ON THE CURVE $Y^{n}=X^{\ell}\left(X^{m}+1\right)$ OVER FINITE FIELDS II

SAEED TAFAZOLIAN AND FERNANDO TORRES

Abstract

Let \mathbf{F} be the finite field of order q^{2}. In this paper we continue the study in [20], [19], [18] of \mathbf{F}-maximal curves defined by equations of type $y^{n}=x^{\ell}\left(x^{m}+1\right)$. For example new results are obtained via certain subcovers of the nonsingular model of $v^{N}=u^{t^{2}}-u$ where $q=t^{\alpha}, \alpha \geq 3$ odd and $N=\left(t^{\alpha}+1\right) /(t+1)$. We do observe that the case $\alpha=3$ is closely related to the Giulietti-Korchmáros curve.

1. Introduction

Let \mathcal{X} be a (projective, geometrically irreducible, nonsingular, algebraic) curve of genus $g=g(\mathcal{X})$ defined over the finite field $\mathbf{F}:=\mathbb{F}_{q^{2}}$ of order q^{2}. We are interested in \mathbf{F} maximal curves; that is, in those curves \mathcal{X} such that its number $\# \mathcal{X}(\mathbf{F})$ of \mathbf{F}-rational points attains the Hasse-Weil upper bound $q^{2}+1+2 q \cdot g$. Apart from their intrinsic interest, these curves are usually the building block of outstanding applications in Coding Theory, Cryptography, Finite Geometry and related areas; see for example [17], [10], [11]. Many results on maximal curves can be seen in [4], [10, Ch. 10] and their references.

As a side remark, a challenging problem arises, namely to find F-maximal curves having a friendly plane model. This led to consider certain Kummer extensions of \mathbf{P}^{1} (the projective line over the algebraic closure of \mathbf{F})

$$
\begin{equation*}
y^{n}=f(x) \tag{1.1}
\end{equation*}
$$

where $n \geq 2$ is an integer and $f(x) \in \mathbf{F}[x]$ is a polynomial such that $y^{n}-f(x)$ is absolutely irreducible. These curves subsume several classical examples of curves over finite fields as we can see for example in [11], [13], [15]. Without loss of generality we assume throughout this paper that $q^{2} \equiv 1(\bmod n)($ see $[15$, p. 51$])$.

In general, the genus of an \mathbf{F}-maximal curve \mathcal{X} satisfies the so-called Ihara's bound: $g(\mathcal{X}) \leq g_{0}:=q(q-1) / 2$ (see e.g. [17, Prop. 5.3.3]); we have equality if and only if \mathcal{X} is F-isomorphic to the Hermitian curve \mathcal{H} over \mathbf{F} which can be defined by the plane curve $v^{q+1}=u^{q+1}+1$ (see [14]). In particular, \mathcal{H} is defined by a curve of type (1.1) and many others examples arise (see e.g. [5], [8]) by taking into consideration a result commonly attributed to J.P. Serre, namely that any curve \mathbf{F}-dominated by \mathcal{H} is also \mathbf{F}-maximal [12,

[^0]Prop. 6]. We do point out that the converse is not true, being the first counterexample described by Giulietti and Korchmáros [9]; as a matter of fact, they constructed an Fmaximal curve which cannot be \mathbf{F}-dominated by \mathcal{H} provided that $q=t^{3}>8$ (nowadays such a curve is simply called the GK-curve).

In [20], [19], [18] we basically considered \mathbf{F}-maximal curves $\mathcal{X}(n, \ell, m)$ with plane models of type (1.1) with $f(x)=x^{\ell}\left(x^{m}+1\right)$, where any of the following conditions hold true:
(a) $\ell=0$ and both n and m divide $q+1$;
(b) $\ell=1$: $n m$ divide $q+1$, or $m \equiv-2(\bmod n)$ and $q \equiv m+1(\bmod n m)$;
(c) $\ell>1$ and $n m$ divide $q+1$.

In this paper we consider such curves $\mathcal{X}(n, \ell, m)$ subject to any of the following complementary conditions:
(A) (See Section 2) Both n and m divide $q+1$, and $\ell=s m$ with $s \geq 1$ an integer;
(B) (See Section 3) n, ℓ, m are positive integers such that n divides $q+1, m$ divides $q-1$, and n divides $\frac{\ell(q-1)}{m}-1$;
(C) (See Section 4) We let $q=t^{\alpha}$ with an integer $\alpha \geq 3$ odd, $N=\left(t^{\alpha}+1\right) /(t+1)$. Thus $\mathcal{X}(n, \ell, m)$ will be certain curves \mathbf{F}-dominated by the non-singular model of $v^{N}=u^{t^{2}}-u$ which in fact it is \mathbf{F}-maximal; see [1]. We notice that the case $\alpha=3$ is closely related to the aforementioned GK-curve; see [7].

Remark 1.1. Let q be as above. If $m=n, n$ divides $q+1$ and $\ell=s m$, then $\mathcal{X}(n, \ell, m)$ is \mathbf{F}-isomorphic to $\mathcal{X}(n, 0, n)$ and this is Case (a) above. Thus we shall consider $m \neq n$ in Case (A).

Remark 1.2. Let us recall that the genus of the curve $\mathcal{X}(n, \ell, m)$ defined by (1.1) with $f(x)=x^{\ell}\left(x^{m}+1\right)$, where we always assume $\operatorname{gcd}(q, n m)=1$, satisfies (see [20, Lemma2.1])

$$
\begin{equation*}
2 g(\mathcal{X})=(n-1) m+2-\operatorname{gcd}(n, \ell)-\operatorname{gcd}(n, \ell+m) . \tag{1.2}
\end{equation*}
$$

Moreover, without loss of generality, we can assume $n>\ell$ since otherwise for $\ell \equiv r$ $(\bmod n)$ with $0 \leq r<n$, the curve $\mathcal{X}(n, \ell, m)$ is \mathbf{F}-isomorphic to $\mathcal{X}(n, r, m)$; see [20, Remark 2.2].

2. Case (A)

In this section we consider the complementary Case (A) above.
Proposition 2.1. Suppose that n, m, s are positive integers such that both n and m divide $q+1$. Let $\ell=s m$. Then $\mathcal{X}(n, \ell, m)$ is an \mathbf{F}-maximal curve.

Proof. We show that \mathcal{X} is \mathbf{F}-dominated by the Hermitian curve $\mathcal{H}: v^{q+1}=u^{q+1}+1$. Indeed, set $j:=\frac{q+1}{n}$ and $k:=\frac{q+1}{m}$. Consider the following morphism

$$
\pi: \mathcal{H} \rightarrow \mathbf{P}^{2}, \quad(u, v, 1) \mapsto(x, y, 1):=\left(u^{k}, u^{s j} v^{j}, 1\right)
$$

which corresponds to the field extension $\mathbf{F}(u, v) \mid \mathbf{F}(x, y)$. Then $y^{n}=x^{s m}\left(x^{m}+1\right)$ is the plane model of $\pi(\mathcal{H})$ and hence $\mathcal{X}(n, \ell, m)$ is an \mathbf{F}-maximal curve.

Example 2.2. Let q, m, s be as in Proposition 2.1. Suppose that $n=q+1$, set $m=$ $(q+1) / b$ with $b=(q+1) / m>s \geq 1$. Then by (1.2) the genus g of the curve $\mathcal{X}(n, \ell, m)$, where $\ell=s m$, satisfies

$$
\begin{gather*}
2 g=m q+2-m \operatorname{gcd}((q+1) / m, s)-m \operatorname{gcd}((q+1) / m, s+1) ; \text { i.e., } \\
2 g=m q+2-m \operatorname{gcd}(b, s)-m \operatorname{gcd}(b, s+1) \tag{2.1}
\end{gather*}
$$

Thus g is of the form $A q+B$ where A, B are rational numbers. Recall that the spectrum for the genera of maximal curves over \mathbf{F} is the set

$$
\mathbf{M}\left(q^{2}\right):=\left\{g \in \mathbb{N}_{0}: \text { there is an } \mathbf{F} \text {-maximal curve of genus } g\right\} .
$$

A basic problem in Curve Theory over Finite Fields concerns the computation of $M\left(q^{2}\right)$; although its calculation is currently out of reach, in general we have

$$
\left\{g_{2}, g_{1}, g_{0}\right\} \subseteq \mathbf{M}\left(q^{2}\right) \subseteq\left[0, g_{2}\right] \cup\left\{g_{1}, g_{0}\right\}
$$

where $g_{2}:=\left\lfloor\left(q^{2}-q+4\right) / 6\right\rfloor, g_{1}:=\left\lfloor(q-1)^{2} / 4\right\rfloor$, and $g_{0}=q(q-1) / 2$ is the aforementioned Ihara's bound (see [10, $\S 10.5]$). Calculations for $q \leq 16$ can be found in [2].

By using formula (2.1) let us work out next some concrete examples.
(I) Let $s=1$. If $b=(q+1) / m>1$ is even (resp. odd), then $2 g=m(q-3)+2$ (resp. $2 g=m(q-2)+2)$, where $1 \leq m<q+1$.
(a) Let $m=1$. Thus if q odd (resp. q even), then $g=(q-1) / 2 \in M\left(q^{2}\right)$ (resp. $\left.g=q / 2 \in \mathbf{M}\left(q^{2}\right)\right)$. These values correspondent to the biggest genus that an \mathbf{F}-maximal hyperelliptic curve can have since in this case, the number of F-rational points is upper bounded by $2\left(q^{2}+1\right)$.
(b) Let $m=2$. Then $b=(q+1) / 2>1$ is even (resp. odd) if and only if $q \equiv 3(\bmod 4)($ resp. $q \equiv 1(\bmod 4))$ and so $g=q-2 \in \mathbf{M}\left(q^{2}\right)$ (resp. $\left.g=q-1 \in \mathbf{M}\left(q^{2}\right)\right)$.
(c) Let $m=3$. Then $b=(q+1) / 3>1$ is even if and only if $q \equiv 5(\bmod 6)$ and so $g=(3 q-7) / 2 \in \mathbf{M}\left(q^{2}\right)$.
(d) Let $m=4$. Then $b=(q+1) / 4>1$ is even (resp. odd) if and only if $q \equiv 7$ $(\bmod 8)($ resp. $q \equiv 3(\bmod 8), q>3)$ and so $g=2 q-5 \in \mathbf{M}\left(q^{2}\right)$ (resp. $\left.g=2 q-3 \in \mathbf{M}\left(q^{2}\right)\right)$.
(II) Let $s=2$ and $b=(q+1) / m>2$. If $b \equiv 1,5(\bmod 6)($ resp. $b \equiv 2,4(\bmod 6))$ (resp. $b \equiv 3(\bmod 6))($ resp. $b \equiv 0(\bmod 6))$, then $2 g=m(q-2)+2($ resp. $2 g=m(q-3)+2)($ resp. $2 g=m(q-4)+2)($ resp. $2 g=m(q-5)+2)$.
(a) In particular, for $m=1$ and $q \equiv 5(\bmod 6), g=(q-3) / 2 \in \mathbf{M}\left(q^{2}\right)$.
(b) Let $m=2$. Then $b=(q+1) / 2 \equiv 4(\bmod 6)$ if and only if $q \equiv 7(\bmod 12)$ and so $g=q-2 \in \mathbf{M}\left(q^{2}\right) ; b=(q+1) / 2 \equiv 3(\bmod 6)$ if and only if $q \equiv 5$
$(\bmod 12)$ and so $g=q-3 \in \mathbf{M}\left(q^{2}\right)$; finally, we have that $b=(q+1) / 2 \equiv 0$ $(\bmod 6)$ if and only if $q \equiv 11(\bmod 12)$ and so $g=q-4 \in \mathbf{M}\left(q^{2}\right)$.

3. Case (B)

In this section we consider the complementary Case (B) stated in the introduction.
Proposition 3.1. Let n, ℓ, m be positive integers such that n divides $q+1$, m divides $q-1$ and n divides also $\ell \frac{q-1}{m}-1$. Then the curve $\mathcal{X}(n, \ell, m)$ is \mathbf{F}-maximal.

Proof. The Hermitian curve \mathcal{H} over \mathbf{F} is also defined by $v^{q+1}=u^{q}+u$ [17, Lemma 6.4.4]. Set $j:=\frac{q+1}{n}, k:=\frac{q-1}{m}$ and $i:=\frac{\ell k-1}{n}$. Consider the following morphism

$$
\pi: \mathcal{H} \rightarrow \mathbf{P}^{2}, \quad(u, v, 1) \mapsto(x, y, 1):=\left(u^{k}, u^{i} v^{j}, 1\right)
$$

Then, after some computations, we find that $\mathcal{X}(n, \ell, m)$ defines $\pi(\mathcal{H})$ and the result follows.

Example 3.2. Let $q \equiv 3(\bmod 4)$ and consider $n=q+1, m=2$ and $\ell=(q-1) / 2$. Then the curve $\mathcal{X}=\mathcal{X}(n, \ell, m)$ is \mathbf{F}-maximal by Proposition 3.1 and $g(\mathcal{X})=q$ by relation (1.2) above; i.e., q is in the spectrum set $\mathbf{M}\left(q^{2}\right)$ defined in Example 2.2 (compare with [5, Remark 6.2]).
In this case we observe also that $\operatorname{gcd}(n, \ell+m)=1$ and hence there is just one point P over $x=\infty$. Then we can compute the Weierstrass semigroup at P, cf. [20, Remark 2.8], and therefore one-point AG-codes having good parameters can be constructed; cf. [16].

Example 3.3. Let $q \equiv 11(\bmod 12)$. Then by Examples 2.2, 3.2

$$
\{(q-3) / 2,(q-1) / 2, q-4, q-2, q\} \subseteq \mathbf{M}\left(q^{2}\right)
$$

This led to the following natural problem.
Problem 3.4. For a given prime power q find an integer $I=I\left(q^{2}\right)$ such that $[0, I] \subseteq$ $\mathbf{M}\left(q^{2}\right)$ but $I+1 \notin \mathbf{M}\left(q^{2}\right)$.

According to the results in [2] for $q \leq 7, I\left(q^{2}\right)=\lfloor q / 2\rfloor$.

4. Case (C)

Here we deal with the complementary Case (C) stated in the introduction. Throughout this section, we fix the following notation.

- t is a prime power and $\alpha \geq 1$ is an integer. We set $q:=t^{\alpha}$ and so $q^{2}-1=$ $\left(t^{2}-1\right) A(t, \alpha)$ with $A(t, \alpha):=\sum_{i=0}^{\alpha-1} t^{2 i}$.
- As above \mathbf{F} stands for the finite field with $q^{2}=t^{2 \alpha}$ elements.
- n, ℓ, m are positive integers.

Proposition 4.1. Notation as above. Suppose in addition that $\alpha \geq 3$ is odd, set $N:=$ $\left(t^{\alpha}+1\right) /(t+1)$. Suppose that m divides $t^{2}-1$, n divides both N and $\ell \frac{\left(t^{2}-1\right)}{m}-1$. Then the curve $\mathcal{Y}(n, \ell, m)$ defined by $y^{n}=x^{\ell}\left(x^{m}-1\right)$ is \mathbf{F}-maximal.

Proof. From [1] we know that the non-singular model $\mathcal{Z}=\mathcal{Z}_{\alpha}$ of the plane curve $v^{N}=$ $u^{t^{2}}-u$ is \mathbf{F}-maximal. Set $a:=\frac{N}{n}, b:=\frac{t^{2}-1}{m}$ and $c:=\frac{\ell b-1}{n}$. Consider the following morphism on the function field $\mathbf{F}(u, v)$ of \mathcal{Z}

$$
\pi:(u, v) \mapsto(x, y):=\left(u^{b}, u^{c} v^{a}\right)
$$

After some computations we find that $\mathcal{Y}(n, \ell, m)$ defines a plane model for the covered function field $\pi(\mathbf{F}(u, u))$ and we are done.

Remark 4.2. Notation as above. Suppose that the two conditions below hold true.
(A) m divides $t^{2}-1$
(B) $n m / \operatorname{gcd}(\ell, m)$ divides $q^{2}-1$.

We shall state sufficient arithmetical conditions on the parameters n, ℓ, m and t in order that the curves $\mathcal{X}(n, \ell, m)$ and $\mathcal{Y}(n, \ell, m)$ defined respectively by $y^{n}=x^{\ell}\left(x^{m}+1\right)$ and $y^{n}=x^{\ell}\left(x^{m}-1\right)$ be indeed \mathbf{F}-isomorphic.
There is $\delta \in \mathbf{F}$ such that $\delta^{m}=-1$ if

$$
\begin{equation*}
\frac{t^{2}-1}{m} \text { is even. } \tag{4.1}
\end{equation*}
$$

Then via $x \mapsto \delta x$ the curve $\mathcal{Y}(n, \ell, m)$ can be defined by $y^{n}=-\delta^{\ell} x^{\ell}\left(x^{m}+1\right)$. Now we look for $\eta \in \mathbf{F}$ such that

$$
\eta^{n}=-\delta^{\ell} ;
$$

we must have thus an equation of type

$$
\eta^{n m / \operatorname{gcd}(\ell, m)}=(-1)^{m / \operatorname{gcd}(\ell, m)}(-1)^{\ell / \operatorname{gcd}(\ell, m)}
$$

Hence $\eta \in \mathbf{F}$ if any of the following conditions hold true.

$$
\begin{equation*}
m / \operatorname{gcd}(\ell, m) \text { and } \ell / \operatorname{gcd}(\ell, m) \text { have the same parity. } \tag{4.2}
\end{equation*}
$$

$$
\begin{equation*}
m / \operatorname{gcd}(\ell, m) \text { and } \ell / \operatorname{gcd}(\ell, m) \text { have different parity but }\left(q^{2}-1\right) \operatorname{gcd}(\ell, m) / n m \text { is even. } \tag{4.3}
\end{equation*}
$$

Therefore if either (4.1) and (4.2), or (4.1) and (4.3) hold true true, then $\mathcal{X}(n, \ell, m)$ and $\mathcal{Y}(n, \ell, m)$ are \mathbf{F}-isormorphic via the morphism $(x, y) \rightarrow(\delta x, \eta y)$.
Notice that $\left(q^{2}-1\right) \operatorname{gcd}(\ell, m) / n m$ is already even if n divides $A(t, \alpha)$ and (4.1) holds.
Example 4.3. Notation as above. We let $\alpha \geq 3$ be odd. We claim that the curve $\mathcal{X}:=\mathcal{X}(n, \ell, m)$ is \mathbf{F}-maximal whenever:
(1) m divides $t^{2}-1$ and $\left(t^{2}-1\right) / m$ is even;
(2) n divides both $N=\left(t^{\alpha}+1\right) /(t+1)$ and $\ell \frac{\left(t^{2}-1\right.}{m}-1$.

Indeed, clearly (4.1) above is true and $n m$ divides $q^{2}-1=\left(t^{2}-1\right) A(t, \alpha)$ since N divides $A(t, \alpha)$; hence either (4.2) or (4.3) is satisfied. Thus by Remark $4.2 \mathcal{X}$ is \mathbf{F}-isomorphic to $\mathcal{Y}(n, \ell, m)$ and \mathcal{X} is \mathbf{F}-maximal by Proposition 4.1.
For instance to compute the genus of $\mathcal{X}=\mathcal{X}(n, \ell, m)$ in case $n=2 \ell-1, m=\left(t^{2}-1\right) / 2$ with t odd, we use (1.2) by observing that $\ell+m=\left(n+t^{2}\right) / 2$; hence $\operatorname{gcd}(n, \ell)=1$ and $\operatorname{gcd}(n, \ell+m)=1$ and so $g(\mathcal{X})=(\ell-1)\left(t^{2}-1\right) / 2$.

Example 4.4. In example 4.3 above let $\ell=4, n=7, m=\left(t^{2}-1\right) / 2$. The hypotheses t odd and 7 divides $N=\left(t^{3}+1\right) /(t+1)=t^{2}-t+1(\alpha=3)$ are fulfilled if and only if $t \equiv 3,5$ $(\bmod 14)$. Hence the curve $\mathcal{X}=\mathcal{X}\left(7,4,\left(t^{2}-1\right) / 2\right)$ defined by $y^{7}=x^{4}\left(x^{\left(t^{2}-1\right) / 2}+1\right)$ is \mathbf{F}-maximal of genus $g(\mathcal{X})=3\left(t^{2}-1\right) / 2$. We recall that $\# \mathbf{F}=t^{6}$.
By construction (proof of Proposition 4.1) \mathcal{X} is \mathbf{F}-covered by \mathcal{Z}_{3} given by $v^{t^{2}-t+1}=u^{t^{2}}-u$ whose genus is $g\left(\mathcal{Z}_{3}\right)=\left(t^{2}-1\right)\left(t^{2}-t\right) / 2$ as follows from (1.2). Now for $t=3, \mathcal{Z}_{3}$ is the curve $v^{7}=u^{9}-v^{3}$ of genus 24 which is the first known example, discovered by Garcia and Stichtenoth, of an F-maximal curve that cannot be Galois-covered by the corresponding Hermitian curve $\mathcal{H}: y^{28}=x^{27}+x$; see [6].

For $t=3, \mathcal{X}=\mathcal{X}(7,4,4)$ is \mathbf{F}-maximal of genus $g(\mathcal{X})=12$. Thus we are naturally led to the following.

Question 4.5. Let \mathbf{F} be the finite field with 3^{6} elements. Is the curve $\mathcal{X}=\mathcal{X}(7,4,4)$ above \mathbf{F}-Galois covered by the Hermitian curve over \mathbf{F} ?

Unfortunately the method in [3, Prop. 5.1] (or in [6]) cannot be applied here.
Remark 4.6. For an AG-code C with parameters $[n(C), k(C), d(C)]$ built on a curve \mathcal{X} over \mathbf{F} (the finite field of order q^{2}) with many points, we have

$$
k(C)+d(C) \geq n(C)+1-g(\mathcal{X})
$$

see e.g. [Cor. 2.2.3]Sti. Thus the performance of C is better whenever $n(C)$ is large compare with $g(\mathcal{X})$. In particular, if the curve is \mathbf{F} maximal and C is a one-point AGcode, the performance of C is better if q^{2} is large compare with g. Therefore, the curves in Example 4.4 are of higher interest in Coding Theory.

Acknowledgments. The authors were in part supported respectively by FAPESP/SPBrazil (Grant 2017/19190-5) and by CNPq-Brazil (Grant 310623/2017-0). The second author thanks P. Chacón for her constant support and friendship.

References

[1] M. Abdón, J. Bezerra and L. Quoos, Further examples of maximal curves, J. Pure Appl. Algebra 213 (2009), 1192-1196.
[2] N. Arakelian, S. Tafazolian and F. Torres, On the spectrum for the genera of maximal curves over small fields, Adv. Math. Commun. 12 (2018), 143-149.
[3] I. Duursma and K-O. Mak, On maximal curves which are not Galois subcovers of the Hermitian curve, Bull. Braz. Math. Soc. New Series 43 (2012), 453-465.
[4] R. Fuhrmann, A. Garcia and F. Torres, On maximal curves, J. Number Theory 67 (1997), 29-51.
[5] A. Garcia, H. Stichtenoth and C. P. Xing, On subfields of Hermitian function fields, Composito Math. 120 (2000), 137-170.
[6] A. Garcia and H. Stichtenoth, A maximal curve which is not a Galois subcover of the Hermitian curve, Bull. Braz. Math. Soc. New Series 37 (2006), 139-152,
[7] A. Garcia, C. Güneri and H. Stichtenoth, A generalization of the Giulietti-Korchmáros maximal cure, Adv. Geom. 10 (2010), 427-434.
[8] M. Giulietti, J.W.P. Hirschfeld, G. Korchmáros and F. Torres, Curves covered by the Hermitian curve, Finite Fields Appl. 12 (2006), 539-564.
[9] M. Giulietti and G. Korchmáros, A new family of maximal curves over a finite field, Math. Ann. 343 (2009), 229-245.
[10] J. W.P, Hirschfeld, G. Korchmáros and F. Torres, "Algebraic curves over a finite field", Princeton Univ. Press, 2008.
[11] N. E. Hurt, "Many Rational Points: Coding Theory and Algebraic Geonetry", Kluwer, 2003.
[12] G. Lachaud, Sommes d'Eisenstein et nombre de points de certaines courbes algébriques sur les corps finis, C.R. Acad. Sci. Paris 305 (1987), 729-732.
[13] R. Lidl and H. Niederreiter, "Finite Fields", Addison-Wesley, 1983.
[14] H-G. Rück and H. Stichtenoth, A characterization of Hermitian function fields over finite fields, J. Reine Angew. Math. 457 (1994), 185-188.
[15] S.A. Stepanov, "Arithmetic of Algebraic Curves", Consultans Bureau, 1994.
[16] H. Stihtenoth, A note on Hermitian codes over $G F\left(q^{2}\right)$, IEEE Trans. Inform. Theory 34 (1988), 1345-1348.
[17] H. Stichtenoth, "Algebraic function fields and codes", second ed., Grad. Texts in Math., vol. 254, Springer-Verlag, 2009.
[18] S. Tafazolian and F. Torres, On maximal curves of Fermat type, Adv. Geom. 13 (2013), 613-617.
[19] S. Tafazolian and F. Torres, On the curve $y^{n}=x^{m}+x$ over finite fields, J. Number Theory 145 (2014), 51-66.
[20] S. Tafazolian and F. Torres, On the curve $Y^{n}=X^{\ell}\left(X^{m}+1\right)$ over finite fields, Adv. Geom. 19 (2019), 263-268.

ImECC-UNiCAMP, R. Sérgio Buarque de Holanda, 651, Cidade Universitária "Zeferino VAZ", 13083-859, Campinas, SP, Brazil.

Email address: tafazolian@ime.unicamp.br
Email address: ftorres@ime.unicamp.br

[^0]: 2010 MSC: 11G20, 11M38, 14G15, 14H25.
 Keywords: finite field, maximal curve, Kummer extension.
 September 14, 2019.

