Introduction to

Code-Based
Cryptography

Paulo S. L. M. Barreto

Universi

Objectives

m 1St Part:

Basics of coding theory (notation).
Panorama of code-based cryptosystems.

m 2"d Part:

Security considerations.
Choice of codes.
Implementation issues.
Research problems.

CODING THEORY

" A
Linear Codes

mLet g =p™ for some prime p and m > 0.

m A linear [n, k]-code C over F, is a k-
dimensional vector subspace of Fg.

mletd|mandlets=p? sothat F, € F; € F,.

m An F.-subfield subcode of a code C is the
subspace of C consisting of all words with
all components in F..

" J
Weight and Distance

m The (Hamming) weight of u € Fy is the
number of nonzero components of u:
wt(u) = #{j | u; # 0}.

m The (Hamming) distance between u,v €
Fg is dist(u, v) == wt(u — v).

m The minimum distance of a code C is
dist(C) :== min{ dist(u,v) | u,v € C,u # v }.

m Determining dist(C) is NP-hard.

" A
Generator and Parity-Check

m A generator matrix for an [n,k]-code C is a
matrix Gpx, € F&*™ whose rows form a

basis of C: C ={uG € F | u € F£ }.

m A parity-check matrix for the same code is
a matrix H,x, € F;*" whose rows form a
basis for the orthogonal code, with
n=r+k: C={vEIFZ|vHT=O’”}.

m Therefore (uG)H" = u(GH") = 0" for all u,
i.e. GHT = 0%,

" S
General & Syndrome Decoding
(GDP/SDP)

= GDP s SDP
= Input: m Input:
positive integers n, k, t; positive integers n, r, t;
generator matrix parity-check matrix
G e F§*",; H e F*";
vector ¢ € Fy. vector s e IF.
m Question: 3? m e F§ = Question: 3? e € Fy of
such thate :=c — mG weight wt(e) < t such
has weight wt(e) < t? that HeT = sT?

Both are NP-complete!

" A
Code-Based Cryptography

m There exist codes for which efficient
decoders are known.
m Cryptosystems naturally follow if:

the decoding trapdoor can be securely
hidden;

the GDP/SDP remains intractable on
average for those codes.

m (Obs.: from now on, binary codes)

CODE-BASED
CRYPTOSYSTEMS

Chronology

m 197/8:
m 1986:
m 1993:
m 2001:
m 2009:

McEliece (encryption)
Niederreiter (encryption)
Stern (identification)
CFS (signatures)

Cayrel et al. (id-based

|dent|f|cat|on)
.. (other, more arcane schemes)

" A
McEliece Cryptosystem

m Key generation:
Choose a secure, uniformly random t-error
correcting [n, k]-code C over F,, equipped with
a decoding trapdoor, usually a parity-check
matrix A € F;*" of some unique form.
Compute for C a systematic generator matrix
G € Fx*,
Set sk =H, pk = (G, 1).

" A
McEliece Cryptosystem

m 'Hey, wait, I know McEliece, and this does not
look quite like it!”

m [Textbook version:
computing some (private, highly structured) G from H
hide it as ¢ = SGP (with S invertible, P a permutation).
m Does not increase semantic security, is less

efficient, and can actually leak side-channel
information.

m The description here is simpler, more efficient,
and more secure.

McEliece Cryptosystem

m Encryption of a plaintext m € F%:

Choose a uniformly random t-error vector
e € F; and compute ¢ « mG + e € F} (IND-CCA2
variant via e.g. Fujisaki-Okamoto).

m Decryption of a ci

bhertext c € F%:

Compute the (private) syndrome s « cHT = eHT

and decode it to o

ptain e.

Obtain m as the first k components of ¢ —e.

» S
McEliece/Fujisaki-Okamoto:
Setup

m Random oracles (message authentication
code and symmetric cipher) a

H o F5 x{0,1} - Z/(7)Z,
£ : F¥ - {0,1}.
= (Un)ranking function U : Z/("})Z - B,(0™).
m Decoding algorithm D : F, - B,(0™) such
that D(eHT) = e for all e € B,(0™).

» S
McEliece/Fujisaki-Okamoto:
Encryption

m Input: message m € {0,1}".
m Output: ciphertext c € F} x {0,1}".
m Algorithm:

ZiIF’Z‘

h<H(z,m), e UCh)

we«zG + e

d—&Z)Pm

c < (w,d)

» S
McEliece/Fujisaki-Okamoto:
Decryption

m Input: ciphertext ¢ = (w,d) € [} x {0,1}".
m Output: message m € {0,1}*, or rejection.
m Algorithm:

s—wHT, e «D(s),z < (w—e)|g

me<—£&z)Pd

h—H(zm), veUC)

accept & v=e

" A
Niederreiter Cryptosystem

m Setup:
Semantically secure symmetric cipher
€: B.(0™) x{0,1} - {0,1}* U {1}.

m Key generation:

Choose a secure, uniformly random t-error correcting
[n, k]-code C c %, equipped with a decoding-friendly
parity-check matrix A € F5*" and an efficient decoding
algorithm D : F, - B,(0™).

Compute the systematic parity-check matrix H € F;*"
such that A = MH for some nonsingular matrix M € F;*",

Set sk = (M, H), pk = (H,1).

" A
Niederreiter Cryptosystem

m Encryption of plaintext m € {0,1}":
eigt(on)
s « eHT
d < E(e,m)
c < (s,d)

m Decryption of cryptogram (s,d) € F, x {0,1}":
§—sMT // NB: § = (eHDHMT = e(MH)T = eHT
(therefore § is H-decodable to e)

e — D(8)
m < £ (e, d)
accept ® m# L

" A
CFS Signatures

m System setup:
Random oracle H : {0,1}* X N — [%.

m Key generation:

Choose a secure, uniformly random t-error correcting
[n, k]-code T c F} with a high density of decodable
syndromes, equipped with a decoding-friendly parity-
check matrix A € F;*" and an efficient decoding
algorithm D : F, - B,(0™).

Compute the systematic parity-check matrix H € F;*"
such that A = MH for some nonsingular matrix M € F;*",

Set sk = (M, H), pk = (H,1).

" A
CFS Signatures

m Signing a message m € {0,1}":
Find i € N such that, for ¢ « #(m,i) and ¢ « cMT, ¢ is H-
decodable.
e « D(&)
g« (ei)// NB: cMT = ¢ =eHAT = e(fVTH)T = (eHT)MT, hence
c =eHT, i.e. c is the (public) H-syndrome of e.

m Verifying a signature o = (e,i) € B;(0™) X N:
c «eHT
accept & ¢ = H(m,i).

" A
CFS Signatures

m Best known codes for CFS instantiation:
Goppa codes (highest density of decodable
syndromes).

m Bad news:
number of possible hash values: 2" = nt

number of decodable syndromes: ~ (7) = 'Z—f
probability of finding a codeword of weight t:
~ 1/t!

expected value of steps to sign: = t! ®

" A
CFS Signatures

m If the n-bit error e of weight t is
encoded via permutation ranking,
the signature length is ~ Ig(n'/t!) +
lg(t!) = tlgn = mt.

m Public key is huge: mtn bits.

m Key sizes for usual sec levels are

several MiB long, coupled with very
long processing times ®

CFS Signatures

m Bleichenbacher’s attack:
Wagner’s generalized
(3-way) birthday attack
— security level lower
than expected.

m Larger key sizes, longer
signhature generation.

m Dyadic keys: shorter by
a factor u = largest
power of 2 dividing t,
but longer signature
generation times.

15

16

17

18

22

t=9 t=10 t=11

(sizes in MiB)

99 110 1

132

Stern Identification

s H <X uniformly random, systematic
binary parity-check matrix (e.g. n = 2r).
m Gaborit-Girault improvement: uniformly
random quasi-cyclic H = [C | I], with
Cij = h(]—l) mod fOI‘ some hiIFg
m Key pair:
Private key: eiBt(O").
Public key: s « eH" € F5.

" A
Stern Identification

m Commitment:
The prover chooses a uniformly random
word uiIF’z" and a uniformly random
permutation aiSn on {0..n—1}.
The prover sends to the verifier:
mCy H(a(u)),
mC, « 7—[(0(6 + u)), and
mc, « H(o || uH").

" A
Stern Identification

m Challenge & Response:

The verifier sends a uniformly random
b i{o, 1,2} to the prover.

The prover responds by revealing:
me+uando if b =0;
mu and o if b=1;
mo(e) and o(u) if b =2.

" A
Stern Identification

m Verification:

The verifier verifies that:

m ¢; and ¢, are correct if b = 0 (noticing that uH" =
(e+wH" +eH" = (e +wHT +5);

m ¢, and ¢, are correct if b = 1;
» ¢y and ¢, are correct and wt(a(e)) =t if b = 2 (noticing
that o(e + u) = og(e) + a(u)).
The probability of cheating in this ZKP is 2/3.
Repeating [(Ige)/(1 —1g 3)] times reduces the
cheating probability below «¢.

" A
SFS Signatures

@ Commitments.
fori<0..N—1do

§ $
u; < Fy, o585,

cio < H(oy(w;))

i1 < H(oi(e +u;))

Cip < M(o; Il u;H")
end

m Challenges:

(bo, » by—1) « H*(Mi Co,0llco,1llCo,2; ---iCN—1,0||CN—1,1||CN—1,2)

" A
SFS Signatures

m Responses:.:
fori<0..N—-1do
if b, =0 then p; < (¢c;p;e +u;; ;)
if b; = 1 then p; « (c;1;us; 0;)
if b, = 2 then p; < (¢;5; 0:(w;); g;(e))
end

m Signature:
X « (bg, po; -3 by—-1, PN=-1)

" A
SFS Signatures

m Verification:
fori<0..N—1do

if b, = 0 then

cip < H(oi(e +), ¢z « H(o; Il (e +u)H" +5)
if b, = 1 then

cio « H(o;(u)), ¢z « Hio; Il u;H")
if b, =2 then

Cio < H(oy(uy)), c;1 « H(oi(e) + o;(u;))
if wt(o;(e)) #t then “reject”
end

" A
SFS Signatures

m Verification:
(b(')» ---»b1’v—1) < H*(Mi C0,0||Co,1||Co,2J T CN—1,0||CN—1,1||CN—1,2)

if (by, ..., by_1) # (by, ..., by—1) then “reject” else “accept”

m Signature size?

= N elements of form [b;, (¢ ;v;;0,)] €10...2} x
{0..2" =1} xF} x S, or [bi, (ci,bi; v; ; Ui(e))] €
{0..2} x{0...2" — 1} x F} x B,(0™).

m Hence = 1.36h+ N -(h+n+ ((2n+1t)/3)lgn) bits.

" A
AGS Identification

m Aguilar-Gaborit-Schrek: identification in
the GDP (rather than SDP) setting.

m G < F: uniformly random, systematic,
quasi-cyclic binary generator matrix
(usually n =2k, G =[I| C"]).

m Key pair:

Private key: e & B,(0"), m <& FX.
Public key: ¢ « mG + e € F}.

" A
AGS Identification

m Commitment 1:
The prover chooses a uniformly random
word u < F¥ and a uniformly random
permutation aiSn on {0..n—1}.

The prover sends to the verifier:
mCy < H(O-)I
mCy — H(a(uG)).

" A
AGS Identification

m Challenge 1:

The verifier chooses a uniformly random

ri{o, ..,k — 1} and sends it to the
prover.

m Commitment 2:
The prover sends to the verifier:

mc, « H (a(uG + rotr(e)))

" A
AGS Identification

m Challenge 2 & Response:
The verifier sends a uniformly random
b i{o, 1} to the prover.

The prover responds by revealing:
mo and rot,.(m) + u if b=0;
mo(uG) and o(rot,.(e)) if b=1.

" A
AGS Identification

m Verification:

The verifier verifies that:

m ¢, and ¢, are correct if b = 0, noticing that
(rot,(m) + u)G = rot,.(mG) + uG = rot,.(mG + e) + rot,.(e) +
uG = rot,.(c) + uG + rot,.(e), hence a(uG + rotr(e)) =
0((rotr(m) + u)G + rot, (c)) p

= ¢; and ¢, are correct and wt(a(rot,(e))) =¢, if b = 1.

The probability of cheating in this ZKP is 1/2.
Repeating [-Ig €] times reduces the cheating
probability below e.

" A
Stern & AGS Keys

m Gaborit-Girault propose r = 347, t = 76 to achieve
283 security.

m Modern recommendation would be r =449, t = 99
for 289 security, or (better yet) r = 727, t = 160 for
2128 security.

m Private and public keys are very short
(respectively 2r and r bits long).

m Signatures are possible via the Fiat-Shamir
heuristics, but rather large (e.g. = 122 KiB at 28¢
security).

" A
Identity-Based Identification

m Cayrel et al.: Goppa trapdoor for the Stern
scheme combined with CFS signatures.

m Stern parameter H is the KGC’s CFS public key.

m Stern public key is the user’s identity mapped to
a decodable syndrome (N.B. necessary to
increase weight to cover radius t + §, otherwise
the scheme is not id-based).

m Identity-based private key is a CFS signature of
the user’s identity, i.e. an error vector of weight
t + 6 computed by the KGC.

" J
Hashing

m Cryptographic hash functions must
be preimage and collision resistant.

m FSB (Fast Syndrome-Based hash)
and RFSB (Really Fast Syndrome-
Based hash): collision resistance
related to the hardness of the SDP.

m In practice, slow, and security not
particularly impressive ®

"

QUESTIONS?

" A
Objectives

m 1St Part:

Basics of coding theory (notation).
Panorama of code-based cryptosystems.

m 2"d Part:

Security considerations.
Choice of codes.
Implementation issues.
Research problems.

INFORMATION SET
DECODING

" A
Definition: IS

m Let C:={uG € F} | u € F§} be a linear t-error

correcting code specified by a generator
matrix G € F¥*"*, and let ¢ = uG + e be a
blurry codeword where wt(e) < t.

m An information set for the error pattern e is
a subset J € {0,...,n— 1} such that ¢; = 0 for

all j € J.
m In other words, ¢; is correct at all positions
indicated by J.

" J
Decoding with an IS

m Let #7 =k, and let ¢|; € F5 and G|, € F5*¥
denote the restrictions of ¢ and ¢ to the
columns indicated in J. Then c|; = uG| ;.

= If G|, is invertible, then u = (c|,) - (Gl5) .

m The process of recovering u from ¢ and G
with this method is called information set
decoding.

" A
Cost Estimate

m Let J be an IS with #J = s. The probability
that Ju {j} remains an IS for some
uniformly random j € {0,...,n —1}\ J is
1—-t/(n—s), since t out of the n —s values
in {0,...,n—1}\ J correspond to error
positions.

m Hence the probability that a uniformly
random J € {0,..,n—1} with #7J =k is an IS

IS HOsssk—l(l —t/(n— S))

" A
Cost Estimate

m The decoding cost (or work factor, WF) is
slightly increased (by a factor 1/Q, where
Q, =~ 0.2887881) due to the need that G|; be

invertible, i.e.
WF(n,k,t) = (1/Q3) [Toss<k-1(1 — t/(n = 5)).

m Examples:
lg WF(2304,1280,64) ~ 78
lg WF(4096,2048,128) ~ 132.5
lg WF(8192,4096,256) ~ 263.5

" A
Cost Estimate

m This estimate assigns unit cost to the whole
check that a certain IS leads to a solution.

m Dynamic programming techniques (as well
as implementation cleverness) make the
amortized cost of each step very light.

" A
Other Attacks

m Message recovery vs. key recovery.

m Finding low-weight codewords in related
codes (e.qg. in the dual).

m Exploiting the algebraic structure (e.q.
properties of the underlying field or
mapping to other computational problems
like solving MQ systems).

m Exploiting symmetries (e.g. quasi-cyclic).

m Implementation attacks (e.g. timing).

CHOOSING THE CODE

" A
Which Code to Choose?

m Not all codes are suitable for
cryptography.

m Needed: code equipped with a trapdoor
that can be easily and securely hidden.

m Most popular choice: Goppa codes.

... except for a few weak cases, e.g. binary
Goppa polynomial (Loidreau-Sendrier 1998).

... distinguishing a Goppa code from a random
code of the same length can be done in 0(n?)
time (Marquez-Corbella, Martinez-Moro and
Pellikaan 2013).

" A
Goppa Codes

m Let g(x) == Y_,g;x' € F,m[x] be a monic
(g = 1) polynomial.

m Let L= (Lgy,..,Ly_1) € Fym (all distinct) such
that g(L;) # 0 for all j. This is called the
support.

m Properties:
Easy to generate and plentiful.

Usually g(x) is chosen to be irreducible; if so,
Fymye = Fam|[x]/g(x).

" A
Goppa Codes

m The Goppa syndrome function is the
linear map S : F,} - Fom|x]/g(x)

Sc(x) = Xy — o= A ¢0_ (mod g(x)).

m The Goppa code I'(L, g) is the kernel
of the Goppa syndrome function, i.e.
I'(L,g) ={c eFy|S.(x) =0}.

" A
Distance of a Goppa code

m In general the minimum distance of I'(L, g)
is only knowntobed >t + 1.

m In the binary case when g(x) is square-
free (e.g. when g(x) is irreducible) the
minimum distance becomes d = 2t + 1.

m How do we correct errors/decode?

" A
Error Locator Polynomial

m Efficient decoding procedure for
known g and L via the (Patterson)
error locator polynomial:

0(x) = [ey0(x — L;) € Fam[x]/g(x).

m Property: o(L;)) =0 ¢, = 1.

The Key Equation

mo(x)=]1;(x—L;)e.

mo'(x) =);e(x— L_i)ei_l [T)i(x — Lj)ej =
¥ — Hj(x — Lj)e] =Y. g(x).

X—L;j X—L;j

m.-.o (x)=0(x)S,(x) mod g(x).

" A
Error Correction

mletmerl(Lg), let e e F} be an error vector
of weight wt(e) <t, and c=m @ e.

m Compute the syndrome of e through the
relation S,(x) = S.(x).

m Compute the error locator polynomial o
from the syndrome.

m Determine which L, are zeroes of o, thus
retrieving e and recovering m.

" A
Error Correction

mLet s(x) =5,(x). If s(x) =0, nothing to do
(no error), otherwise s(x) is invertible.

Property #1: a(x) = a(x)? + xb(x)?.
Property #2: ¢'(x) = b(x)?.
Property #3: ¢'(x) = a(x)s(x).

m Thus b(x)? = (a(x)? + xb(x)?)s(x), hence
a(x) = b(x)v(x) with v(x) = \/x + 1/s(x) mod g(x).

~ "
Extended Euclid! Extended Euclid!

" A
Decoding a binary Goppa
syndrome

m Given: , € K[x]
m Find: a(x), b(x), f(x) € K[x]
m Where: b(x) + f(x) = a(x)

m Thus a(x) = b(x) mod , 1.e.
a(x) = b(x) € K[x]/
m Conditions:
deg(a) < |t/2], deg(b) < |(t — 1)/2].

"
Paterson’s decoding
algorithm

Fe—v, G—g, B<1, C«<0, t< deg(g)
while deg(G) > |t/2] dO
Fe G, BeoC
while deg(F) = deg(G) do
j < deg(F) —deg(G), h« Fdeg(F)/Gdeg(G)
F—«F—hx/G, B«B—hx/C
end
end
g(x) « G(x)? + xC(x)?
return ¢ // error locator polynomial

" A
The Key Size Problem

m Using systematic Goppa codes, key
size is only k x (n — k) bits. And yet...

level m n K t key size

280 11 | 1893 | 1431 | 42 661122
2128 12 | 3307 | 2515 | 66| 1991880
2256 13 | 7150 | 5447 | 131 | 9276241

" A
Compact Goppa Codes?

m Recap: a Goppa code is entirely defined by:
a monic polynomial g(x) € F,[x] of degree t with g = 2™,
a sequence L € F} of distinct elements with g(L) # 0.

m Features:

good error correction capability (all t design errors in the
binary case).

withstood cryptanalysis quite well.

m Goal: replace the large 0(n?)-bit representation
by a compact one (like abovel!).

" A
Cauchy Matrices

m A matrix M € K**" over a field K is called a
Cauchy matrix iff M;; = 1/(z; — L;) for disjoint
sequences z € K and L € K" of distinct elements.

m Property: any Goppa code where g(x) is square-

free admits a parity-check matrix in Cauchy form
[TZ 1975].

m Compact representation, but:
code structure is apparent,
usual tricks to hide it destroy the Cauchy structure.

"
Dyadic Matrices
m Let r be a power of 2. A matrix H € R™*"

over a ring R is called dyadic iff H;; = h;g;
for some vector h € R".

b

" A
Dyadic Matrices

m Dyadic matrices form a subring of R™"
(commutative if R is commutative).

m Compact representation: O0(r) rather than
0(r?) space.

m Efficient arithmetic: multiplication in time
O(rlgr) time via fast Walsh-Hadamard

transform, inversion in time O(r) in
characteristic 2.

m [dea: find a dyadic Cauchy matrix.

" A
Quasi-Dyadic Codes

m Theorem: a dyadic Cauchy matrix is only
possible over fields of characteristic 2, and
any suitable h € Fy; satisfies

1 1 1 1
hig; hi h; ho

Wlth z; = 1/h;, Ly = 1/h; — 1/hy, and
l] — hlEB] =1/(z; — Lj)'

" A
Quasi-Dyadic Codes

m Complexity: key generation
0(nlg3 n), encoding/decoding
O(nlgn).

m Reasonably short keys (11968 bits for
security 28%, 19968 bits for security 2149).

m Caveat: security still under scrutiny
(e.g. folding attacks FOPPT 2014).

" A
Alternatives?

m Most alternant codes have been
shown to contain weaknesses.

m Goppa codes are popular but not
quite friendly to key size reduction.

m Recent trend: cTJraph-based codes,
specifically Gallager (LDPC) codes.

" A
Gallager (LDPC) Codes

m Extremely sparse parity-check
matrices, e.qg. H € [F;0000%20000 yjth
~ 3 nonzero components at randomly
chosen positions on each column.

m Higher error-correction capability
than Goppa codes (almost 3 times in
the above example).

" A
Gallager (LDPC) Codes

m Symbols in red affect parity bit in
green through the parity-checks in

blue. f
=
T

"
Gallager (LDPC) Codes

m If the green parity bit is 1, at least
one of the red bits is wrong.

— T 1 -
IS¢

" A
Gallager (LDPC) Codes

m Symbol in red affects parity bits in
green through the parity-checks in

blue. C

[\
|

—
u
u

"
Gallager (LDPC) Codes

m If the red bit is wrong, some of the
green parity bits will likely reveal it.

[\
|

—
u
u

T _ T__ -
s' = Hc - H

" A
Gallager (LDPC) Codes

m Bit flipping:
Determine which symbol bits are the
most suspect (i.e. influence the largest
number of parity bits in error) by

counting how many parity errors it
influences via the parity-check matrix.

Flip those bits (0 & 1).

Repeat until no parity error is left (or
max number of attempts is exceeded).

" A
Bit-flipping

m Trouble: n symbol bits = n counters.

m More trouble: one pass to count and
find the maximum count value,
another pass to flip most suspect bits

and recompute affected parity-check
bits.

m Memory-consuming and slow.

" A
MDPC Codes

m LDPC codes are susceptible to key recovery
attacks: by definition, dual codes contain
too sparse words of small 0(1) weight.

m [dea: set density w and number of errors t
near the decodability threshold 0(y/n) for
security, but still within the range of bit-
flipping or belief-propagation.

m Moderate-density parity-check (MDPC)
codes (Misoczki et al. 2013).

Short Keys

m Quasi-cyclic MDPC codes (QC-MDPCQC)

m The trapdoor (private) r x n parity-
check matrix consists of n, blocks of
sparse circulant r x r matrices,

ﬁ:[ﬁol

AN

H-

e | ﬁno_l], with n = nyr:

\ NB: sparse!

" A
Short Keys

m The systematic (public) parity-check
matrix consists of n, blocks of dense
circulant matrices, H = [Hy | -+ | Hy,_4],

with H; = H, " Hf, 0 < i <ng—1:

SN

NB: densel!

g—

Short Keys

m Far shorter public (and private) keys

than previous proposals:

level n K t w | QC-MDPC | Goppa | shrink | RSA

280 9602 | 4801| 84| 90 4801 661122 | 138x | 1024

2128 | 19714 | 9857 | 134| 142 0857 1991880 | 202x | 3072

2256 | 65542 | 32771 | 264 | 274 32771 9276241 | 283x | 15360

-

NB: key size is not the
only metric (e.g. RSA
Implementation may just
run out of ROM space
on many loT platforms)

;

Implementation

m On-the-fly counter update
m Onset threshold estimation

m Threshold fine tuning &
decoding failure handling

m Simple supporting algorithms
e.g. sparse convolution

m Space-efficient convolution
inverse

=

=

=

Storage: 0(n) » 0(1)
Counter update passes: 2 - 1

Overall failure rate: 2729 5~ 0

Small executable footprint &
still good performance

Folklore(?) algorithm, useful
for constrained platforms

" A
Implementation

m Portable C

m Niederreiter code/key generation,
encoding/encryption and
decoding/decryption (including
permutation ranking/unranking)

m PIC24F]J32GA002-1/SP: I

8 KiB RAM
32 KiB ROM
TCP/IP (hence, IoT-ready)

"
Implementation

m All-in-one (full functionality):
5.6 KiB ROM, 2.6 KiB RAM

key generation ~0.9 s,
encoding ~25 ms,
decoding ~2.8 s.

m Split implementation:
1.5 KiB RAM (key generation)
<1 KiB RAM (encryption/decryption)

WHAT NEXT?

" A
Limitations and trends

m Codes are fine for encryption =

m ...but notoriously troublesome for most
other applications ®

m Very recent research trend: other notions
of distance, e.g. rank metric.

NB: the distance notion is exactly what
distinguishes between codes and lattices!

m Advanced functionalities (blind signatures,
identity-based encryption)?

"

QUESTIONS?

APPENDIX

" J
Ranking and Unranking
Permutations

m Some SDP-based cryptosystems
represent messages as t-error
vectors, i.e. vectors (of length n)
with Hamming weight t.

m Mapping messages between error
vector and normal form involves
permutation ranking and unranking.

" J
Ranking and Unranking
Permutations

m Let B,(0™) = {u € F} | wt(u) = t}, with
. . nt
cardinality r = (}) =~ —

m A ranking function is a mapping rank:
B;(0™) - {0 ...r — 1} which associates a
unique index in {0...r — 1} to each element
in B,(0™). Its inverse is called the

unranking function.
m Rank size: lgr = t(lgn —1Igt + 1) bits.

" J
Ranking and Unranking
Permutations

m Ranking and unranking can be done in
O(n) time (Ruskey 2003, algorithm 4.10).

m Computationally simplest ordering: colex.

order iff a,...a,a; < b,,...b,b, in lex order.

" J
Colex Ranking
mlet A,(n)={a,..a;10<a; <+ <a; <n}.

m Sum of binomial coefficients:

rank(a, ...a;) = 5:1 (C;])

m Implementation strategy: precompute a
table of binomial coefficients.

" J
Colex Unranking

input: » // permutation rank
for j <t downto 1 {
// find largest p > j — 1 such that (%) <r
pej—1
- +1
while ("*) <7 {
pep+1
¥
_ (P
rer (1)
Clj «<p

»

return a,a, ...a;

" A
Better Methods

m Sendrier: 0(n) encoding of words
with fixed weight.

m Under certain circumstances (e.g.
Niederreiter key encapsulation)
ranking/unranking may not even be
necessary.

