
ON THE CURVE Y n = Xℓ(Xm + 1) OVER FINITE FIELDS II

SAEED TAFAZOLIAN AND FERNANDO TORRES

Abstract. Let F be the finite field of order q2. In this paper we continue the study

in [20], [19], [18] of F-maximal curves defined by equations of type yn = xℓ(xm + 1).

For example new results are obtained via certain subcovers of the nonsingular model of

vN = ut
2

− u where q = tα, α ≥ 3 odd and N = (tα + 1)/(t + 1). We do observe that

the case α = 3 is closely related to the Giulietti-Korchmáros curve.

1. Introduction

Let X be a (projective, geometrically irreducible, nonsingular, algebraic) curve of genus

g = g(X ) defined over the finite field F := Fq2 of order q2. We are interested in F-

maximal curves; that is, in those curves X such that its number #X (F) of F-rational

points attains the Hasse-Weil upper bound q2 + 1 + 2q · g. Apart from their intrinsic

interest, these curves are usually the building block of outstanding applications in Coding

Theory, Cryptography, Finite Geometry and related areas; see for example [17], [10], [11].

Many results on maximal curves can be seen in [4], [10, Ch. 10] and their references.

As a side remark, a challenging problem arises, namely to find F-maximal curves having

a friendly plane model. This led to consider certain Kummer extensions of P1 (the

projective line over the algebraic closure of F)

(1.1) yn = f(x) ,

where n ≥ 2 is an integer and f(x) ∈ F[x] is a polynomial such that yn−f(x) is absolutely

irreducible. These curves subsume several classical examples of curves over finite fields as

we can see for example in [11], [13], [15]. Without loss of generality we assume throughout

this paper that q2 ≡ 1 (mod n) (see [15, p. 51]).

In general, the genus of an F-maximal curve X satisfies the so-called Ihara’s bound:

g(X ) ≤ g0 := q(q − 1)/2 (see e.g. [17, Prop. 5.3.3]); we have equality if and only if X is

F-isomorphic to the Hermitian curve H over F which can be defined by the plane curve

vq+1 = uq+1 + 1 (see [14]). In particular, H is defined by a curve of type (1.1) and many

others examples arise (see e.g. [5], [8]) by taking into consideration a result commonly

attributed to J.P. Serre, namely that any curve F-dominated by H is also F-maximal [12,
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Prop. 6]. We do point out that the converse is not true, being the first counterexample

described by Giulietti and Korchmáros [9]; as a matter of fact, they constructed an F-

maximal curve which cannot be F-dominated by H provided that q = t3 > 8 (nowadays

such a curve is simply called the GK-curve).

In [20], [19], [18] we basically considered F-maximal curves X (n, ℓ,m) with plane models

of type (1.1) with f(x) = xℓ(xm + 1), where any of the following conditions hold true:

(a) ℓ = 0 and both n and m divide q + 1;

(b) ℓ = 1: nm divide q + 1, or m ≡ −2 (mod n) and q ≡ m+ 1 (mod nm);

(c) ℓ > 1 and nm divide q + 1.

In this paper we consider such curves X (n, ℓ,m) subject to any of the following comple-

mentary conditions:

(A) (See Section 2) Both n and m divide q + 1, and ℓ = sm with s ≥ 1 an integer;

(B) (See Section 3) n, ℓ,m are positive integers such that n divides q + 1, m divides

q − 1, and n divides ℓ(q−1)
m

− 1;

(C) (See Section 4) We let q = tα with an integer α ≥ 3 odd, N = (tα + 1)/(t + 1).

Thus X (n, ℓ,m) will be certain curves F-dominated by the non-singular model of

vN = ut2 − u which in fact it is F-maximal; see [1]. We notice that the case α = 3

is closely related to the aforementioned GK-curve; see [7].

Remark 1.1. Let q be as above. If m = n, n divides q + 1 and ℓ = sm, then X (n, ℓ,m)

is F-isomorphic to X (n, 0, n) and this is Case (a) above. Thus we shall consider m 6= n

in Case (A).

Remark 1.2. Let us recall that the genus of the curve X (n, ℓ,m) defined by (1.1) with

f(x) = xℓ(xm+1), where we always assume gcd(q, nm) = 1, satisfies (see [20, Lemma2.1])

(1.2) 2g(X ) = (n− 1)m+ 2− gcd(n, ℓ)− gcd(n, ℓ+m) .

Moreover, without loss of generality, we can assume n > ℓ since otherwise for ℓ ≡ r

(mod n) with 0 ≤ r < n, the curve X (n, ℓ,m) is F-isomorphic to X (n, r,m); see [20,

Remark 2.2].

2. Case (A)

In this section we consider the complementary Case (A) above.

Proposition 2.1. Suppose that n,m, s are positive integers such that both n and m divide

q + 1. Let ℓ = sm. Then X (n, ℓ,m) is an F-maximal curve.

Proof. We show that X is F-dominated by the Hermitian curve H : vq+1 = uq+1 + 1.

Indeed, set j := q+1
n

and k := q+1
m

. Consider the following morphism

π : H → P2, (u, v, 1) 7→ (x, y, 1) := (uk, usjvj, 1)
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which corresponds to the field extension F(u, v)|F(x, y). Then yn = xsm(xm + 1) is the

plane model of π(H) and hence X (n, ℓ,m) is an F-maximal curve. �

Example 2.2. Let q,m, s be as in Proposition 2.1. Suppose that n = q + 1, set m =

(q + 1)/b with b = (q + 1)/m > s ≥ 1. Then by (1.2) the genus g of the curve X (n, ℓ,m),

where ℓ = sm, satisfies

2g = mq + 2−m gcd((q + 1)/m, s)−m gcd((q + 1)/m, s+ 1) ; i.e.,

(2.1) 2g = mq + 2−m gcd(b, s)−m gcd(b, s+ 1) .

Thus g is of the form Aq+B where A,B are rational numbers. Recall that the spectrum

for the genera of maximal curves over F is the set

M(q2) := {g ∈ N0 : there is an F-maximal curve of genus g} .

A basic problem in Curve Theory over Finite Fields concerns the computation of M(q2);

although its calculation is currently out of reach, in general we have

{g2, g1, g0} ⊆ M(q2) ⊆ [0, g2] ∪ {g1, g0} ,

where g2 := ⌊(q2−q+4)/6⌋, g1 := ⌊(q−1)2/4⌋, and g0 = q(q−1)/2 is the aforementioned

Ihara’s bound (see [10, §10.5]). Calculations for q ≤ 16 can be found in [2].

By using formula (2.1) let us work out next some concrete examples.

(I) Let s = 1. If b = (q+1)/m > 1 is even (resp. odd), then 2g = m(q− 3)+ 2 (resp.

2g = m(q − 2) + 2), where 1 ≤ m < q + 1.

(a) Let m = 1. Thus if q odd (resp. q even), then g = (q − 1)/2 ∈ M(q2) (resp.

g = q/2 ∈ M(q2)). These values correspondent to the biggest genus that

an F-maximal hyperelliptic curve can have since in this case, the number of

F-rational points is upper bounded by 2(q2 + 1).

(b) Let m = 2. Then b = (q + 1)/2 > 1 is even (resp. odd) if and only if

q ≡ 3 (mod 4) (resp. q ≡ 1 (mod 4)) and so g = q − 2 ∈ M(q2) (resp.

g = q − 1 ∈ M(q2)).

(c) Let m = 3. Then b = (q + 1)/3 > 1 is even if and only if q ≡ 5 (mod 6) and

so g = (3q − 7)/2 ∈ M(q2).

(d) Let m = 4. Then b = (q + 1)/4 > 1 is even (resp. odd) if and only if q ≡ 7

(mod 8) (resp. q ≡ 3 (mod 8), q > 3) and so g = 2q − 5 ∈ M(q2) (resp.

g = 2q − 3 ∈ M(q2)).

(II) Let s = 2 and b = (q + 1)/m > 2. If b ≡ 1, 5 (mod 6) (resp. b ≡ 2, 4 (mod 6))

(resp. b ≡ 3 (mod 6)) (resp. b ≡ 0 (mod 6)), then 2g = m(q − 2) + 2 (resp.

2g = m(q − 3) + 2) (resp. 2g = m(q − 4) + 2) (resp. 2g = m(q − 5) + 2).

(a) In particular, for m = 1 and q ≡ 5 (mod 6), g = (q − 3)/2 ∈ M(q2).

(b) Let m = 2. Then b = (q + 1)/2 ≡ 4 (mod 6) if and only if q ≡ 7 (mod 12)

and so g = q − 2 ∈ M(q2); b = (q + 1)/2 ≡ 3 (mod 6) if and only if q ≡ 5
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(mod 12) and so g = q − 3 ∈ M(q2); finally, we have that b = (q + 1)/2 ≡ 0

(mod 6) if and only if q ≡ 11 (mod 12) and so g = q − 4 ∈ M(q2).

3. Case (B)

In this section we consider the complementary Case (B) stated in the introduction.

Proposition 3.1. Let n, ℓ,m be positive integers such that n divides q+1, m divides q−1

and n divides also ℓ q−1
m

− 1. Then the curve X (n, ℓ,m) is F-maximal.

Proof. The Hermitian curve H over F is also defined by vq+1 = uq + u [17, Lemma 6.4.4].

Set j := q+1
n
, k := q−1

m
and i := ℓk−1

n
. Consider the following morphism

π : H → P2, (u, v, 1) 7→ (x, y, 1) := (uk, uivj, 1) .

Then, after some computations, we find that X (n, ℓ,m) defines π(H) and the result

follows. �

Example 3.2. Let q ≡ 3 (mod 4) and consider n = q + 1, m = 2 and ℓ = (q − 1)/2.

Then the curve X = X (n, ℓ,m) is F-maximal by Proposition 3.1 and g(X ) = q by relation

(1.2) above; i.e., q is in the spectrum set M(q2) defined in Example 2.2 (compare with [5,

Remark 6.2]).

In this case we observe also that gcd(n, ℓ +m) = 1 and hence there is just one point P

over x = ∞. Then we can compute the Weierstrass semigroup at P , cf. [20, Remark 2.8],

and therefore one-point AG-codes having good parameters can be constructed; cf. [16].

Example 3.3. Let q ≡ 11 (mod 12). Then by Examples 2.2, 3.2

{(q − 3)/2, (q − 1)/2, q − 4, q − 2, q} ⊆ M(q2) .

This led to the following natural problem.

Problem 3.4. For a given prime power q find an integer I = I(q2) such that [0, I] ⊆

M(q2) but I + 1 6∈ M(q2).

According to the results in [2] for q ≤ 7, I(q2) = ⌊q/2⌋.

4. Case (C)

Here we deal with the complementary Case (C) stated in the introduction. Throughout

this section, we fix the following notation.

• t is a prime power and α ≥ 1 is an integer. We set q := tα and so q2 − 1 =

(t2 − 1)A(t, α) with A(t, α) :=
∑α−1

i=0 t2i.

• As above F stands for the finite field with q2 = t2α elements.

• n, ℓ,m are positive integers.
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Proposition 4.1. Notation as above. Suppose in addition that α ≥ 3 is odd, set N :=

(tα + 1)/(t + 1). Suppose that m divides t2 − 1, n divides both N and ℓ (t
2
−1)
m

− 1. Then

the curve Y(n, ℓ,m) defined by yn = xℓ(xm − 1) is F-maximal.

Proof. From [1] we know that the non-singular model Z = Zα of the plane curve vN =

ut2 − u is F-maximal. Set a := N
n
, b := t2−1

m
and c := ℓb−1

n
. Consider the following

morphism on the function field F(u, v) of Z

π : (u, v) 7→ (x, y) := (ub, ucva) .

After some computations we find that Y(n, ℓ,m) defines a plane model for the covered

function field π(F(u, u)) and we are done. �

Remark 4.2. Notation as above. Suppose that the two conditions below hold true.

(A) m divides t2 − 1

(B) nm/ gcd(ℓ,m) divides q2 − 1.

We shall state sufficient arithmetical conditions on the parameters n, ℓ,m and t in order

that the curves X (n, ℓ,m) and Y(n, ℓ,m) defined respectively by yn = xℓ(xm + 1) and

yn = xℓ(xm − 1) be indeed F-isomorphic.

There is δ ∈ F such that δm = −1 if

(4.1)
t2 − 1

m
is even .

Then via x 7→ δx the curve Y(n, ℓ,m) can be defined by yn = −δℓxℓ(xm + 1). Now we

look for η ∈ F such that

ηn = −δℓ ;

we must have thus an equation of type

ηnm/ gcd(ℓ,m) = (−1)m/ gcd(ℓ,m)(−1)ℓ/ gcd(ℓ,m) .

Hence η ∈ F if any of the following conditions hold true.

(4.2) m/ gcd(ℓ,m) and ℓ/ gcd(ℓ,m) have the same parity .

(4.3)

m/ gcd(ℓ,m) and ℓ/ gcd(ℓ,m) have different parity but (q2 − 1) gcd(ℓ,m)/nm is even .

Therefore if either (4.1) and (4.2), or (4.1) and (4.3) hold true true, then X (n, ℓ,m) and

Y(n, ℓ,m) are F-isormorphic via the morphism (x, y) → (δx, ηy).

Notice that (q2 − 1) gcd(ℓ,m)/nm is already even if n divides A(t, α) and (4.1) holds.

Example 4.3. Notation as above. We let α ≥ 3 be odd. We claim that the curve

X := X (n, ℓ,m) is F-maximal whenever:

(1) m divides t2 − 1 and (t2 − 1)/m is even;

(2) n divides both N = (tα + 1)/(t+ 1) and ℓ (t
2
−1
m

− 1.
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Indeed, clearly (4.1) above is true and nm divides q2− 1 = (t2− 1)A(t, α) since N divides

A(t, α); hence either (4.2) or (4.3) is satisfied. Thus by Remark 4.2 X is F-isomorphic to

Y(n, ℓ,m) and X is F-maximal by Proposition 4.1.

For instance to compute the genus of X = X (n, ℓ,m) in case n = 2ℓ− 1, m = (t2 − 1)/2

with t odd, we use (1.2) by observing that ℓ +m = (n + t2)/2; hence gcd(n, ℓ) = 1 and

gcd(n, ℓ+m) = 1 and so g(X ) = (ℓ− 1)(t2 − 1)/2.

Example 4.4. In example 4.3 above let ℓ = 4, n = 7, m = (t2 − 1)/2. The hypotheses t

odd and 7 divides N = (t3+1)/(t+1) = t2−t+1 (α = 3) are fulfilled if and only if t ≡ 3, 5

(mod 14). Hence the curve X = X (7, 4, (t2 − 1)/2) defined by y7 = x4(x(t2−1)/2 + 1) is

F-maximal of genus g(X ) = 3(t2 − 1)/2. We recall that #F = t6.

By construction (proof of Proposition 4.1) X is F-covered by Z3 given by vt
2
−t+1 = ut2−u

whose genus is g(Z3) = (t2 − 1)(t2 − t)/2 as follows from (1.2). Now for t = 3, Z3 is the

curve v7 = u9−v3 of genus 24 which is the first known example, discovered by Garcia and

Stichtenoth, of an F-maximal curve that cannot be Galois-covered by the corresponding

Hermitian curve H : y28 = x27 + x; see [6].

For t = 3, X = X (7, 4, 4) is F-maximal of genus g(X ) = 12. Thus we are naturally led to

the following.

Question 4.5. Let F be the finite field with 36 elements. Is the curve X = X (7, 4, 4)

above F-Galois covered by the Hermitian curve over F?

Unfortunately the method in [3, Prop. 5.1] (or in [6]) cannot be applied here.

Remark 4.6. For an AG-code C with parameters [n(C), k(C), d(C)] built on a curve X

over F (the finite field of order q2) with many points, we have

k(C) + d(C) ≥ n(C) + 1− g(X ) ;

see e.g. [Cor. 2.2.3]Sti. Thus the performance of C is better whenever n(C) is large

compare with g(X ). In particular, if the curve is F maximal and C is a one-point AG-

code, the performance of C is better if q2 is large compare with g. Therefore, the curves

in Example 4.4 are of higher interest in Coding Theory.
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