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1 Definitions and introduction
In an authentication code (Gilbert e.o. 1974, Simons 1992), a sender S repla-
ces a message by a “codeword” so that the intended receiver R can recover
the message and check that it indeed came from this sender.

So, secrecy is not necessarily an issue here.

Sender and receiver share a common key.

The main goal is:
unconditional security
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Unconditional security means:

• No mathematical assumptions like the difficulty of factoring large num-
bers or taking a discrete logarithm.

• The adversary is assumed to have unlimited computer power.

• So, also symmetric cryptosystems are out, because they are vulnerable
to an exhaustive key search attack.

Aspects that will come up are:

• large data files

• multiple use

• secrecy.
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More formally:

Definition 1.1: An authentication code is a triple (M,K; C) and a collection
of mappings fk : M× K → C, k ∈ K, such that for each fixed k in K the
mapping fk is one-to-one.

fk(m) = c. (1)

If privacy is no issue, one often makes the authentication code "systematic".
In this case, fk is of the form

fk(m) = (m; τ k(m)). (2)

Here τ is a mapping fromM×K to some set T and τ k(m) is called the
tag.

The assumption is that the adversary knows the authentication code, but not
the key.



5/46

"Unconditional security"does not mean that an adversary can not fool the
system. If an adversary guesses a correct c, so c = fk(m) for somem under
the right key k, she will get message m accepted by R as authentic from S.

A toy example:
S wants to send a single bit of information (a “yes” or a “no”) toR by means
of a word of length 2. S and R have 4 possible keys available. They make
use of the following scheme:

codeword
00 01 10 11

1 0 1 − −
key 2 1 − 0 −

3 − 0 − 1 message
4 − − 1 0

So, message 1 will be sent as codeword 11 under key 3.
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There are two types of attack.

Impersonation The adversary sends a codeword ĉ and hopes that it gets ac-
cepted.

Substitution The adversary replaces a transmitted codeword c by a different
ĉ and hopes that it gets accepted.

00 01 10 11
1 0 1 − −
2 1 − 0 −
3 − 0 − 1
4 − − 1 0

The probability of a successful impersonation attack is given by PI = 1/2.

The probability of a successful substitution attack is also given by PS = 1/2.

But there is unconditional secrecy!
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The best that an impersonator can do is transmit a codeword that for the
largest fraction of keys will be accepted.

Assuming a uniform distribution on K andM one has:

PI ≥
|M|
|C|

. (3)

because for each key k exactly |M| of the |C| possible codewords represent
an authenticated message fk(m).
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For a substitution attack you can do not better than transmit a codeword that
for the largest fraction of the keys will be accepted that are possible, given
the transmitted codeword.

Again assuming a uniform distribution on K andM, one has:

PS ≥
|M| − 1

|C| − 1
. (4)

because when a codeword is observed, at least |M| − 1 of the remaining
|C| − 1 codewords are still authentic.
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The maximum of the probabilities PI and PS is often called the probability
of successful deception: PD = max{PI, PS}.

Without proof (Johansson 1994) we quote

PD ≥
1√
|K|

. (5)

This bound is called the square root bound. Authentication codes meeting
this bound are called perfect.

We also cite:

Theorem 1.2: A necessary condition for an authentication code to be perfect is
that

|M| ≤
√
|K| + 1. (6)

This implies that keys are twice as long as messages are.
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2 Projective plane construction
This construction is due to E.N. Gilbert, F.J. MacWilliams, and N.J.A. Sloane
(1974) and makes use of projective planes.

Definition 1.3: A projective plane is a pair (P ,L) where P is a finite set of
elements, called points, and L a finite collection of subsets of P , called lines, with
the following properties:

PP0: There are at least four points, no three of which lie on the same line.

PP1: For every pair of points there is a unique line going through them.

PP2: Every pair of lines intersect in a unique point.

Requirement PP0 is there to avoid the trivial construction:
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The best known example of a projective plane is Fano’s plane:

{1
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{3 {4
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{7
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It is an easy exercise to prove the following theorem:

Theorem 2.1: If (P ,L) is a projective plane then a constant n exists, called the
order of the projective plane, such that:

PP3: Every line contains exactly n + 1 points.

PP4: Every point lies on exactly n + 1 lines.

PP5: |P| = |L| = n2 + n + 1.
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And here is a projective plane of order 3:
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Construction 2.2: Let (P ,L) be a projective plane of order n and fix l in L.
Then an authentication code (M,K; C) is defined by

M consists of the points on l,

K consists of all the points not on l,

C consists of all lines except for l,

fk(m) = c, the line c through k and m.

Note that

|M| = n + 1, |K| = n2, |C| = n2 + n.

{

æ æ

æ

ææ

æ

æ



14/46

Theorem 2.3: The projective plane construction defines a perfect authentication
code, i.e.

PI = PS = PD =
1

n
.

Also, (6) is met with equality: |M| = n + 1 =
√
n2 + 1 =

√
|K| + 1.

Indeed, an impersonator can do no better than to select a line l̂ as codeword
that contains as many points outside l (keys) as possible. But this number
is n and is independent of the choice of l̂.

A similar argument holds for a substitution attack.
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Projective planes exist for all orders n that are a prime power (use the finite
field of this size).

{
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The receiver intersects the received line c with l and retrieves message m as
unique point of intersection.

The receiver checks if the secret key k lies on the received line c.

Note that there is no secrecy!

Note also that you can use the same key only once, because the intersection
of two transmitted codewords, c and ĉ, made with the same key, would be
this key!
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3 The affine scheme
The following systematic authentication code has the same drawback as the
projective geometry construction: keys are twice as long as messages.

Theorem 3.1: Let M = T = GF (q), K = {(a, b) | a, b ∈ GF (q)} and
τ :M×K → T defined by

τ a,b(m) = a.m + b.

Then (M,K; T ) is a systematic authentication code with

|M| = |T | = q, |K| = q2.

Moreover, (M,K; T ) is perfect, i.e. PI = PS = PD = 1
q
.
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4 Making A-codes from EC-codes I
To obtain authentication codes with a better ratio between key length and
message length, compromises will have to be made.

T. Johansson (Ph.D. thesis, 1994) gives a construction of authentication co-
des by means of shift register sequences. They are easier to implement than
authentication codes based on projective geometry.

The same author, together with G.A. Kabatianskii and B. Smeets, shows
a year earlier how error-correcting codes (EC-codes) can be used to make
authentication codes (A-codes).

A q-ary EC-code C has parameters (n, |C|, dH)q if it consists of |C| words of
length n overGF (q) such that different words in C have Hamming distance
at least dH.
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In this, so called, q-twisted construction, the EC-code must satisfy a special
property.

Assumption 4.1: EC-code C has the additional property that

c ∈ C ⇒ ∀λ∈GF (q)[c + λ1 ∈ C].

This restriction is less serious than it may look:

• Any linear code containing the all-one vector meets this requirement.

• The vector 1 may be replaced by any other weight n word (this results in
an equivalent authentication code).

This property allows us to define an equivalence relation on C.

c ∼ c′ if and only if c− c′ = λ1 for some λ ∈ GF (q). (7)
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Ingredients of the A-code

Let M be a subcode of the EC-code C, containing one representative from
each equivalence class. Set M has cardinality |C|/q and will correspond to
the setM of messages in the A-code that we construct. Messages will now
be denoted by m.
Note that messagemmay still have redundancy, so it can be more efficiently
represented by an integer in Z|M|.
Let GF (q) = {α1, α2, . . . , αq}.
Define the set V of q-ary vectors of length nq by

V = {v(m) = (m + α11, m + α21, . . . , m + αq1) | m ∈M}. (8)

The set of keys K, of the A-code is given by the coordinate set of the vectors
in V. So |K| = nq.

The authenticator τ k(m) of message m under key k simply is given by the
k-th coordinate of v(m).
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Example 4.2: Let C be the quaternary [4, 3, 2] EC-code, that is the dual code
of the repetition code. It satisfies Assumption 4.1.

M contains 42 messages, one vector from each set {c, c + 1, c + α1, c +
α21}, where c ∈ C and α2 = 1 + α.

Here, we take M as the set of 16 codewords in C with last coordinate equal
to 0.

M = {(c1, c2, c3, c4) ∈ C | c4 = 0}.

The third symbol in each word in M is the sum of the first two, because
each codeword is orthogonal to (1, 1, 1, 1).

So, the first two symbols form a nice representation of the words in M.
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1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
c = m v(m)

0 0 0 0 1 1 1 1 α α α α α2 α2 α2 α2

0 1 1 0 1 0 0 1 α α2 α2 α α2 α α α2

0 α α 0 1 α2 α2 1 α 0 0 α α2 1 1 α2

0 α2 α2 0 1 α α 1 α 1 1 α α2 0 0 α2

1 0 1 0 0 1 0 1 α2 α α2 α α α2 α α2

1 1 0 0 0 0 1 1 α2 α2 α α α α α2 α2

1 α α2 0 0 α2 α 1 α2 0 1 α α 1 0 α2

1 α2 α 0 0 α α2 1 α2 1 0 α α 0 1 α2

α 0 α 0 α2 1 α2 1 0 α 0 α 1 α2 1 α2

α 1 α2 0 α2 0 α 1 0 α2 1 α 1 α 0 α2

α α 0 0 α2 α2 1 1 0 0 α α 1 1 α2 α2

α α2 1 0 α2 α 0 1 0 1 α2 α 1 0 α α2

α2 0 α2 0 α 1 α 1 1 α 1 α 0 α2 0 α2

α2 1 α 0 α 0 α2 1 1 α2 0 α 0 α 1 α2

α2 α 1 0 α α2 0 1 1 0 α2 α 0 1 α α2

α2 α2 0 0 α α 1 1 1 1 α α 0 0 α2 α2



22/46

1 2 3 4 5 6 7 8 9 19 11 12 13 14 15 16
c = m v(m)

0 0 0 0 1 1 1 1 α α α α α2 α2 α2 α2

0 1 1 0 1 0 0 1 α α2 α2 α α2 α α α2

0 α α 0 1 α2 α2 1 α 0 0 α α2 1 1 α2

0 α2 α2 0 1 α α 1 α 1 1 α α2 0 0 α2

1 0 1 0 0 1 0 1 α2 α α2 α α α2 α α2

1 1 0 0 0 0 1 1 α2 α2 α α α α α2 α2

1 α α2 0 0 α2 α 1 α2 0 1 α α 1 0 α2

1 α2 α 0 0 α α2 1 α2 1 0 α α 0 1 α2

α 0 α 0 α2 1 α2 1 0 α 0 α 1 α2 1 α2

α 1 α2 0 α2 0 α 1 0 α2 1 α 1 α 0 α2

α α 0 0 α2 α2 1 1 0 0 α α 1 1 α2 α2

α α2 1 0 α2 α 0 1 0 1 α2 α 1 0 α α2

α2 0 α2 0 α 1 α 1 1 α 1 α 0 α2 0 α2

α2 1 α 0 α 0 α2 1 1 α2 0 α 0 α 1 α2

α2 α 1 0 α α2 0 1 1 0 α2 α 0 1 α α2

α2 α2 0 0 α α 1 1 1 1 α α 0 0 α2 α2
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The authenticator consists of one symbol. For instance, message (1, α)
being the first two symbols of the word (1, α, α2, 0) will get α as authen-
ticator when key 13 is used.

Since each symbol occurs four times in each row of the table, we may con-
clude that PI = 1/4.

Suppose on the other hand that (1, α;α) is an intercepted codeword. From
the table an opponent can conclude that the key that has been used is among
keys 2, 7, 12 and 13.

Looking at the corresponding columns, we observe that for each message
the same authenticator is used at most twice in these columns. So the best
the opponent can do is transmit a message with an authenticator that occurs
twice and obtain PS = 1/2. For instance, he can send (1, 1; 1).
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1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
c = m v(m)

0 0 0 0 1 1 1 1 α α α α α2 α2 α2 α2

0 1 1 0 1 0 0 1 α α2 α2 α α2 α α α2

0 α α 0 1 α2 α2 1 α 0 0 α α2 1 1 α2

0 α2 α2 0 1 α α 1 α 1 1 α α2 0 0 α2

1 0 1 0 0 1 0 1 α2 α α2 α α α2 α α2

1 1 0 0 0 0 1 1 α2 α2 α α α α α2 α2

1 α α2 0 0 α2 α 1 α2 0 1 α α 1 0 α2

1 α2 α 0 0 α α2 1 α2 1 0 α α 0 1 α2

α 0 α 0 α2 1 α2 1 0 α 0 α 1 α2 1 α2

α 1 α2 0 α2 0 α 1 0 α2 1 α 1 α 0 α2

α α 0 0 α2 α2 1 1 0 0 α α 1 1 α2 α2

α α2 1 0 α2 α 0 1 0 1 α2 α 1 0 α α2

α2 0 α2 0 α 1 α 1 1 α 1 α 0 α2 0 α2

α2 1 α 0 α 0 α2 1 1 α2 0 α 0 α 1 α2

α2 α 1 0 α α2 0 1 1 0 α2 α 0 1 α α2

α2 α2 0 0 α α 1 1 1 1 α α 0 0 α2 α2
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1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
m6 1 1 0 0 0 0 1 1 α2 α2 α α α α α2 α2

m7 1 α α2 0 0 α2 α 1 α2 0 1 α α 1 0 α2

Subtract 1× 1 from the first row and α× 1 from the second row.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
m6 − 1× 1 0 0 1 1 1 1 0 0 α α α2 α2 α2 α2 α α
m7 − α× 1 α2 0 1 α α 1 0 α2 1 α α2 0 0 α2 α 1

Note that each
(
1
α

)
in columns {2, 7, 12, 14} is mapped to

(
0
0

)
after subtrac-

ting 1× 1 from the first row and α× 1 from the second row. This amounts
to identical coordinates in the message parts m6 resp. m7. There can not be
more that 2 such places because d = 2.

In general, there cannot be more that n − d identical coordinates between
two codewords. So, a particular tag will not occur more than n− d times in
the restriction of a different row to these n columns.
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Theorem 4.3: Let C be a EC-code with parameters (n, |C|, d), satisfying (7).
Let M represent a subcode of representatives of all equivalence classes.

Then the triple (M = M,K = {1, 2, . . . , nq}; T = GF (q)) and mapping
τ k(m) = (v(m))k defines a systematic A-code with

|M| = |C|/q, |K| = nq, |T | = q,

and

PI = 1/q, PS = 1− d/n.

The cardinalities above are obvious.

Also, it is obvious that PI = 1/q, because in

v(m) = (m + α11, m + α21, . . . , m + αq1)

each value in GF (q) occurs equally often!
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General Class 4.4: Take forC the extended q-ary [q, k+1, q−k] Reed Solomon
code.

Then the q-twisted A-code, obtained from C, has parameters:

|M| = qk, |K| = q2, PI =
1

q
, PS =

k

q
.

Note that with this construction |M| can be much larger than |K| (as oppo-
sed to |M| ≤

√
|K| + 1).

Also, PI satisfies (3) with equality, because PI = 1
q
= |M|

|C| . Indeed, |C| =
q|M|, because every message m can have any value in GF (q) as authenti-
cator.

The price we pay is in PS.

We have PS = k
q
, as opposed to the bound |M|−1|C|−1 ≈

1
q
.
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The method explained in this section is certainly not the only way to make
A-codes from EC-codes. However, it does have the additional property that

each impersonation has the same probability of success

(here 1/q).

An I-equitable code is a systematic A-code with the additional property that

PI =
|{k ∈ K | ∃m∈M[τ (m, k) = τ ]}|

|K|
, for all τ ∈ T . (9)

Note that the construction above satisfies (9).


