
Introduction to
Code-Based
Cryptography

Paulo S. L. M. Barreto

Objectives

 1st Part:

 Basics of coding theory (notation).

 Panorama of code-based cryptosystems.

 2nd Part:

 Security considerations.

 Choice of codes.

 Implementation issues.

 Research problems.

CODING THEORY

Linear Codes

 Let 𝑞 = 𝑝𝑚 for some prime 𝑝 and 𝑚 > 0.

 A linear [𝑛, 𝑘]-code C over 𝔽𝑞 is a 𝑘-

dimensional vector subspace of 𝔽𝑞
𝑛.

 Let 𝑑 ∣ 𝑚 and let 𝑠 = 𝑝𝑑, so that 𝔽𝑝 ⊆ 𝔽𝑠 ⊆ 𝔽𝑞.

 An 𝔽𝑠-subfield subcode of a code C is the
subspace of C consisting of all words with

all components in 𝔽𝑠.

Weight and Distance

 The (Hamming) weight of 𝑢 ∈ 𝔽𝑞
𝑛 is the

number of nonzero components of 𝑢:

wt 𝑢 ≔ # 𝑗 𝑢𝑗 ≠ 0 .

 The (Hamming) distance between 𝑢, 𝑣 ∈
𝔽𝑞

𝑛 is dist 𝑢, 𝑣 ≔ wt 𝑢 − 𝑣 .

 The minimum distance of a code C is
dist C ≔ min dist 𝑢, 𝑣 𝑢, 𝑣 ∈ C, 𝑢 ≠ 𝑣 .

 Determining dist C is NP-hard.

Generator and Parity-Check

 A generator matrix for an [𝑛, 𝑘]-code C is a

matrix 𝐺𝑘×𝑛 ∈ 𝔽𝑞
𝑘×𝑛 whose rows form a

basis of C: C = 𝑢𝐺 ∈ 𝔽𝑞
𝑛 𝑢 ∈ 𝔽𝑞

𝑘 .

 A parity-check matrix for the same code is
a matrix 𝐻𝑟×𝑛 ∈ 𝔽𝑞

𝑟×𝑛 whose rows form a

basis for the orthogonal code, with

𝑛 = 𝑟 + 𝑘: C = 𝑣 ∈ 𝔽𝑞
𝑛 𝑣𝐻𝑇 = 0𝑟 .

 Therefore 𝑢𝐺 𝐻𝑇 = 𝑢 𝐺𝐻𝑇 = 0𝑟 for all 𝑢,

i.e. 𝐺𝐻𝑇 = 0𝑘×𝑟.

General & Syndrome Decoding
(GDP/SDP)

 GDP

 Input:
 positive integers n, k, t;

 generator matrix
G  𝔽𝑞

𝑘×𝑛;

 vector c  𝔽𝑞
𝑛.

 Question: ? m  𝔽𝑞
𝑘

such that e := c − mG
has weight wt(e) ≤ t?

 SDP

 Input:
 positive integers n, r, t;

 parity-check matrix
H  𝔽𝑞

𝑟×𝑛;

 vector s  𝔽𝑞
𝑟 .

 Question: ? e  𝔽𝑞
𝑛 of

weight wt(e) ≤ t such
that HeT = sT?

Both are NP-complete!

Code-Based Cryptography

 There exist codes for which efficient
decoders are known.

 Cryptosystems naturally follow if:

the decoding trapdoor can be securely
hidden;

the GDP/SDP remains intractable on
average for those codes.

 (Obs.: from now on, binary codes)

CODE-BASED
CRYPTOSYSTEMS

Chronology

 1978: McEliece (encryption)

 1986: Niederreiter (encryption)

 1993: Stern (identification)

 2001: CFS (signatures)

 2009: Cayrel et al. (id-based
identification)

 … (other, more arcane schemes)

McEliece Cryptosystem

 Key generation:

 Choose a secure, uniformly random 𝑡-error
correcting [𝑛, 𝑘]-code C over 𝔽2, equipped with

a decoding trapdoor, usually a parity-check

matrix 𝐻 ∈ 𝔽2
𝑟×𝑛 of some unique form.

 Compute for C a systematic generator matrix

𝐺 ∈ 𝔽2
𝑘×𝑛.

 Set 𝑠𝑘 = 𝐻 , 𝑝𝑘 = (𝐺, 𝑡).

McEliece Cryptosystem

 “Hey, wait, I know McEliece, and this does not
look quite like it!”

 Textbook version:

 computing some (private, highly structured) 𝐺 from 𝐻

 hide it as 𝐺 = 𝑆𝐺 𝑃 (with 𝑆 invertible, 𝑃 a permutation).

 Does not increase semantic security, is less
efficient, and can actually leak side-channel
information.

 The description here is simpler, more efficient,
and more secure.

McEliece Cryptosystem

 Encryption of a plaintext 𝑚 ∈ 𝔽2
𝑘:

 Choose a uniformly random 𝑡-error vector
𝑒 ∈ 𝔽2

𝑛 and compute 𝑐 ← 𝑚𝐺 + 𝑒 ∈ 𝔽2
𝑛 (IND-CCA2

variant via e.g. Fujisaki-Okamoto).

 Decryption of a ciphertext 𝑐 ∈ 𝔽2
𝑛:

 Compute the (private) syndrome 𝑠 ← 𝑐𝐻 𝑇 = 𝑒𝐻 𝑇
and decode it to obtain 𝑒.

Obtain 𝑚 as the first 𝑘 components of 𝑐 − 𝑒.

McEliece/Fujisaki-Okamoto:
Setup

 Random oracles (message authentication
code and symmetric cipher) a

H ∶ 𝔽2
𝑘 × 0,1 ∗ → ℤ/ 𝑛

𝑡
ℤ,

ℰ ∶ 𝔽2
𝑘 → 0,1 ∗.

 (Un)ranking function 𝒰 ∶ ℤ/ 𝑛
𝑡

ℤ → ℬ𝑡 0𝑛 .

 Decoding algorithm 𝒟 ∶ 𝔽2
𝑟 → ℬ𝑡 0𝑛 such

that 𝒟 𝑒𝐻 𝑇 = 𝑒 for all 𝑒 ∈ ℬ𝑡 0𝑛 .

McEliece/Fujisaki-Okamoto:
Encryption

 Input: message 𝑚 ∈ 0,1 ∗.

 Output: ciphertext 𝑐 ∈ 𝔽2
𝑛 × 0,1 ∗.

 Algorithm:

 𝑧
 $
←𝔽2

𝑘

 ℎ ← H 𝑧,𝑚 , 𝑒 ← 𝒰 ℎ

 𝑤 ← 𝑧𝐺 + 𝑒

 𝑑 ← ℰ 𝑧 ⊕ 𝑚

 𝑐 ← 𝑤, 𝑑

McEliece/Fujisaki-Okamoto:
Decryption

 Input: ciphertext 𝑐 = 𝑤, 𝑑 ∈ 𝔽2
𝑛 × 0,1 ∗.

 Output: message 𝑚 ∈ 0,1 ∗, or rejection.

 Algorithm:

 𝑠 ← 𝑤𝐻 𝑇 , 𝑒 ← 𝒟(𝑠), 𝑧 ← 𝑤 − 𝑒 𝑘

𝑚 ← ℰ 𝑧 ⊕ 𝑑

 ℎ ← H 𝑧,𝑚 , 𝑣 ← 𝒰 ℎ

 accept  𝑣 = 𝑒

Niederreiter Cryptosystem

 Setup:

 Semantically secure symmetric cipher
ℰ ∶ ℬ𝑡 0𝑛 × 0,1 ∗ → 0,1 ∗ ∪ ⊥ .

 Key generation:

 Choose a secure, uniformly random 𝑡-error correcting
[𝑛, 𝑘]-code C ⊂ 𝔽2

𝑛, equipped with a decoding-friendly

parity-check matrix 𝐻 ∈ 𝔽2
𝑟×𝑛 and an efficient decoding

algorithm 𝒟 ∶ 𝔽2
𝑟 → ℬ𝑡 0𝑛 .

 Compute the systematic parity-check matrix 𝐻 ∈ 𝔽2
𝑟×𝑛

such that 𝐻 = 𝑀 𝐻 for some nonsingular matrix 𝑀 ∈ 𝔽2
𝑟×𝑟.

 Set 𝑠𝑘 = (𝑀 ,𝐻), 𝑝𝑘 = (𝐻, 𝑡).

Niederreiter Cryptosystem

 Encryption of plaintext 𝑚 ∈ 0,1 ∗:

 𝑒
 $
←ℬ𝑡 0𝑛

 𝑠 ← 𝑒𝐻𝑇

 𝑑 ← ℰ(𝑒,𝑚)

 𝑐 ← (𝑠, 𝑑)

 Decryption of cryptogram 𝑠, 𝑑 ∈ 𝔽2
𝑟 × 0,1 ∗:

 𝑠 ← 𝑠𝑀 𝑇 // NB: 𝑠 = 𝑒𝐻𝑇 𝑀 𝑇 = 𝑒 𝑀 𝐻
𝑇

= 𝑒𝐻 𝑇
(therefore 𝑠 is 𝐻 -decodable to 𝑒)

 𝑒 ← 𝒟(𝑠)

 𝑚 ← ℰ−1 𝑒, 𝑑

 accept  𝑚 ≠ ⊥

CFS Signatures

 System setup:
 Random oracle H ∶ 0,1 ∗ × ℕ → 𝔽2

𝑟.

 Key generation:

 Choose a secure, uniformly random 𝑡-error correcting
[𝑛, 𝑘]-code Γ ⊂ 𝔽2

𝑛 with a high density of decodable
syndromes, equipped with a decoding-friendly parity-

check matrix 𝐻 ∈ 𝔽2
𝑟×𝑛 and an efficient decoding

algorithm 𝒟 ∶ 𝔽2
𝑟 → ℬ𝑡 0𝑛 .

 Compute the systematic parity-check matrix 𝐻 ∈ 𝔽2
𝑟×𝑛

such that 𝐻 = 𝑀 𝐻 for some nonsingular matrix 𝑀 ∈ 𝔽2
𝑟×𝑟.

 Set 𝑠𝑘 = (𝑀 ,𝐻), 𝑝𝑘 = (𝐻, 𝑡).

CFS Signatures

 Signing a message 𝑚 ∈ 0,1 ∗:
 Find 𝑖 ∈ ℕ such that, for 𝑐 ← H 𝑚, 𝑖 and 𝑐 ← 𝑐𝑀 𝑇, 𝑐 is 𝐻 -

decodable.
 𝑒 ← 𝒟(𝑐)

 𝜎 ← 𝑒, 𝑖 // NB: 𝑐𝑀 𝑇 = 𝑐 = 𝑒𝐻 𝑇 = 𝑒 𝑀 𝐻
𝑇
= 𝑒𝐻𝑇 𝑀 𝑇, hence

𝑐 = 𝑒𝐻𝑇, i.e. 𝑐 is the (public) 𝐻-syndrome of 𝑒.

 Verifying a signature 𝜎 = 𝑒, 𝑖 ∈ ℬ𝑡 0𝑛 × ℕ:

 𝑐 ← 𝑒𝐻𝑇
 accept  𝑐 = H 𝑚, 𝑖 .

CFS Signatures

 Best known codes for CFS instantiation:
Goppa codes (highest density of decodable
syndromes).

 Bad news:

 number of possible hash values: 2𝑟 ≈ 𝑛𝑡

 number of decodable syndromes: ≈ 𝑛
𝑡

≈
𝑛𝑡

𝑡!
.

 probability of finding a codeword of weight 𝑡:
≈ 1/𝑡!

 expected value of steps to sign: ≈ 𝑡! 

CFS Signatures

 If the 𝑛-bit error 𝑒 of weight 𝑡 is
encoded via permutation ranking,
the signature length is ≈ lg 𝑛𝑡/𝑡! +
lg 𝑡! = 𝑡 lg 𝑛 ≈ 𝑚𝑡.

 Public key is huge: 𝑚𝑡𝑛 bits.

 Key sizes for usual sec levels are
several MiB long, coupled with very
long processing times 

CFS Signatures

 Bleichenbacher’s attack:
Wagner’s generalized
(3-way) birthday attack
 security level lower
than expected.

 Larger key sizes, longer
signature generation.

 Dyadic keys: shorter by
a factor 𝑢 = largest
power of 2 dividing 𝑡,
but longer signature
generation times.

m t=9 t=10 t=11 t=12

15 60.2 63.1 67.2 81.5

16 63.3 66.2 71.3 85.6

17 66.4 69.3 75.4 89.7

18 69.5 72.4 79.5 93.7

...

22 81.7 84.6 95.8 110.0

m t=9 t=10 t=11 t=12

15 0.7

16 1.5

17 3.2

18 6.75

...

22 99 110 121 132

(sizes in MiB)

Stern Identification

 𝐻
.$
←𝔽2

𝑟×𝑛: uniformly random, systematic
binary parity-check matrix (e.g. 𝑛 = 2𝑟).

 Gaborit-Girault improvement: uniformly
random quasi-cyclic 𝐻 = [𝐶 ∣ 𝐼], with

𝐶𝑖𝑗 ≔ ℎ 𝑗−𝑖 mod 𝑟 for some ℎ
.$
←𝔽2

𝑟.

 Key pair:

Private key: 𝑒
.$
←ℬ𝑡 0𝑛 .

Public key: 𝑠 ← 𝑒𝐻𝑇 ∈ 𝔽2
𝑟.

Stern Identification

 Commitment:

The prover chooses a uniformly random

word 𝑢
.$
←𝔽2

𝑛 and a uniformly random

permutation 𝜎
.$
←𝑆𝑛 on 0…𝑛 − 1 .

The prover sends to the verifier:

 𝑐0 ← H 𝜎 𝑢 ,

 𝑐1 ← H 𝜎 𝑒 + 𝑢 , and

 𝑐2 ← H 𝜎 ∣∣ 𝑢𝐻𝑇 .

Stern Identification

 Challenge & Response:

The verifier sends a uniformly random

𝑏
.$
← 0, 1, 2 to the prover.

The prover responds by revealing:

 𝑒 + 𝑢 and 𝜎 if 𝑏 = 0;

 𝑢 and 𝜎 if 𝑏 = 1;

 𝜎 𝑒 and 𝜎 𝑢 if 𝑏 = 2.

Stern Identification

 Verification:

 The verifier verifies that:

 𝑐1 and 𝑐2 are correct if 𝑏 = 0 (noticing that 𝑢𝐻𝑇 =
𝑒 + 𝑢 𝐻𝑇 + 𝑒𝐻𝑇 = 𝑒 + 𝑢 𝐻𝑇 + 𝑠);

 𝑐0 and 𝑐2 are correct if 𝑏 = 1;

 𝑐0 and 𝑐1 are correct and wt 𝜎 𝑒 = 𝑡 if 𝑏 = 2 (noticing

that 𝜎 𝑒 + 𝑢 = 𝜎 𝑒 + 𝜎 𝑢).

 The probability of cheating in this ZKP is 2/3.
Repeating lg 𝜀 /(1 − lg 3) times reduces the
cheating probability below 𝜀.

SFS Signatures

 Commitments:
for 𝑖 ← 0…𝑁 − 1 do

 𝑢𝑖

.$
←𝔽2

𝑛, 𝜎𝑖

.$
←𝑆𝑛

 𝑐𝑖,0 ← H 𝜎𝑖 𝑢𝑖

 𝑐𝑖,1 ← H 𝜎𝑖 𝑒 + 𝑢𝑖

 𝑐𝑖,2 ← H 𝜎𝑖 ∣∣ 𝑢𝑖𝐻
𝑇

end

 Challenges:
𝑏0, … , 𝑏𝑁−1 ← H∗ 𝑀; 𝑐0,0 𝑐0,1 𝑐0,2; … ; 𝑐𝑁−1,0 𝑐𝑁−1,1 𝑐𝑁−1,2

SFS Signatures

 Responses:
for 𝑖 ← 0…𝑁 − 1 do

 if 𝑏𝑖 = 0 then 𝜌𝑖 ← 𝑐𝑖,0; 𝑒 + 𝑢𝑖 ; 𝜎𝑖

 if 𝑏𝑖 = 1 then 𝜌𝑖 ← 𝑐𝑖,1; 𝑢𝑖; 𝜎𝑖

 if 𝑏𝑖 = 2 then 𝜌𝑖 ← 𝑐𝑖,2; 𝜎𝑖 𝑢𝑖 ; 𝜎𝑖 𝑒

end

 Signature:
Σ ← 𝑏0, 𝜌0; … ; 𝑏𝑁−1, 𝜌𝑁−1

SFS Signatures

 Verification:
for 𝑖 ← 0…𝑁 − 1 do

 if 𝑏𝑖 = 0 then

 𝑐𝑖,1 ← H 𝜎𝑖 𝑒 + 𝑢𝑖 , 𝑐𝑖,2 ← H 𝜎𝑖 ∣∣ (𝑒 + 𝑢𝑖)𝐻
𝑇 + 𝑠

 if 𝑏𝑖 = 1 then

 𝑐𝑖,0 ← H 𝜎𝑖 𝑢𝑖 , 𝑐𝑖,2 ← H 𝜎𝑖 ∣∣ 𝑢𝑖𝐻
𝑇

 if 𝑏𝑖 = 2 then

 𝑐𝑖,0 ← H 𝜎𝑖 𝑢𝑖 , 𝑐𝑖,1 ← H 𝜎𝑖 𝑒 + 𝜎𝑖 𝑢𝑖

 if wt 𝜎𝑖 𝑒 ≠ 𝑡 then “reject”

end

SFS Signatures

 Verification:
𝑏0

′ , … , 𝑏𝑁−1
′ ← H∗ 𝑀; 𝑐0,0 𝑐0,1 𝑐0,2; … ; 𝑐𝑁−1,0 𝑐𝑁−1,1 𝑐𝑁−1,2

if 𝑏0
′ , … , 𝑏𝑁−1

′ ≠ 𝑏0, … , 𝑏𝑁−1 then “reject” else “accept”

 Signature size?

 𝑁 elements of form 𝑏𝑖 , 𝑐𝑖,𝑏𝑖
; 𝑣𝑖 ; 𝜎𝑖 ∈ 0…2 ×

0…2ℎ − 1 × 𝔽2
𝑛 × 𝑆𝑛 or 𝑏𝑖 , 𝑐𝑖,𝑏𝑖

; 𝑣𝑖 ; 𝜎𝑖 𝑒 ∈

0…2 × 0…2ℎ − 1 × 𝔽2
𝑛 × ℬ𝑡(0

𝑛).

 Hence ≈ 1.36ℎ + 𝑁 ⋅ ℎ + 𝑛 + (2𝑛 + 𝑡)/3 lg 𝑛 bits.

AGS Identification

 Aguilar-Gaborit-Schrek: identification in
the GDP (rather than SDP) setting.

 𝐺
.$
←𝔽2

𝑘×𝑛: uniformly random, systematic,

quasi-cyclic binary generator matrix
(usually 𝑛 = 2𝑘, 𝐺 = [𝐼 ∣ 𝐶𝑇]).

 Key pair:

 Private key: 𝑒
.$
←ℬ𝑡 0𝑛 , 𝑚

.$
←𝔽2

𝑘.

 Public key: 𝑐 ← 𝑚𝐺 + 𝑒 ∈ 𝔽2
𝑛.

AGS Identification

 Commitment 1:

The prover chooses a uniformly random

word 𝑢
.$
←𝔽2

𝑘 and a uniformly random

permutation 𝜎
.$
←𝑆𝑛 on 0…𝑛 − 1 .

The prover sends to the verifier:

 𝑐0 ← H 𝜎 ,

 𝑐1 ← H 𝜎 𝑢𝐺 .

AGS Identification

 Challenge 1:

The verifier chooses a uniformly random

𝑟
.$
←{0,… , 𝑘 − 1} and sends it to the

prover.

 Commitment 2:

The prover sends to the verifier:

 𝑐2 ← H 𝜎 𝑢𝐺 + rot𝑟 𝑒

AGS Identification

 Challenge 2 & Response:

The verifier sends a uniformly random

𝑏
.$
← 0, 1 to the prover.

The prover responds by revealing:

 𝜎 and rot𝑟(𝑚) + 𝑢 if 𝑏 = 0;

 𝜎 𝑢𝐺 and 𝜎 rot𝑟 𝑒 if 𝑏 = 1.

AGS Identification

 Verification:

 The verifier verifies that:

 𝑐0 and 𝑐2 are correct if 𝑏 = 0, noticing that
rot𝑟 𝑚 + 𝑢 𝐺 = rot𝑟 𝑚𝐺 + 𝑢𝐺 = rot𝑟 𝑚𝐺 + 𝑒 + rot𝑟 𝑒 +

𝑢𝐺 = rot𝑟 𝑐 + 𝑢𝐺 + rot𝑟(𝑒), hence 𝜎 𝑢𝐺 + rot𝑟 𝑒 =

𝜎 rot𝑟 𝑚 + 𝑢 𝐺 + rot𝑟 𝑐 ;

 𝑐1 and 𝑐2 are correct and wt 𝜎 rot𝑟 𝑒 = 𝑡, if 𝑏 = 1.

 The probability of cheating in this ZKP is 1/2.
Repeating −lg 𝜀 times reduces the cheating
probability below 𝜀.

Stern & AGS Keys

 Gaborit-Girault propose 𝑟 = 347, 𝑡 = 76 to achieve
283 security.

 Modern recommendation would be 𝑟 = 449, 𝑡 = 99
for 280 security, or (better yet) 𝑟 = 727, 𝑡 = 160 for
2128 security.

 Private and public keys are very short
(respectively 2𝑟 and 𝑟 bits long).

 Signatures are possible via the Fiat-Shamir
heuristics, but rather large (e.g. ≈ 122 KiB at 280
security).

Identity-Based Identification

 Cayrel et al.: Goppa trapdoor for the Stern
scheme combined with CFS signatures.

 Stern parameter 𝐻 is the KGC’s CFS public key.

 Stern public key is the user’s identity mapped to
a decodable syndrome (N.B. necessary to
increase weight to cover radius 𝑡 + 𝛿, otherwise
the scheme is not id-based).

 Identity-based private key is a CFS signature of
the user’s identity, i.e. an error vector of weight
𝑡 + 𝛿 computed by the KGC.

Hashing

 Cryptographic hash functions must
be preimage and collision resistant.

 FSB (Fast Syndrome-Based hash)
and RFSB (Really Fast Syndrome-
Based hash): collision resistance
related to the hardness of the SDP.

 In practice, slow, and security not
particularly impressive 

QUESTIONS?

Objectives

 1st Part:

 Basics of coding theory (notation).

 Panorama of code-based cryptosystems.

 2nd Part:

 Security considerations.

 Choice of codes.

 Implementation issues.

 Research problems.

INFORMATION SET
DECODING

Definition: IS

 Let 𝒞 ≔ 𝑢𝐺 ∈ 𝔽2
𝑛 𝑢 ∈ 𝔽2

𝑘 be a linear 𝑡-error

correcting code specified by a generator

matrix 𝐺 ∈ 𝔽2
𝑘×𝑛, and let 𝑐 = 𝑢𝐺 + 𝑒 be a

blurry codeword where wt 𝑒 ≤ 𝑡.

 An information set for the error pattern 𝑒 is
a subset 𝒥 ⊆ 0,… , 𝑛 − 1 such that 𝑒𝑗 = 0 for

all 𝑗 ∈ 𝒥.

 In other words, 𝑐𝑗 is correct at all positions

indicated by 𝒥.

Decoding with an IS

 Let #𝒥 = 𝑘, and let 𝑐 𝒥 ∈ 𝔽2
𝑘 and 𝐺 𝒥 ∈ 𝔽2

𝑘×𝑘

denote the restrictions of 𝑐 and 𝐺 to the
columns indicated in 𝒥. Then 𝑐 𝒥 = 𝑢𝐺 𝒥.

 If 𝐺 𝒥 is invertible, then 𝑢 = 𝑐 𝒥 ⋅ 𝐺 𝒥
−1

.

 The process of recovering 𝑢 from 𝑐 and 𝐺

with this method is called information set
decoding.

Cost Estimate

 Let 𝒥 be an IS with #𝒥 = 𝑠. The probability
that 𝒥 ∪ 𝑗 remains an IS for some
uniformly random 𝑗 ∈ 0,… , 𝑛 − 1 ∖ 𝒥 is
1 − 𝑡/ 𝑛 − 𝑠 , since 𝑡 out of the 𝑛 − 𝑠 values
in 0,… , 𝑛 − 1 ∖ 𝒥 correspond to error
positions.

 Hence the probability that a uniformly
random 𝒥 ⊆ 0,… , 𝑛 − 1 with #𝒥 = 𝑘 is an IS

is 1 − 𝑡/ 𝑛 − 𝑠0≤𝑠≤𝑘−1 .

Cost Estimate

 The decoding cost (or work factor, 𝑊𝐹) is
slightly increased (by a factor 1/𝑄2 where
𝑄2 ≈ 0.2887881) due to the need that 𝐺 𝒥 be
invertible, i.e.

𝑊𝐹 𝑛, 𝑘, 𝑡 = 1/𝑄2 1 − 𝑡/ 𝑛 − 𝑠0≤𝑠≤𝑘−1 .

 Examples:
 lg 𝑊𝐹 2304, 1280, 64 ≈ 78

 lg 𝑊𝐹 4096, 2048, 128 ≈ 132.5

 lg 𝑊𝐹 8192, 4096, 256 ≈ 263.5

Cost Estimate

 This estimate assigns unit cost to the whole
check that a certain IS leads to a solution.

 Dynamic programming techniques (as well
as implementation cleverness) make the
amortized cost of each step very light.

Other Attacks

 Message recovery vs. key recovery.

 Finding low-weight codewords in related
codes (e.g. in the dual).

 Exploiting the algebraic structure (e.g.
properties of the underlying field or
mapping to other computational problems
like solving MQ systems).

 Exploiting symmetries (e.g. quasi-cyclic).

 Implementation attacks (e.g. timing).

CHOOSING THE CODE

Which Code to Choose?

 Not all codes are suitable for
cryptography.

 Needed: code equipped with a trapdoor
that can be easily and securely hidden.

 Most popular choice: Goppa codes.
… except for a few weak cases, e.g. binary

Goppa polynomial (Loidreau-Sendrier 1998).
… distinguishing a Goppa code from a random

code of the same length can be done in 𝑂 𝑛2
time (Márquez-Corbella, Martínez-Moro and
Pellikaan 2013).

Goppa Codes

 Let 𝑔 𝑥 ≔ 𝑔𝑖𝑥
𝑖𝑡

𝑖=0 ∈ 𝔽2𝑚[𝑥] be a monic

(𝑔𝑡 = 1) polynomial.

 Let 𝐿 ≔ 𝐿0, … , 𝐿𝑛−1 ∈ 𝔽2𝑚
𝑛 (all distinct) such

that 𝑔 𝐿𝑗 ≠ 0 for all 𝑗. This is called the

support.

 Properties:

 Easy to generate and plentiful.

 Usually 𝑔 𝑥 is chosen to be irreducible; if so,
𝔽 2𝑚 𝑡 = 𝔽2𝑚 𝑥 /𝑔 𝑥 .

Goppa Codes

 The Goppa syndrome function is the
linear map 𝑆 ∶ 𝔽2

𝑛 → 𝔽2𝑚 𝑥 /𝑔(𝑥):

𝑆𝑐 𝑥 ≔
𝑐𝑖

𝑥−𝐿𝑖

𝑛−1
𝑖=0 =

1

𝑥−𝐿𝑖
𝑐𝑖≠0 mod 𝑔 𝑥 .

 The Goppa code Γ(𝐿, 𝑔) is the kernel
of the Goppa syndrome function, i.e.
Γ(𝐿, 𝑔) = 𝑐 ∈ 𝔽2

𝑛 𝑆𝑐 𝑥 ≡ 0 .

Distance of a Goppa code

 In general the minimum distance of Γ(𝐿, 𝑔)
is only known to be d ≥ t + 1.

 In the binary case when g(x) is square-
free (e.g. when g(x) is irreducible) the
minimum distance becomes d ≥ 2t + 1.

 How do we correct errors/decode?

Error Locator Polynomial

 Efficient decoding procedure for
known g and L via the (Patterson)
error locator polynomial:

𝜎 𝑥 ≔ 𝑥 − 𝐿𝑖𝑒𝑖≠0 ∈ 𝔽2𝑚[𝑥]/𝑔(𝑥).

 Property: 𝜎 𝐿𝑖 = 0 ⇔ 𝑒𝑖 = 1.

The Key Equation

 𝜎 𝑥 = 𝑥 − 𝐿𝑖
𝑒𝑖

𝑖 .

 𝜎′ 𝑥 = 𝑒𝑖 𝑥 − 𝐿𝑖
𝑒𝑖−1

𝑖 𝑥 − 𝐿𝑗
𝑒𝑗

𝑗≠𝑖 =

𝑒𝑖

𝑥−𝐿𝑖
 𝑥 − 𝐿𝑗

𝑒𝑗
𝑗𝑖 =

𝑒𝑖

𝑥−𝐿𝑖
𝑖 𝜎 𝑥 .

 ∴ 𝜎′ 𝑥 = 𝜎 𝑥 𝑆𝑒 𝑥 mod 𝑔 𝑥 .

Error Correction

 Let 𝑚 ∈ Γ(𝐿, 𝑔), let 𝑒 ∈ 𝔽2
𝑛 be an error vector

of weight 𝑤𝑡 𝑒 ≤ 𝑡, and 𝑐 = 𝑚 ⊕ 𝑒.

 Compute the syndrome of 𝑒 through the
relation 𝑆𝑒 𝑥 = 𝑆𝑐 𝑥 .

 Compute the error locator polynomial 
from the syndrome.

 Determine which 𝐿𝑖 are zeroes of , thus
retrieving 𝑒 and recovering 𝑚.

Error Correction

 Let 𝑠 𝑥 ≔ 𝑆𝑒 𝑥 . If 𝑠 𝑥 ≡ 0, nothing to do
(no error), otherwise 𝑠 𝑥 is invertible.

Extended Euclid!

 Thus 𝑏 𝑥 2 = 𝑎 𝑥 2 + 𝑥𝑏 𝑥 2 𝑠(𝑥), hence

𝑎 𝑥 = 𝑏 𝑥 𝑣(𝑥) with 𝑣 𝑥 = 𝑥 + 1/𝑠(𝑥) mod 𝑔(𝑥).

Extended Euclid!

 Property #1: 𝜎 𝑥 = 𝑎 𝑥 2 + 𝑥𝑏 𝑥 2.

 Property #2: 𝜎′ 𝑥 = 𝑏 𝑥 2.

 Property #3: 𝜎′ 𝑥 = 𝜎 𝑥 𝑠 𝑥 .

Decoding a binary Goppa
syndrome

 Given: 𝑣(𝑥), 𝑔 𝑥 ∈ 𝕂[𝑥]

 Find: 𝑎(𝑥), 𝑏(𝑥), 𝑓 𝑥 ∈ 𝕂[𝑥]

 Where: 𝑏 𝑥 𝑣 𝑥 + 𝑓 𝑥 𝑔 𝑥 = 𝑎(𝑥)

 Thus 𝑎 𝑥 = 𝑏 𝑥 𝑣 𝑥 mod 𝑔 𝑥 , i.e.
𝑎 𝑥 = 𝑏 𝑥 𝑣 𝑥 ∈ 𝕂[𝑥]/𝑔 𝑥 .

 Conditions:

deg 𝑎 ≤ ⌊𝑡/2⌋, deg 𝑏 ≤ ⌊(𝑡 − 1)/2⌋.

Paterson’s decoding
algorithm

 𝐹 ← 𝑣, 𝐺 ← 𝑔, 𝐵 ← 1, 𝐶 ← 0, 𝑡 ← deg 𝑔
 while deg(𝐺) > ⌊𝑡/2⌋ do
 𝐹 ↔ 𝐺, 𝐵 ↔ 𝐶
 while deg 𝐹 ≥ deg(𝐺) do
 𝑗 ← deg 𝐹 − deg 𝐺 , ℎ ← 𝐹deg 𝐹 /𝐺deg 𝐺

 𝐹 ← 𝐹 − ℎ 𝑥𝑗
𝐺, 𝐵 ← 𝐵 − ℎ 𝑥𝑗 𝐶

 end
 end
 𝜎 𝑥 ← 𝐺 𝑥 2 + 𝑥𝐶 𝑥 2
 return 𝜎 // error locator polynomial

The Key Size Problem

 Using systematic Goppa codes, key
size is only 𝑘 × 𝑛 − 𝑘 bits. And yet…

level m n k t key size

280 11 1893 1431 42 661122

2128 12 3307 2515 66 1991880

2256 13 7150 5447 131 9276241

Compact Goppa Codes?

 Recap: a Goppa code is entirely defined by:

 a monic polynomial 𝑔 𝑥 ∈ 𝔽𝑞[𝑥] of degree 𝑡 with 𝑞 = 2𝑚,

 a sequence 𝐿 ∈ 𝔽𝑞
𝑛 of distinct elements with 𝑔 𝐿 ≠ 0.

 Features:

 good error correction capability (all 𝑡 design errors in the
binary case).

 withstood cryptanalysis quite well.

 Goal: replace the large 𝑂 𝑛2 -bit representation
by a compact one (like above!).

Cauchy Matrices

 A matrix 𝑀 ∈ 𝕂𝑡×𝑛 over a field 𝕂 is called a
Cauchy matrix iff 𝑀𝑖𝑗 = 1/(𝑧𝑖 − 𝐿𝑗) for disjoint

sequences 𝑧 ∈ 𝕂𝑡 and 𝐿 ∈ 𝕂𝑛 of distinct elements.

 Property: any Goppa code where 𝑔(𝑥) is square-

free admits a parity-check matrix in Cauchy form
[TZ 1975].

 Compact representation, but:

 code structure is apparent,

 usual tricks to hide it destroy the Cauchy structure.

Dyadic Matrices

 Let r be a power of 2. A matrix 𝐻 ∈ ℛ𝑟×𝑟
over a ring ℛ is called dyadic iff 𝐻𝑖𝑗 = ℎ𝑖⊕𝑗

for some vector ℎ ∈ ℛ𝑟.

h

Hij = hi  j

Dyadic Matrices

 Dyadic matrices form a subring of ℛ𝑟×𝑟
(commutative if ℛ is commutative).

 Compact representation: 𝑂(𝑟) rather than
𝑂(𝑟2) space.

 Efficient arithmetic: multiplication in time
𝑂(𝑟 lg 𝑟) time via fast Walsh-Hadamard
transform, inversion in time 𝑂(𝑟) in
characteristic 2.

 Idea: find a dyadic Cauchy matrix.

Quasi-Dyadic Codes

 Theorem: a dyadic Cauchy matrix is only
possible over fields of characteristic 2, and
any suitable ℎ ∈ 𝔽𝑞

𝑛 satisfies

 with 𝑧𝑖 = 1/ℎ𝑖, 𝐿𝑗 = 1/ℎ𝑗 − 1/ℎ0, and
𝐻𝑖𝑗 = ℎ𝑖⊕𝑗 = 1/(𝑧𝑖 − 𝐿𝑗).

Quasi-Dyadic Codes

 Complexity: key generation
𝑂 𝑛 lg3 𝑛 , encoding/decoding
𝑂 𝑛 lg 𝑛 .

 Reasonably short keys (11968 bits for

security 280, 19968 bits for security 2128).

 Caveat: security still under scrutiny
(e.g. folding attacks FOPPT 2014).

Alternatives?

 Most alternant codes have been
shown to contain weaknesses.

 Goppa codes are popular but not
quite friendly to key size reduction.

 Recent trend: graph-based codes,
specifically Gallager (LDPC) codes.

Gallager (LDPC) Codes

 Extremely sparse parity-check
matrices, e.g. 𝐻 ∈ 𝔽2

10000×20000 with
∼ 3 nonzero components at randomly
chosen positions on each column.

 Higher error-correction capability
than Goppa codes (almost 3 times in
the above example).

Gallager (LDPC) Codes

 Symbols in red affect parity bit in
green through the parity-checks in
blue.

𝐻

𝑐

𝑠T = 𝐻 𝑐T

Gallager (LDPC) Codes

 If the green parity bit is 1, at least
one of the red bits is wrong.

𝐻

𝑐

𝑠T = 𝐻 𝑐T

Gallager (LDPC) Codes

 Symbol in red affects parity bits in
green through the parity-checks in
blue.

𝐻 𝑠T = 𝐻 𝑐T

𝑐

Gallager (LDPC) Codes

 If the red bit is wrong, some of the
green parity bits will likely reveal it.

𝐻 𝑠T = 𝐻𝑐T

𝑐

Gallager (LDPC) Codes

 Bit flipping:

Determine which symbol bits are the
most suspect (i.e. influence the largest
number of parity bits in error) by
counting how many parity errors it
influences via the parity-check matrix.

Flip those bits (0 ↔ 1).

Repeat until no parity error is left (or
max number of attempts is exceeded).

Bit-flipping

 Trouble: 𝑛 symbol bits  𝑛 counters.

 More trouble: one pass to count and
find the maximum count value,
another pass to flip most suspect bits
and recompute affected parity-check
bits.

 Memory-consuming and slow.

MDPC Codes

 LDPC codes are susceptible to key recovery
attacks: by definition, dual codes contain
too sparse words of small 𝑂 1 weight.

 Idea: set density 𝑤 and number of errors 𝑡
near the decodability threshold 𝑂 𝑛 for

security, but still within the range of bit-
flipping or belief-propagation.

 Moderate-density parity-check (MDPC)
codes (Misoczki et al. 2013).

Short Keys

 Quasi-cyclic MDPC codes (QC-MDPC)

 The trapdoor (private) 𝑟 × 𝑛 parity-
check matrix consists of 𝑛0 blocks of
sparse circulant 𝑟 × 𝑟 matrices,

𝐻 = [𝐻 0 ∣ ⋯ ∣ 𝐻 𝑛0−1], with 𝑛 = 𝑛0𝑟:

𝐻

𝐻 0 … 𝐻 𝑛0−1 = 𝐼

NB: sparse!

Short Keys

 The systematic (public) parity-check
matrix consists of 𝑛0 blocks of dense
circulant matrices, 𝐻 = [𝐻0 ∣ ⋯ ∣ 𝐻𝑛0−1],

with 𝐻𝑖 = 𝐻𝑛0−1
−1 𝐻𝑖

∗, 0 ≤ 𝑖 < 𝑛0 − 1:

𝐻∗

𝐻0 𝐻𝑛0−1 = 𝐼 …

NB: dense!

Short Keys

 Far shorter public (and private) keys
than previous proposals:

level n k t w QC-MDPC Goppa shrink RSA

280 9602 4801 84 90 4801 661122 138× 1024

2128 19714 9857 134 142 9857 1991880 202× 3072

2256 65542 32771 264 274 32771 9276241 283× 15360 .

NB: key size is not the

only metric (e.g. RSA

implementation may just

run out of ROM space

on many IoT platforms)

.

Implementation

 Storage: 𝑂(𝑛) → 𝑂(1)

 Counter update passes: 2 → 1

 Overall failure rate: 2−20 → ≈ 0
&

 Small executable footprint &
still good performance

 Folklore(?) algorithm, useful
for constrained platforms

 On-the-fly counter update

 Onset threshold estimation

 Threshold fine tuning &
decoding failure handling

 Simple supporting algorithms
e.g. sparse convolution

 Space-efficient convolution
inverse

Implementation

 Portable C

 Niederreiter code/key generation,
encoding/encryption and
decoding/decryption (including
permutation ranking/unranking)

 PIC24FJ32GA002-I/SP:

 8 KiB RAM

 32 KiB ROM

 TCP/IP (hence, IoT-ready)

Implementation

 All-in-one (full functionality):

5.6 KiB ROM, 2.6 KiB RAM

key generation ~0.9 s,
encoding ~25 ms,
decoding ~2.8 s.

 Split implementation:

1.5 KiB RAM (key generation)

<1 KiB RAM (encryption/decryption)

WHAT NEXT?

Limitations and trends

 Codes are fine for encryption 👍

 …but notoriously troublesome for most
other applications 

 Very recent research trend: other notions
of distance, e.g. rank metric.

 NB: the distance notion is exactly what
distinguishes between codes and lattices!

 Advanced functionalities (blind signatures,
identity-based encryption)?

QUESTIONS?

APPENDIX

Ranking and Unranking
Permutations

 Some SDP-based cryptosystems
represent messages as 𝑡-error
vectors, i.e. vectors (of length 𝑛)
with Hamming weight 𝑡.

 Mapping messages between error
vector and normal form involves
permutation ranking and unranking.

Ranking and Unranking
Permutations
 Let ℬ𝑡 0𝑛 = {𝑢 ∈ 𝔽2

𝑛 ∣ wt 𝑢 = 𝑡}, with

cardinality 𝑟 = 𝑛
𝑡

≈
𝑛𝑡

𝑡!

 A ranking function is a mapping rank:
ℬ𝑡 0𝑛 → {0…𝑟 − 1} which associates a
unique index in {0… 𝑟 − 1} to each element
in ℬ𝑡 0𝑛 . Its inverse is called the

unranking function.

 Rank size: lg 𝑟 ≈ 𝑡(lg 𝑛 − lg 𝑡 + 1) bits.

Ranking and Unranking
Permutations

 Ranking and unranking can be done in
O(n) time (Ruskey 2003, algorithm 4.10).

 Computationally simplest ordering: colex.

 Definition: a1a2…an < b1b2…bm in colex
order iff an…a2a1 < bm…b2b1 in lex order.

Colex Ranking

 Let 𝒜𝑡 𝑛 ≔ {𝑎1 …𝑎𝑡 ∣ 0 ≤ 𝑎1 ≤ ⋯ ≤ 𝑎𝑡 < 𝑛}.

 Sum of binomial coefficients:

rank 𝑎1 …𝑎𝑡 ≔ 𝑎𝑗

𝑗
𝑡
𝑗=1

 Implementation strategy: precompute a
table of binomial coefficients.

Colex Unranking

input: 𝑟 // permutation rank
for 𝑗 ← 𝑡 downto 1 {

 // find largest 𝑝 ≥ 𝑗 − 1 such that 𝑝
𝑗

≤ 𝑟

 𝑝 ← 𝑗 − 1

 while 𝑝+1
𝑗

≤ 𝑟 {

 𝑝 ← 𝑝 + 1
 }

 𝑟 ← 𝑟 − 𝑝
𝑗

 𝑎𝑗 ← 𝑝

}
return 𝑎1𝑎2 …𝑎𝑡

Better Methods

 Sendrier: 𝑂 𝑛 encoding of words
with fixed weight.

 Under certain circumstances (e.g.
Niederreiter key encapsulation)
ranking/unranking may not even be
necessary.

