1,2, . . . , N} and for every x, y E AN 

where by CTX we mean x[a(l>], x[a(2)], . . . , x[a(N)]. For example, the Ham- 
ming metric is permutation invariant. We have the following. 

Theorem I. There exists a metric matched to a DMC at N if and only if there 
exists a permutation invariant metric matched to the same DMC at N. 

Proof: Let D and D’ be two metrics matched to a DMC at N and let 
D” = D + D’. Then D”(x, z) < D”(y, z) implies that D(x, z) < D(y, z) or 

D’(x, z) <D’(y, z) hence that PN(Z/X) > p~(Z/y). COnVerSdy, if PN(Z/X) > 
&z/y), then D(x,z)<D(y,z) and D’(x,z)<D’(y, z), hence D”(x,z)< 
D”(y, z). Therefore D” is matched to the DMC in question at N; i.e. the sum 
of two matched metrics is a matched metric. Let D be a metric matched to a 
DMC at N and define, for a permutation u on the N objects {1,2, . . . , IV} D, 

by 

D-(x, Y) = D(m ~~1. (5) 

It is an easy matter, and a consequence of the fact that the channel is 
memoryless, to show that D, is a metric matched to the DMC in question at N. 
Suppose then that there exists a metric D matched to a DMC at N. Then D’, 
defined by 

D’(x, Y) = c D,b, Y) (6) 
w 

where in (6) (+ runs over all permutations, is, by our previous discussion, a 
metric matched to the channel in question at N. But 

D’(Tx, my) = 2 D,(Tx, q) = 2 D(mx, my) 
‘7 D 

= 1 D(w o-y) = D’(x, Y) 
(T 

since as u runs over all permutations on N objects so does (+T for any 
permutation T on N objects. Hence D’ is a permutation invariant metric 
matched to the said channel. The converse is obvious. Q.E.D. 

We will first limit ourselves to sequences of metrics {DN} of the form 

DN~, Y) = 2 ‘%X(n), Y(n)] 
n=l 

(7) 

where 6 is a metric on A and then deduce the general case for sequences of 
additive metrics from this one. 
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Let (Y be an A by A real matrix whose (i, j) entry we denote by cx(i, j), 
i=O,l,... ,A-1; j=O,l,... , A- 1. Define on AN the function d by 

d(x, Y) = 2 4x(n), y(n)]. (8) 
n=l 

Then it is quite obvious that d will be a metric if and only if: 

(1) cz( i, j) 2 0 with equality if and only if i = j, 
(2) cx(i, j)= a(j, i) for every i, jEA, 
(3) cz(i, j)+a!(j, k)ra(i, k) for every i, j, kEA. 

It is easy to see that (8) may be written as 

A-1 A-1 

d(x, y)= C C ni,j(x, y)a(i, j) 
i=” j=O 

(9) 

where ni,j(~, y) is the number of values of n for which x(n) = i and y(n) = j. For 
example, if A = 2 and if 

0 1 
o= 1 o’ 

[ 1 (10) 

then d as given by (8) is the usual Hamming metric. Let p(j/i) be the 
probability that j is received given that i was transmitted and assume moreover 

that p(j/i) >O for all i and j in A. Then 

PN(Ylxm) = “gl dY(n)/xmtn)l, 

which may be expressed as 

A-l A-l 

pN(y/d = n n [p(j/i)l”“J’“m’y’ 
i-0 j=O 

(11) 

(12) 

where sj(x,, y) is the number of values of n for which x,(n) = i and y(n) = j. 
Taking logarithms to the base e of both sides of (12) obtains 

log pN(y/x,) = c c ni,j(xm, y) log p(j/i)e (13) 
1 i 

Define ni(y) by 

nj(y) = C %,jtXnz, Y), (14) 

j E A. The quantity nj(y) is simply the number of times that the letter j appears 
in y. We have that 

nj,j(xm2 Y) = nj(Y)- C ni,j(xm9 Y), (15) 
i+j 

which when substituted into (13) and after simple manipulations obtains 

log PN(Y/%n)= c n,(Y) log p(j/j)-cc ni,j(xm, y) log$$. (16) 

i i j 
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Hence a MLD decodes y into xk where k is that value of m which minimizes 

2 C n. .(x,, y) log* 1.1 
1 i P(lI~)' 

If we define the A by A matrix (Y by 

a(i, j)=log$, 

(17) 

(lf9 

then (17) reduces to 

d&x,, Y) = f 4x,(n), y(n)l. 
n=l 

(19) 

By our previous observation dN will be a metric on AN if and only if cy satisfies 

the three conditions listed immediately following (8). We have therefore 
proven the sufficiency part of the following theorem. 

Theorem II. Consider a DMC with input and output alphabets equal to A 
and with transition probabilities p(j/i) > 0 for every i and j in A. There exists a 
sequence of metrics DN of the form 

DN(xy Y)= i s[x(nh y(n)], 
n=l 

where 6 is a metric on A, matched to the said channel if and only if: 

(1) p(j/j)rp(j/i) with equality if and only if i = j, 

p(jlj) p(i/i) 
(2) Y=Y for every i, j in A, 

p(jIr) P(JI) 

(3) p(jli) p(k/k) p(k/k) 
-->- for every i, j, k in A. 
p(j/r) p(klj) - p(kli) 

Moreover if the above conditions are satisfied, then 

DN(x, y) = f log 
pMnMn)l 

n=l pMnYx(n)l' 
(20) 

N= 1,2,. . . , is such a sequence. 
To establish the necessary part of Theorem II suppose 

DN(xv y) = f 6[x(nh yb)l, 
n=l 

S a metric on A, is a sequence of metrics matched to a certain DMC. Let LY and 
dN be defined by (18) and (19) respectively. If (Y (i, j) < 0 for some i and j in A, 
then with N = 1 and the code {i, j}, it follows that if j is received then the MLD 
will decode it into i, but the minimum D,-distance decoder will decode it into j. 
This contradicts the assumption that D, is matched to the DMC at 1. Hence 
tx(i, j) 2 0 for every i, j in A. It is equally easy to show that a(i, j) = 0 if and 
only if i = j. Next, suppose a(i, j) < a(j, i) for some i, j E A. Consider the code 
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{xO=(i, i), x1 =(j, j)} and let y = (i, j) be received. Then d,(x,, y)= cz(i, j)< 
cu(j, i) = d,(x,, y) and consequently the MLD decodes y into x0. On the other 
hand D,(q, y) = D,(x,, y) = 6(i, j) and so the minimum D,-distance decoder 

can be made to decode y into x1 contradicting the fact that it is matched at 2. It 
therefore follows that a(i, j) = a(j, i) for every i and j in A. Finally, suppose 
that for some i, j and k, necessarily distinct, in A, a( i, j) + a(j, k) < a(i, k). Let 
N= 2 and consider the code {x0 = (i, j), x1 = (j, i)} and suppose that y = (j, k) is 
received. Then d,(x,, y) = cx(i, j) + a(j, k) < a(i, k) = d,(x,, k) and so the MLD 
decodes y into x0. However, 

&(x0, y) = a(i, j) + S(j, k) 2 a(i, k) = %x1, Y), 

and so the minimum D,-distance decoder can be made to decode y into x1 
contradicting the fact that it is matched at 2. Hence cz(i, j) + cz(j, k) 2 a( i, k) for 
every i, j and k in A. This completes the proof of the necessary part of 
Theorem II. Note, and we will use this fact shortly, that we have only used the 
fact that D1 is matched at 1 and D2 is matched at 2. 

We turn to the general case of a sequence of additive metrics DN(x, y) = 
Cfzl G’,N)[x(n), y(n)] where a’,“’ is a metric on A, N= 1,2, . . . . Clearly the 

conditions of Theorem II are sufficient to assure the existence of such a 
sequence of metrics matched to a DMC. To prove the converse, suppose that 
there exists a sequence of additive metrics {D,} matched to a certain DMC. 
We may, according to Theorem I, assume that DN is permutation invariant for 

N=l,2,... . Let D,(x, y) = S,[x(l), y(l)]+ 6,[x(2), y(2)] and let (+ be the only 
non-trivial permutation on two objects, then 

Ux(l), yU)l+ %[43> Y(W= DA, Y) = DAm WY) 
= ~1[4% Ycal+M~o), ym1. 

Define 6 on A by 6 = 6i + 6, and let D;(x, y) = 6[x(l), y(l)]+ 6[x(2), y(2)], 
then 

D;(x, Y) = h[xU), y(l)]+ h[x(lL y(l)]+ h[x(2), yG?l+ h[G% yC31 
= =Mx, Y) 

which is clearly matched to the DMC in question. It is an easy matter to show 
that 0; = 6 is matched to the said channel at 1. Hence D;(x, y) = @x(l), y(l)] 
and 

D;b, Y) = i 6[x(n), y(n)1 
n=l 

are matched to the said channel at 1 and 2 respectively. By the remark 
following the proof of the necessity part of Theorem II it follows that the 
conditions of Theorem II must hold. We have therefore proven the following. 

Theorem III. Consider a DMC with input and output alphabets equal to A 
and with transition probabilities p(j/i)>O for every i and j in A. Then there 
exists a sequence of additive metrics matched to this channel if and only if the 
conditions of Theorem II are satisfied. Moreover if those conditions are 

Vol. 309, No. 3, March 1980 
Printed in Northern Ireland 185 



Gbald S&in 

satisfied then (20) specifies a sequence of additive metrics matched to the said 

channel. 
Example 1. Consider the binary channel as shown. 

Condition 1 of Theorem II has it that 1- 6 > E and 1 - E > 6 which is equival- 
ent to E + 6 < 1. From Condition 2 we have 1 - S/E = 1 - E/S which reduces to 
E = 6. Hence there exists a sequence of additive metrics matched to the binary 
DMC if and only if it is symmetric and the cross-over probability E is less than 
i. In this case the metric given by (20) becomes 

Q&, y) = log ( +) d,(x, y) 

where dH is the Hamming distance. The quantity log 1- e/e may be dropped 
to leave the Hamming metric. The fact that the Hamming metric is matched to 
the BSC is known (1). 

To show that the conditions of Theorem II do not always lead to a symmetric 
channel we will consider the case of the ternary channel. Before proceeding to 
this case it will be expedient to introduce a matrix p which we define by 

Hi, j) = p(j/i)lp(j/j) i, j E A. (21) 

The conditions of Theorem II in terms of p are simply: 

(1) 0 < p(i, j) 5 1 with equality if and only if i = j, 
(2) p is symmetric, 
(3) @(i, j)p(j, k)<B(i, kl for every i, j, k in A. 

Since it is clear that 

c p(i, j)p(j/j) = 1 i E A (22) 

then this imposes the further restriction on p that there exists an N-tuple q 
such that 

O<q(j)<l, jEA, and Pq*=(l,l,..., 1)’ (23) 

where t stands for transpose. 

Example 2. Consider for a second example the ternary DMC. In this case we 
do not attempt a complete description of the transition probabilities which 
meet the conditions of Theorem II. Instead we describe a class of p matrices 
whose associated channel does satisfy the conditions of Theorem II. Since /3 
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must be symmetric, we may set 

1 a b 

p= a 1 c 

[ 1 b c 1 

where a, b, c E (0,l). To meet Condition 2 we must have 

acsb, absc and bcsa. 

The determinant of p is calculated to be 

det/3=1+2abc-(a’+b*+c*). 

We now restrict ourselves to the case 

det p>O. 

In this case the inverse of p is 

p-1 =-& 

1-c* bc-a ac-b 

bc-a l-b* ab-c . 

ac-b ab-c 1-a’ 1 

(24) 

(25) 

(26) 

(27) 

(2% 

By (23) we must have a q such that 

p-1 : =qc [I 1 
(29) 

where 0 < q(j) < 1, j = 0, 1,2. In order to see when this will be the case subtract 
det /3 from the sum of the elements of the first row of (28) to obtain 

l-c*+bc-a+ac-b-l-2abs+a*+b*+c* 

which reduces to 

(a - l)(a - bc) + (b - l)(b - ac). (30) 

We already have that a-l<O, b-l<0 and a-bcr0, b-acz0, and one of 
the last inequalities must be strict, therefore (30) is always strictly less than 

zero, hence 

q(0)=(l-c2)+(bc-a)+(ac-b)_,l 

det /3 

and will be greater than zero if 

(l-c’)+(bc-a)+(ac-b)>O 

which reduces to 

l+c>a+b. (31) 

Similarly if l+b>a+c and l+a>b+c, then O<q(j)<l for i=1,2. 
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Let P denote the transition probability matrix whose (i, j) entry is by 
definition p(j/i), then we collect the above results as: 

Theorem IV. For the ternary DMC with transition probability matrix 

1 
(l-c)(l+c-a-b) a(l-b)(l+b-a-c) b(l-a)(l+a-b-c) 

p=- 
det p 

[ 

a(l-c)(l+c-a-b) (l-b)(l+b-a-c) c(l-a)(l+a-b-c) 

b(l-c)(l+c-a-b) c(l-b)(l+b-a-c) (l-a)(l+a-b-c) I 

where : 

(1) det /3 = 1+2abc-(a2+b2+c2)>0, 
(2) acsb, absc, bcsa, 
(3) l+c>a+b, l+b>a+c, l+a>b+c, 

the function defined by (20) gives a sequence of metrics matched to the channel 

in question. 
As a specific example of Theorem IV, consider the /3 matrix 

+j: 1;; :;I. 

It satisfies all the conditions of Theorem IV. Its determinant is 45/64. Comput- 
ing its inverse and then solving for @(O/O), p(l/l), p(2/2)) according to (29) we 

obtain 

(21/45, 2/3, 12/15). 

The corresponding transition probability matrix is 

[ 

21145 l/3 l/5 

21190 213 l/10 , 

21/180 l/12 415 I 

and we note that this does not correspond to a symmetric channel as defined in 

Gallager (3). 

III. Conclusions 

In this paper we have given necessary and sufficient conditions on the 
transition probabilities of a DMC for the existence of a sequence of additive 
matched metrics. We have done this for channels with the same input and 
output alphabet A and such that p(j/i) > 0 for every i and j in A. It is not 
necessary for the input and output alphabets to be same, all that is needed is 
that the number of inputs be equal to the number of outputs, the label we place 
on these is immaterial. 

The work presented in this paper can be pursued in at least two directions. 
First, it would be nice to remove the restriction that the number of inputs and 
outputs be the same. Second, it would be interesting to see what happens if we 
remove the restriction that the metrics be additive. 
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