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Objectives 

 1st Part: 

 Basics of coding theory (notation). 

 Panorama of code-based cryptosystems. 

 

 2nd Part: 

 Security considerations. 

 Choice of codes. 

 Implementation issues. 

 Research problems. 



CODING THEORY 



Linear Codes 

 Let 𝑞 = 𝑝𝑚 for some prime 𝑝 and 𝑚 > 0. 

 A linear [𝑛, 𝑘]-code C over 𝔽𝑞 is a 𝑘-

dimensional vector subspace of 𝔽𝑞
𝑛. 

 Let 𝑑 ∣ 𝑚 and let 𝑠 = 𝑝𝑑, so that 𝔽𝑝 ⊆ 𝔽𝑠 ⊆ 𝔽𝑞. 

 An 𝔽𝑠-subfield subcode of a code C is the 
subspace of C consisting of all words with 

all components in 𝔽𝑠. 

 



Weight and Distance 

 The (Hamming) weight of 𝑢 ∈ 𝔽𝑞
𝑛 is the 

number of nonzero components of 𝑢: 

wt 𝑢 ≔ # 𝑗 𝑢𝑗 ≠ 0 . 

 The (Hamming) distance between 𝑢, 𝑣 ∈
𝔽𝑞

𝑛 is dist 𝑢, 𝑣 ≔ wt 𝑢 − 𝑣 . 

 The minimum distance of a code C is 
dist C ≔ min dist 𝑢, 𝑣 𝑢, 𝑣 ∈ C, 𝑢 ≠ 𝑣 . 

 Determining dist C  is NP-hard. 



Generator and Parity-Check 

 A generator matrix for an [𝑛, 𝑘]-code C is a 

matrix 𝐺𝑘×𝑛 ∈ 𝔽𝑞
𝑘×𝑛 whose rows form a 

basis of C: C = 𝑢𝐺 ∈ 𝔽𝑞
𝑛 𝑢 ∈ 𝔽𝑞

𝑘 . 

 A parity-check matrix for the same code is 
a matrix 𝐻𝑟×𝑛 ∈ 𝔽𝑞

𝑟×𝑛 whose rows form a 

basis for the orthogonal code, with 

𝑛 = 𝑟 + 𝑘: C = 𝑣 ∈ 𝔽𝑞
𝑛 𝑣𝐻𝑇 = 0𝑟 . 

 Therefore 𝑢𝐺 𝐻𝑇 = 𝑢 𝐺𝐻𝑇 = 0𝑟 for all 𝑢, 

i.e. 𝐺𝐻𝑇 = 0𝑘×𝑟. 



General & Syndrome Decoding 
(GDP/SDP) 

 GDP 

 Input: 
 positive integers n, k, t; 

 generator matrix 
G  𝔽𝑞

𝑘×𝑛; 

 vector c  𝔽𝑞
𝑛. 

 Question: ? m  𝔽𝑞
𝑘 

such that e := c − mG 
has weight wt(e) ≤ t? 

 SDP 

 Input:  
 positive integers n, r, t; 

 parity-check matrix 
H  𝔽𝑞

𝑟×𝑛; 

 vector s  𝔽𝑞
𝑟 . 

 Question: ? e  𝔽𝑞
𝑛 of 

weight wt(e) ≤ t such 
that HeT = sT? 

Both are NP-complete! 



Code-Based Cryptography 

 There exist codes for which efficient 
decoders are known. 

 Cryptosystems naturally follow if: 

the decoding trapdoor can be securely 
hidden; 

the GDP/SDP remains intractable on 
average for those codes. 

 (Obs.: from now on, binary codes) 



CODE-BASED 
CRYPTOSYSTEMS 



Chronology 

 1978: McEliece (encryption) 

 1986: Niederreiter (encryption) 

 1993: Stern (identification) 

 2001: CFS (signatures) 

 2009: Cayrel et al. (id-based 
identification) 

 … (other, more arcane schemes) 



McEliece Cryptosystem 

 Key generation: 

 Choose a secure, uniformly random 𝑡-error 
correcting [𝑛, 𝑘]-code C over 𝔽2, equipped with 

a decoding trapdoor, usually a parity-check 

matrix 𝐻 ∈ 𝔽2
𝑟×𝑛 of some unique form. 

 Compute for C a systematic generator matrix  

𝐺 ∈ 𝔽2
𝑘×𝑛. 

 Set  𝑠𝑘 = 𝐻 , 𝑝𝑘 = (𝐺, 𝑡). 



McEliece Cryptosystem 

 “Hey, wait, I know McEliece, and this does not 
look quite like it!” 

 Textbook version: 

 computing some (private, highly structured) 𝐺  from 𝐻  

 hide it as 𝐺 = 𝑆𝐺 𝑃 (with 𝑆 invertible, 𝑃 a permutation). 

 Does not increase semantic security, is less 
efficient, and can actually leak side-channel 
information. 

 The description here is simpler, more efficient, 
and more secure. 



McEliece Cryptosystem 

 Encryption of a plaintext 𝑚 ∈ 𝔽2
𝑘: 

 Choose a uniformly random 𝑡-error vector 
𝑒 ∈ 𝔽2

𝑛 and compute 𝑐 ← 𝑚𝐺 + 𝑒 ∈ 𝔽2
𝑛 (IND-CCA2 

variant via e.g. Fujisaki-Okamoto). 

 

 Decryption of a ciphertext 𝑐 ∈ 𝔽2
𝑛: 

 Compute the (private) syndrome 𝑠 ← 𝑐𝐻 𝑇 = 𝑒𝐻 𝑇 
and decode it to obtain 𝑒. 

Obtain 𝑚 as the first 𝑘 components of 𝑐 − 𝑒. 



McEliece/Fujisaki-Okamoto: 
Setup 

 Random oracles (message authentication 
code and symmetric cipher) a 

H ∶  𝔽2
𝑘 × 0,1 ∗ → ℤ/ 𝑛

𝑡
ℤ, 

ℰ  ∶  𝔽2
𝑘 → 0,1 ∗. 

 (Un)ranking function 𝒰 ∶ ℤ/ 𝑛
𝑡

ℤ → ℬ𝑡 0𝑛 . 

 Decoding algorithm 𝒟 ∶  𝔽2
𝑟 → ℬ𝑡 0𝑛  such 

that 𝒟 𝑒𝐻 𝑇 = 𝑒 for all 𝑒 ∈ ℬ𝑡 0𝑛 . 



McEliece/Fujisaki-Okamoto: 
Encryption 

 Input: message 𝑚 ∈ 0,1 ∗. 

 Output: ciphertext 𝑐 ∈ 𝔽2
𝑛 × 0,1 ∗. 

 Algorithm: 

 𝑧
 $
←𝔽2

𝑘  

 ℎ ← H 𝑧,𝑚 , 𝑒 ← 𝒰 ℎ  

 𝑤 ← 𝑧𝐺 + 𝑒 

 𝑑 ← ℰ 𝑧 ⊕ 𝑚 

 𝑐 ← 𝑤, 𝑑  



McEliece/Fujisaki-Okamoto: 
Decryption 

 Input: ciphertext 𝑐 = 𝑤, 𝑑 ∈ 𝔽2
𝑛 × 0,1 ∗. 

 Output: message 𝑚 ∈ 0,1 ∗, or rejection. 

 Algorithm: 

 𝑠 ← 𝑤𝐻 𝑇 , 𝑒 ← 𝒟(𝑠), 𝑧 ← 𝑤 − 𝑒  𝑘 

𝑚 ← ℰ 𝑧 ⊕ 𝑑 

 ℎ ← H 𝑧,𝑚 , 𝑣 ← 𝒰 ℎ  

 accept  𝑣 = 𝑒 



Niederreiter Cryptosystem 

 Setup: 

 Semantically secure symmetric cipher 
ℰ ∶  ℬ𝑡 0𝑛 × 0,1 ∗ → 0,1 ∗ ∪ ⊥ . 

 Key generation: 

 Choose a secure, uniformly random 𝑡-error correcting 
[𝑛, 𝑘]-code C ⊂ 𝔽2

𝑛, equipped with a decoding-friendly 

parity-check matrix 𝐻 ∈ 𝔽2
𝑟×𝑛 and an efficient decoding 

algorithm 𝒟 ∶  𝔽2
𝑟 → ℬ𝑡 0𝑛 . 

 Compute the systematic parity-check matrix 𝐻 ∈ 𝔽2
𝑟×𝑛 

such that 𝐻 = 𝑀 𝐻 for some nonsingular matrix 𝑀 ∈ 𝔽2
𝑟×𝑟. 

 Set 𝑠𝑘 = (𝑀 ,𝐻 ), 𝑝𝑘 = (𝐻, 𝑡). 



Niederreiter Cryptosystem 

 Encryption of plaintext 𝑚 ∈ 0,1 ∗: 

 𝑒
 $
←ℬ𝑡 0𝑛  

 𝑠 ← 𝑒𝐻𝑇 

 𝑑 ← ℰ(𝑒,𝑚) 

 𝑐 ← (𝑠, 𝑑) 

 Decryption of cryptogram 𝑠, 𝑑 ∈ 𝔽2
𝑟 × 0,1 ∗: 

 𝑠 ← 𝑠𝑀 𝑇 // NB: 𝑠 = 𝑒𝐻𝑇 𝑀 𝑇 = 𝑒 𝑀 𝐻
𝑇

= 𝑒𝐻 𝑇 
(therefore 𝑠  is 𝐻 -decodable to 𝑒) 

 𝑒 ← 𝒟(𝑠 ) 

 𝑚 ← ℰ−1 𝑒, 𝑑  

 accept  𝑚 ≠ ⊥ 



CFS Signatures 

 System setup: 
 Random oracle H ∶ 0,1 ∗ × ℕ → 𝔽2

𝑟. 

 Key generation: 

 Choose a secure, uniformly random 𝑡-error correcting 
[𝑛, 𝑘]-code Γ ⊂ 𝔽2

𝑛 with a high density of decodable 
syndromes, equipped with a decoding-friendly parity-

check matrix 𝐻 ∈ 𝔽2
𝑟×𝑛 and an efficient decoding 

algorithm 𝒟 ∶  𝔽2
𝑟 → ℬ𝑡 0𝑛 . 

 Compute the systematic parity-check matrix 𝐻 ∈ 𝔽2
𝑟×𝑛 

such that 𝐻 = 𝑀 𝐻 for some nonsingular matrix 𝑀 ∈ 𝔽2
𝑟×𝑟. 

 Set 𝑠𝑘 = (𝑀 ,𝐻 ), 𝑝𝑘 = (𝐻, 𝑡). 



CFS Signatures 

 Signing a message 𝑚 ∈ 0,1 ∗: 
 Find 𝑖 ∈ ℕ such that, for 𝑐 ← H 𝑚, 𝑖  and 𝑐 ← 𝑐𝑀 𝑇, 𝑐  is 𝐻 -

decodable. 
 𝑒 ← 𝒟(𝑐 ) 

 𝜎 ← 𝑒, 𝑖  // NB: 𝑐𝑀 𝑇 = 𝑐 = 𝑒𝐻 𝑇 = 𝑒 𝑀 𝐻
𝑇
= 𝑒𝐻𝑇 𝑀 𝑇, hence 

𝑐 = 𝑒𝐻𝑇, i.e. 𝑐 is the (public) 𝐻-syndrome of 𝑒. 

 
 Verifying a signature 𝜎 = 𝑒, 𝑖 ∈ ℬ𝑡 0𝑛 × ℕ: 

 𝑐 ← 𝑒𝐻𝑇 
 accept  𝑐 = H 𝑚, 𝑖 . 



CFS Signatures 

 Best known codes for CFS instantiation: 
Goppa codes (highest density of decodable 
syndromes). 

 Bad news: 

 number of possible hash values: 2𝑟 ≈ 𝑛𝑡 

 number of decodable syndromes: ≈ 𝑛
𝑡

≈
𝑛𝑡

𝑡!
. 

 probability of finding a codeword of weight 𝑡: 
≈ 1/𝑡! 

 expected value of steps to sign: ≈ 𝑡!  

 



CFS Signatures 

 If the 𝑛-bit error 𝑒 of weight 𝑡 is 
encoded via permutation ranking, 
the signature length is ≈ lg 𝑛𝑡/𝑡! +
lg 𝑡! = 𝑡 lg 𝑛 ≈ 𝑚𝑡. 

 Public key is huge: 𝑚𝑡𝑛 bits. 

 Key sizes for usual sec levels are 
several MiB long, coupled with very 
long processing times  



CFS Signatures 

 Bleichenbacher’s attack: 
Wagner’s generalized 
(3-way) birthday attack 
 security level lower 
than expected. 

 Larger key sizes, longer 
signature generation. 

 Dyadic keys: shorter by 
a factor 𝑢 = largest 
power of 2 dividing 𝑡, 
but longer signature 
generation times. 

m t=9 t=10 t=11 t=12 

15 60.2 63.1 67.2 81.5 

16 63.3 66.2 71.3 85.6 

17 66.4 69.3 75.4 89.7 

18 69.5 72.4 79.5 93.7 

... 

22 81.7 84.6 95.8 110.0 

m t=9 t=10 t=11 t=12 

15 0.7 

16 1.5 

17 3.2 

18 6.75 

... 

22 99 110 121 132 

(sizes in MiB) 



Stern Identification 

 𝐻
.$
←𝔽2

𝑟×𝑛: uniformly random, systematic 
binary parity-check matrix (e.g. 𝑛 = 2𝑟). 

 Gaborit-Girault improvement: uniformly 
random quasi-cyclic 𝐻 = [𝐶 ∣ 𝐼], with 

𝐶𝑖𝑗 ≔ ℎ 𝑗−𝑖  mod 𝑟 for some ℎ
.$
←𝔽2

𝑟. 

 Key pair: 

Private key: 𝑒
.$
←ℬ𝑡 0𝑛 . 

Public key: 𝑠 ← 𝑒𝐻𝑇 ∈ 𝔽2
𝑟. 



Stern Identification 

 Commitment: 

The prover chooses a uniformly random 

word 𝑢
.$
←𝔽2

𝑛 and a uniformly random 

permutation 𝜎
.$
←𝑆𝑛 on 0…𝑛 − 1 . 

The prover sends to the verifier: 

 𝑐0 ← H 𝜎 𝑢 , 

 𝑐1 ← H 𝜎 𝑒 + 𝑢 , and 

 𝑐2 ← H 𝜎 ∣∣ 𝑢𝐻𝑇 . 



Stern Identification 

 Challenge & Response: 

The verifier sends a uniformly random 

𝑏
.$
← 0, 1, 2  to the prover. 

The prover responds by revealing: 

 𝑒 + 𝑢 and 𝜎 if 𝑏 = 0; 

 𝑢 and 𝜎  if 𝑏 = 1; 

 𝜎 𝑒  and 𝜎 𝑢  if 𝑏 = 2. 



Stern Identification 

 Verification: 

 The verifier verifies that: 

 𝑐1 and 𝑐2 are correct if 𝑏 = 0 (noticing that 𝑢𝐻𝑇 =
𝑒 + 𝑢 𝐻𝑇 + 𝑒𝐻𝑇 = 𝑒 + 𝑢 𝐻𝑇 + 𝑠); 

 𝑐0 and 𝑐2 are correct if 𝑏 = 1; 

 𝑐0 and 𝑐1 are correct and wt 𝜎 𝑒 = 𝑡 if 𝑏 = 2 (noticing 

that 𝜎 𝑒 + 𝑢 = 𝜎 𝑒 + 𝜎 𝑢 ). 

 The probability of cheating in this ZKP is 2/3. 
Repeating lg 𝜀 /(1 − lg 3)  times reduces the 
cheating probability below 𝜀. 



SFS Signatures 

 Commitments: 
for 𝑖 ← 0…𝑁 − 1 do 

 𝑢𝑖

.$
←𝔽2

𝑛, 𝜎𝑖

.$
←𝑆𝑛 

 𝑐𝑖,0 ← H 𝜎𝑖 𝑢𝑖  

 𝑐𝑖,1 ← H 𝜎𝑖 𝑒 + 𝑢𝑖  

 𝑐𝑖,2 ← H 𝜎𝑖 ∣∣ 𝑢𝑖𝐻
𝑇  

end 

 

 Challenges: 
𝑏0, … , 𝑏𝑁−1 ← H∗ 𝑀; 𝑐0,0  𝑐0,1  𝑐0,2;  … ; 𝑐𝑁−1,0  𝑐𝑁−1,1  𝑐𝑁−1,2  



SFS Signatures 

 Responses: 
for 𝑖 ← 0…𝑁 − 1 do 

 if 𝑏𝑖 = 0 then 𝜌𝑖 ← 𝑐𝑖,0; 𝑒 + 𝑢𝑖  ; 𝜎𝑖  

 if 𝑏𝑖 = 1 then 𝜌𝑖 ← 𝑐𝑖,1; 𝑢𝑖; 𝜎𝑖  

 if 𝑏𝑖 = 2 then 𝜌𝑖 ← 𝑐𝑖,2; 𝜎𝑖 𝑢𝑖 ; 𝜎𝑖 𝑒  

end 

 

 Signature: 
Σ ← 𝑏0, 𝜌0; … ; 𝑏𝑁−1, 𝜌𝑁−1  



SFS Signatures 

 Verification: 
for 𝑖 ← 0…𝑁 − 1 do 

 if 𝑏𝑖 = 0 then 

      𝑐𝑖,1 ← H 𝜎𝑖 𝑒 + 𝑢𝑖 , 𝑐𝑖,2 ← H 𝜎𝑖 ∣∣ (𝑒 + 𝑢𝑖)𝐻
𝑇 + 𝑠  

 if 𝑏𝑖 = 1 then 

      𝑐𝑖,0 ← H 𝜎𝑖 𝑢𝑖 , 𝑐𝑖,2 ← H 𝜎𝑖 ∣∣ 𝑢𝑖𝐻
𝑇  

 if 𝑏𝑖 = 2 then 

      𝑐𝑖,0 ← H 𝜎𝑖 𝑢𝑖 , 𝑐𝑖,1 ← H 𝜎𝑖 𝑒 + 𝜎𝑖 𝑢𝑖  

      if wt 𝜎𝑖 𝑒 ≠ 𝑡 then “reject” 

end 



SFS Signatures 

 Verification: 
𝑏0

′ , … , 𝑏𝑁−1
′ ← H∗ 𝑀; 𝑐0,0  𝑐0,1  𝑐0,2;  … ; 𝑐𝑁−1,0  𝑐𝑁−1,1  𝑐𝑁−1,2  

if 𝑏0
′ , … , 𝑏𝑁−1

′ ≠ 𝑏0, … , 𝑏𝑁−1  then “reject” else “accept” 

 

 Signature size? 

 𝑁 elements of form 𝑏𝑖 , 𝑐𝑖,𝑏𝑖
; 𝑣𝑖  ; 𝜎𝑖 ∈ 0…2 ×

0…2ℎ − 1 × 𝔽2
𝑛 × 𝑆𝑛 or 𝑏𝑖 , 𝑐𝑖,𝑏𝑖

; 𝑣𝑖  ; 𝜎𝑖 𝑒 ∈

0…2 × 0…2ℎ − 1 × 𝔽2
𝑛 × ℬ𝑡(0

𝑛). 

 Hence ≈ 1.36ℎ + 𝑁 ⋅ ℎ + 𝑛 + (2𝑛 + 𝑡)/3  lg 𝑛  bits. 

 

 



AGS Identification 

 Aguilar-Gaborit-Schrek: identification in 
the GDP (rather than SDP) setting. 

 𝐺
.$
←𝔽2

𝑘×𝑛: uniformly random, systematic, 

quasi-cyclic binary generator matrix 
(usually 𝑛 = 2𝑘, 𝐺 = [𝐼 ∣ 𝐶𝑇]). 

 Key pair: 

 Private key: 𝑒
.$
←ℬ𝑡 0𝑛 , 𝑚

.$
←𝔽2

𝑘. 

 Public key: 𝑐 ← 𝑚𝐺 + 𝑒 ∈ 𝔽2
𝑛. 



AGS Identification 

 Commitment 1: 

The prover chooses a uniformly random 

word 𝑢
.$
←𝔽2

𝑘 and a uniformly random 

permutation 𝜎
.$
←𝑆𝑛 on 0…𝑛 − 1 . 

The prover sends to the verifier: 

 𝑐0 ← H 𝜎 , 

 𝑐1 ← H 𝜎 𝑢𝐺 . 

 



AGS Identification 

 Challenge 1: 

The verifier chooses a uniformly random 

𝑟
.$
←{0,… , 𝑘 − 1} and sends it to the 

prover. 

 Commitment 2: 

The prover sends to the verifier: 

 𝑐2 ← H 𝜎 𝑢𝐺 + rot𝑟 𝑒  



AGS Identification 

 Challenge 2 & Response: 

The verifier sends a uniformly random 

𝑏
.$
← 0, 1  to the prover. 

The prover responds by revealing: 

 𝜎 and rot𝑟(𝑚) + 𝑢 if 𝑏 = 0; 

 𝜎 𝑢𝐺  and 𝜎 rot𝑟 𝑒  if 𝑏 = 1. 



AGS Identification 

 Verification: 

 The verifier verifies that: 

 𝑐0 and 𝑐2 are correct if 𝑏 = 0, noticing that 
rot𝑟 𝑚 + 𝑢 𝐺 = rot𝑟 𝑚𝐺 + 𝑢𝐺 = rot𝑟 𝑚𝐺 + 𝑒 + rot𝑟 𝑒 +

𝑢𝐺 = rot𝑟 𝑐 + 𝑢𝐺 + rot𝑟(𝑒), hence 𝜎 𝑢𝐺 + rot𝑟 𝑒 =

𝜎 rot𝑟 𝑚 + 𝑢 𝐺 + rot𝑟 𝑐 ; 

 𝑐1 and 𝑐2 are correct and wt 𝜎 rot𝑟 𝑒 = 𝑡, if 𝑏 = 1. 

 The probability of cheating in this ZKP is 1/2. 
Repeating −lg 𝜀  times reduces the cheating 
probability below 𝜀. 



Stern & AGS Keys 

 Gaborit-Girault propose 𝑟 = 347, 𝑡 = 76 to achieve 
283 security. 

 Modern recommendation would be 𝑟 = 449, 𝑡 = 99 
for 280 security, or (better yet) 𝑟 = 727, 𝑡 = 160 for 
2128 security. 

 Private and public keys are very short 
(respectively 2𝑟 and 𝑟 bits long). 

 Signatures are possible via the Fiat-Shamir 
heuristics, but rather large (e.g. ≈ 122 KiB at 280 
security). 



Identity-Based Identification 

 Cayrel et al.: Goppa trapdoor for the Stern 
scheme combined with CFS signatures. 

 Stern parameter 𝐻 is the KGC’s CFS public key. 

 Stern public key is the user’s identity mapped to 
a decodable syndrome (N.B. necessary to 
increase weight to cover radius 𝑡 + 𝛿, otherwise 
the scheme is not id-based). 

 Identity-based private key is a CFS signature of 
the user’s identity, i.e. an error vector of weight 
𝑡 + 𝛿 computed by the KGC. 



Hashing 

 Cryptographic hash functions must 
be preimage and collision resistant. 

 FSB (Fast Syndrome-Based hash) 
and RFSB (Really Fast Syndrome-
Based hash): collision resistance 
related to the hardness of the SDP. 

 In practice, slow, and security not 
particularly impressive  



QUESTIONS? 



Objectives 

 1st Part: 

 Basics of coding theory (notation). 

 Panorama of code-based cryptosystems. 

 

 2nd Part: 

 Security considerations. 

 Choice of codes. 

 Implementation issues. 

 Research problems. 



INFORMATION SET 
DECODING 



Definition: IS 

 Let 𝒞 ≔ 𝑢𝐺 ∈ 𝔽2
𝑛 𝑢 ∈ 𝔽2

𝑘  be a linear 𝑡-error 

correcting code specified by a generator 

matrix 𝐺 ∈ 𝔽2
𝑘×𝑛, and let 𝑐 = 𝑢𝐺 + 𝑒 be a 

blurry codeword where wt 𝑒 ≤ 𝑡. 

 An information set for the error pattern 𝑒 is 
a subset 𝒥 ⊆ 0,… , 𝑛 − 1  such that 𝑒𝑗 = 0 for 

all 𝑗 ∈ 𝒥. 

 In other words, 𝑐𝑗 is correct at all positions 

indicated by 𝒥. 



Decoding with an IS 

 Let #𝒥 = 𝑘, and let 𝑐 𝒥 ∈ 𝔽2
𝑘 and 𝐺 𝒥 ∈ 𝔽2

𝑘×𝑘 

denote the restrictions of 𝑐 and 𝐺 to the 
columns indicated in 𝒥. Then 𝑐 𝒥 = 𝑢𝐺 𝒥. 

 If 𝐺 𝒥 is invertible, then 𝑢 = 𝑐 𝒥 ⋅ 𝐺 𝒥
−1

. 

 

 The process of recovering 𝑢 from 𝑐 and 𝐺 

with this method is called information set 
decoding. 



Cost Estimate 

 Let 𝒥 be an IS with #𝒥 = 𝑠. The probability 
that 𝒥 ∪ 𝑗  remains an IS for some 
uniformly random 𝑗 ∈ 0,… , 𝑛 − 1 ∖ 𝒥 is 
1 − 𝑡/ 𝑛 − 𝑠 , since 𝑡 out of the 𝑛 − 𝑠 values 
in 0,… , 𝑛 − 1 ∖ 𝒥 correspond to error 
positions. 

 Hence the probability that a uniformly 
random 𝒥 ⊆ 0,… , 𝑛 − 1  with #𝒥 = 𝑘 is an IS 

is  1 − 𝑡/ 𝑛 − 𝑠0≤𝑠≤𝑘−1 . 



Cost Estimate 

 The decoding cost (or work factor, 𝑊𝐹) is 
slightly increased (by a factor 1/𝑄2 where 
𝑄2 ≈ 0.2887881) due to the need that 𝐺 𝒥 be 
invertible, i.e. 

𝑊𝐹 𝑛, 𝑘, 𝑡 = 1/𝑄2  1 − 𝑡/ 𝑛 − 𝑠0≤𝑠≤𝑘−1 . 

 

 Examples: 
 lg 𝑊𝐹 2304, 1280, 64 ≈ 78 

 lg 𝑊𝐹 4096, 2048, 128 ≈ 132.5 

 lg 𝑊𝐹 8192, 4096, 256 ≈ 263.5 



Cost Estimate 

 This estimate assigns unit cost to the whole 
check that a certain IS leads to a solution. 

 

 Dynamic programming techniques (as well 
as implementation cleverness) make the 
amortized cost of each step very light. 



Other Attacks 

 Message recovery vs. key recovery. 

 Finding low-weight codewords in related 
codes (e.g. in the dual). 

 Exploiting the algebraic structure (e.g. 
properties of the underlying field or 
mapping to other computational problems 
like solving MQ systems). 

 Exploiting symmetries (e.g. quasi-cyclic). 

 Implementation attacks (e.g. timing). 



CHOOSING THE CODE 



Which Code to Choose? 

 Not all codes are suitable for 
cryptography. 

 Needed: code equipped with a trapdoor 
that can be easily and securely hidden. 

 Most popular choice: Goppa codes. 
… except for a few weak cases, e.g. binary 

Goppa polynomial (Loidreau-Sendrier 1998). 
… distinguishing a Goppa code from a random 

code of the same length can be done in 𝑂 𝑛2  
time (Márquez-Corbella, Martínez-Moro and 
Pellikaan 2013). 



Goppa Codes 

 Let 𝑔 𝑥 ≔  𝑔𝑖𝑥
𝑖𝑡

𝑖=0 ∈ 𝔽2𝑚[𝑥] be a monic 

(𝑔𝑡 = 1) polynomial. 

 Let 𝐿 ≔ 𝐿0, … , 𝐿𝑛−1 ∈ 𝔽2𝑚
𝑛  (all distinct) such 

that 𝑔 𝐿𝑗 ≠ 0 for all 𝑗. This is called the 

support. 

 Properties: 

 Easy to generate and plentiful. 

 Usually 𝑔 𝑥  is chosen to be irreducible; if so, 
𝔽 2𝑚 𝑡 = 𝔽2𝑚 𝑥 /𝑔 𝑥 . 



Goppa Codes 

 The Goppa syndrome function is the 
linear map 𝑆 ∶ 𝔽2

𝑛 → 𝔽2𝑚 𝑥 /𝑔(𝑥): 

𝑆𝑐 𝑥 ≔  
𝑐𝑖

𝑥−𝐿𝑖

𝑛−1
𝑖=0 =  

1

𝑥−𝐿𝑖
𝑐𝑖≠0  mod 𝑔 𝑥 . 

 

 The Goppa code Γ(𝐿, 𝑔) is the kernel 
of the Goppa syndrome function, i.e. 
Γ(𝐿, 𝑔) = 𝑐 ∈ 𝔽2

𝑛  𝑆𝑐 𝑥 ≡ 0 . 



Distance of a Goppa code 

 In general the minimum distance of Γ(𝐿, 𝑔) 
is only known to be d ≥ t + 1. 

 

 In the binary case when g(x) is square-
free (e.g. when g(x) is irreducible) the 
minimum distance becomes d ≥ 2t + 1. 

 

 How do we correct errors/decode? 



Error Locator Polynomial 

 Efficient decoding procedure for 
known g and L via the (Patterson) 
error locator polynomial: 
 
𝜎 𝑥 ≔  𝑥 − 𝐿𝑖𝑒𝑖≠0 ∈ 𝔽2𝑚[𝑥]/𝑔(𝑥). 

 

 Property: 𝜎 𝐿𝑖 = 0 ⇔ 𝑒𝑖 = 1. 



The Key Equation 

 𝜎 𝑥 =  𝑥 − 𝐿𝑖
𝑒𝑖

𝑖 . 

 

 𝜎′ 𝑥 =  𝑒𝑖 𝑥 − 𝐿𝑖
𝑒𝑖−1

𝑖  𝑥 − 𝐿𝑗
𝑒𝑗

𝑗≠𝑖 =

 
𝑒𝑖

𝑥−𝐿𝑖
 𝑥 − 𝐿𝑗

𝑒𝑗
𝑗𝑖 =  

𝑒𝑖

𝑥−𝐿𝑖
𝑖 𝜎 𝑥 . 

 

 ∴ 𝜎′ 𝑥 = 𝜎 𝑥 𝑆𝑒 𝑥  mod 𝑔 𝑥 . 



Error Correction 

 Let 𝑚 ∈ Γ(𝐿, 𝑔), let 𝑒 ∈ 𝔽2
𝑛 be an error vector 

of weight 𝑤𝑡 𝑒 ≤ 𝑡, and 𝑐 = 𝑚 ⊕ 𝑒. 

 Compute the syndrome of 𝑒 through the 
relation 𝑆𝑒 𝑥 = 𝑆𝑐 𝑥 . 

 Compute the error locator polynomial  
from the syndrome. 

 Determine which 𝐿𝑖 are zeroes of , thus 
retrieving 𝑒 and recovering 𝑚. 



Error Correction 

 Let 𝑠 𝑥 ≔ 𝑆𝑒 𝑥 . If 𝑠 𝑥 ≡ 0, nothing to do 
(no error), otherwise 𝑠 𝑥  is invertible. 

Extended Euclid! 

 Thus 𝑏 𝑥 2 = 𝑎 𝑥 2 + 𝑥𝑏 𝑥 2 𝑠(𝑥), hence 

𝑎 𝑥 = 𝑏 𝑥 𝑣(𝑥) with 𝑣 𝑥 = 𝑥 + 1/𝑠(𝑥) mod 𝑔(𝑥). 

Extended Euclid! 

 Property #1: 𝜎 𝑥 = 𝑎 𝑥 2 + 𝑥𝑏 𝑥 2. 

 Property #2: 𝜎′ 𝑥 = 𝑏 𝑥 2. 

 Property #3: 𝜎′ 𝑥 = 𝜎 𝑥 𝑠 𝑥 . 



Decoding a binary Goppa 
syndrome 

 Given: 𝑣(𝑥), 𝑔 𝑥 ∈ 𝕂[𝑥] 

 Find: 𝑎(𝑥), 𝑏(𝑥), 𝑓 𝑥 ∈ 𝕂[𝑥] 

 Where: 𝑏 𝑥 𝑣 𝑥 + 𝑓 𝑥 𝑔 𝑥 = 𝑎(𝑥) 

 Thus 𝑎 𝑥 = 𝑏 𝑥 𝑣 𝑥  mod 𝑔 𝑥 , i.e. 
𝑎 𝑥 = 𝑏 𝑥 𝑣 𝑥 ∈ 𝕂[𝑥]/𝑔 𝑥 . 

 Conditions: 

deg 𝑎 ≤ ⌊𝑡/2⌋, deg 𝑏 ≤ ⌊(𝑡 − 1)/2⌋. 



Paterson’s decoding 
algorithm 

 

 𝐹 ← 𝑣,  𝐺 ← 𝑔,  𝐵 ← 1,  𝐶 ← 0,  𝑡 ←  deg 𝑔  
 while deg(𝐺) > ⌊𝑡/2⌋ do 
     𝐹 ↔ 𝐺,  𝐵 ↔ 𝐶 
     while deg 𝐹 ≥ deg(𝐺) do 
         𝑗 ← deg 𝐹 − deg 𝐺 ,  ℎ ← 𝐹deg 𝐹 /𝐺deg 𝐺  

         𝐹 ← 𝐹 − ℎ 𝑥𝑗  
𝐺,  𝐵 ← 𝐵 − ℎ 𝑥𝑗  𝐶 

     end 
 end 
 𝜎 𝑥 ← 𝐺 𝑥 2 + 𝑥𝐶 𝑥 2 
 return 𝜎 // error locator polynomial 



The Key Size Problem 

 Using systematic Goppa codes, key 
size is only 𝑘 × 𝑛 − 𝑘  bits. And yet… 

level m n k t key size 

280 11 1893 1431 42 661122 

2128 12 3307 2515 66 1991880 

2256 13 7150 5447 131 9276241 



Compact Goppa Codes? 

 Recap: a Goppa code is entirely defined by: 

 a monic polynomial 𝑔 𝑥 ∈ 𝔽𝑞[𝑥] of degree 𝑡 with 𝑞 = 2𝑚, 

 a sequence 𝐿 ∈ 𝔽𝑞
𝑛 of distinct elements with 𝑔 𝐿 ≠ 0. 

 Features: 

 good error correction capability (all 𝑡 design errors in the 
binary case). 

 withstood cryptanalysis quite well. 

 Goal: replace the large 𝑂 𝑛2 -bit representation 
by a compact one (like above!). 



Cauchy Matrices 

 A matrix 𝑀 ∈ 𝕂𝑡×𝑛 over a field 𝕂 is called a 
Cauchy matrix iff 𝑀𝑖𝑗 = 1/(𝑧𝑖 − 𝐿𝑗) for disjoint 

sequences 𝑧 ∈ 𝕂𝑡 and 𝐿 ∈ 𝕂𝑛 of distinct elements. 

 Property: any Goppa code where 𝑔(𝑥) is square-

free admits a parity-check matrix in Cauchy form 
[TZ 1975]. 

 Compact representation, but: 

 code structure is apparent, 

 usual tricks to hide it destroy the Cauchy structure. 



Dyadic Matrices 

 Let r be a power of 2. A matrix 𝐻 ∈ ℛ𝑟×𝑟 
over a ring ℛ is called dyadic iff 𝐻𝑖𝑗 = ℎ𝑖⊕𝑗 

for some vector ℎ ∈ ℛ𝑟. 

h 

Hij = hi  j 



Dyadic Matrices 

 Dyadic matrices form a subring of ℛ𝑟×𝑟 
(commutative if ℛ is commutative). 

 Compact representation: 𝑂(𝑟) rather than 
𝑂(𝑟2) space. 

 Efficient arithmetic: multiplication in time 
𝑂(𝑟 lg 𝑟) time via fast Walsh-Hadamard 
transform, inversion in time 𝑂(𝑟) in 
characteristic 2. 

 Idea: find a dyadic Cauchy matrix. 



Quasi-Dyadic Codes 

 Theorem: a dyadic Cauchy matrix is only 
possible over fields of characteristic 2, and 
any suitable ℎ ∈ 𝔽𝑞

𝑛 satisfies 

 

 with 𝑧𝑖 = 1/ℎ𝑖, 𝐿𝑗 = 1/ℎ𝑗 − 1/ℎ0, and 
𝐻𝑖𝑗 = ℎ𝑖⊕𝑗 = 1/(𝑧𝑖 − 𝐿𝑗). 



Quasi-Dyadic Codes 

 Complexity: key generation 
𝑂 𝑛 lg3 𝑛 , encoding/decoding 
𝑂 𝑛 lg 𝑛 . 

 Reasonably short keys (11968 bits for 

security 280, 19968 bits for security 2128). 

 Caveat: security still under scrutiny 
(e.g. folding attacks FOPPT 2014). 

 



Alternatives? 

 Most alternant codes have been 
shown to contain weaknesses. 
 

 Goppa codes are popular but not 
quite friendly to key size reduction. 
 

 Recent trend: graph-based codes, 
specifically Gallager (LDPC) codes. 
 



Gallager (LDPC) Codes 

 Extremely sparse parity-check 
matrices, e.g. 𝐻 ∈ 𝔽2

10000×20000 with 
∼ 3 nonzero components at randomly 
chosen positions on each column. 

 

 Higher error-correction capability 
than Goppa codes (almost 3 times in 
the above example). 



Gallager (LDPC) Codes 

 Symbols in red affect parity bit in 
green through the parity-checks in 
blue. 

𝐻  

𝑐 

𝑠T = 𝐻 𝑐T 



Gallager (LDPC) Codes 

 If the green parity bit is 1, at least 
one of the red bits is wrong. 

𝐻  

𝑐 

𝑠T = 𝐻 𝑐T 



Gallager (LDPC) Codes 

 Symbol in red affects parity bits in 
green through the parity-checks in 
blue. 

𝐻  𝑠T = 𝐻 𝑐T 

𝑐 



Gallager (LDPC) Codes 

 If the red bit is wrong, some of the 
green parity bits will likely reveal it. 

𝐻 𝑠T = 𝐻𝑐T 

𝑐 



Gallager (LDPC) Codes 

 Bit flipping: 

Determine which symbol bits are the 
most suspect (i.e. influence the largest 
number of parity bits in error) by 
counting how many parity errors it 
influences via the parity-check matrix. 

Flip those bits (0 ↔ 1). 

Repeat until no parity error is left (or 
max number of attempts is exceeded). 



Bit-flipping 

 Trouble: 𝑛 symbol bits  𝑛 counters. 

 More trouble: one pass to count and 
find the maximum count value, 
another pass to flip most suspect bits 
and recompute affected parity-check 
bits. 

 Memory-consuming and slow. 



MDPC Codes 

 LDPC codes are susceptible to key recovery 
attacks: by definition, dual codes contain 
too sparse words of small 𝑂 1  weight. 

 Idea: set density 𝑤 and number of errors 𝑡 
near the decodability threshold 𝑂 𝑛  for 

security, but still within the range of bit-
flipping or belief-propagation. 

 Moderate-density parity-check (MDPC) 
codes (Misoczki et al. 2013). 



Short Keys 

 Quasi-cyclic MDPC codes (QC-MDPC) 

 The trapdoor (private) 𝑟 × 𝑛 parity-
check matrix consists of 𝑛0 blocks of 
sparse circulant 𝑟 × 𝑟 matrices, 

𝐻 = [𝐻 0 ∣ ⋯ ∣ 𝐻 𝑛0−1], with 𝑛 = 𝑛0𝑟: 

𝐻  

𝐻 0 … 𝐻 𝑛0−1 = 𝐼 

NB: sparse! 



Short Keys 

 The systematic (public) parity-check 
matrix consists of 𝑛0 blocks of dense 
circulant matrices, 𝐻 = [𝐻0 ∣ ⋯ ∣ 𝐻𝑛0−1], 

with 𝐻𝑖 = 𝐻𝑛0−1
−1 𝐻𝑖

∗, 0 ≤ 𝑖 < 𝑛0 − 1: 

𝐻∗ 

𝐻0 𝐻𝑛0−1 = 𝐼 … 

NB: dense! 



Short Keys 

 Far shorter public (and private) keys 
than previous proposals: 

level n k t w QC-MDPC Goppa shrink RSA 

280 9602 4801 84 90 4801 661122 138× 1024 

2128 19714 9857 134 142 9857 1991880 202× 3072 

2256 65542 32771 264 274 32771 9276241 283× 15360 . 

NB: key size is not the 

only metric (e.g. RSA 

implementation may just 

run out of ROM space 

on many IoT platforms) 

. 



Implementation 

 Storage: 𝑂(𝑛) → 𝑂(1) 

 

 Counter update passes: 2 → 1 

 

 Overall failure rate: 2−20 → ≈ 0 
& 

 

 Small executable footprint & 
still good performance 

 

 Folklore(?) algorithm, useful 
for constrained platforms 

 On-the-fly counter update 

 

 Onset threshold estimation 

 

 Threshold fine tuning & 
decoding failure handling 

 

 Simple supporting algorithms 
e.g. sparse convolution 

 

 Space-efficient convolution 
inverse 



Implementation 

 Portable C 

 Niederreiter code/key generation, 
encoding/encryption and 
decoding/decryption (including 
permutation ranking/unranking) 

 PIC24FJ32GA002-I/SP: 

 8 KiB RAM 

 32 KiB ROM 

 TCP/IP (hence, IoT-ready) 



Implementation 

 All-in-one (full functionality): 

5.6 KiB ROM, 2.6 KiB RAM 

key generation ~0.9 s, 
encoding ~25 ms, 
decoding ~2.8 s. 

 Split implementation: 

1.5 KiB RAM (key generation) 

<1 KiB RAM (encryption/decryption) 



WHAT NEXT? 



Limitations and trends 

 Codes are fine for encryption 👍 

 …but notoriously troublesome for most 
other applications  

 Very recent research trend: other notions 
of distance, e.g. rank metric. 

 NB: the distance notion is exactly what 
distinguishes between codes and lattices! 

 Advanced functionalities (blind signatures, 
identity-based encryption)? 



QUESTIONS? 



APPENDIX 



Ranking and Unranking 
Permutations 

 Some SDP-based cryptosystems 
represent messages as 𝑡-error 
vectors, i.e. vectors (of length 𝑛) 
with Hamming weight 𝑡. 

 

 Mapping messages between error 
vector and normal form involves 
permutation ranking and unranking. 



Ranking and Unranking 
Permutations 
 Let ℬ𝑡 0𝑛 = {𝑢 ∈ 𝔽2

𝑛 ∣ wt 𝑢 = 𝑡}, with 

cardinality 𝑟 = 𝑛
𝑡

≈
𝑛𝑡

𝑡!
 

 A ranking function is a mapping rank: 
ℬ𝑡 0𝑛 → {0…𝑟 − 1} which associates a 
unique index in {0… 𝑟 − 1} to each element 
in ℬ𝑡 0𝑛 . Its inverse is called the 

unranking function. 

 Rank size: lg 𝑟 ≈ 𝑡(lg 𝑛 − lg 𝑡 + 1) bits. 



Ranking and Unranking 
Permutations 

 Ranking and unranking can be done in 
O(n) time (Ruskey 2003, algorithm 4.10). 

 

 Computationally simplest ordering: colex. 

 

 Definition: a1a2…an < b1b2…bm in colex 
order iff an…a2a1 < bm…b2b1 in lex order. 



Colex Ranking 

 Let 𝒜𝑡 𝑛 ≔ {𝑎1 …𝑎𝑡 ∣ 0 ≤ 𝑎1 ≤ ⋯ ≤ 𝑎𝑡 < 𝑛}. 

 

 Sum of binomial coefficients: 

rank 𝑎1 …𝑎𝑡 ≔  𝑎𝑗

𝑗
𝑡
𝑗=1  

 

 Implementation strategy: precompute a 
table of binomial coefficients. 



Colex Unranking 

input: 𝑟 // permutation rank 
for 𝑗 ← 𝑡 downto 1 { 

    // find largest 𝑝 ≥ 𝑗 − 1 such that 𝑝
𝑗

≤ 𝑟 

    𝑝 ← 𝑗 − 1 

    while 𝑝+1
𝑗

≤ 𝑟 { 

        𝑝 ← 𝑝 + 1 
    } 

    𝑟 ← 𝑟 − 𝑝
𝑗

 

    𝑎𝑗 ← 𝑝 

} 
return 𝑎1𝑎2 …𝑎𝑡 



Better Methods 

 Sendrier: 𝑂 𝑛  encoding of words 
with fixed weight. 

 

 Under certain circumstances (e.g. 
Niederreiter key encapsulation) 
ranking/unranking may not even be 
necessary. 


