ON THE CURVE $Y^n = X^{\ell}(X^m + 1)$ OVER FINITE FIELDS II

SAEED TAFAZOLIAN AND FERNANDO TORRES

ABSTRACT. Let **F** be the finite field of order q^2 . In this paper we continue the study in [20], [19], [18] of **F**-maximal curves defined by equations of type $y^n = x^{\ell}(x^m + 1)$. For example new results are obtained via certain subcovers of the nonsingular model of $v^N = u^{t^2} - u$ where $q = t^{\alpha}$, $\alpha \ge 3$ odd and $N = (t^{\alpha} + 1)/(t + 1)$. We do observe that the case $\alpha = 3$ is closely related to the Giulietti-Korchmáros curve.

1. INTRODUCTION

Let \mathcal{X} be a (projective, geometrically irreducible, nonsingular, algebraic) curve of genus $g = g(\mathcal{X})$ defined over the finite field $\mathbf{F} := \mathbb{F}_{q^2}$ of order q^2 . We are interested in \mathbf{F} maximal curves; that is, in those curves \mathcal{X} such that its number $\#\mathcal{X}(\mathbf{F})$ of \mathbf{F} -rational
points attains the Hasse-Weil upper bound $q^2 + 1 + 2q \cdot g$. Apart from their intrinsic
interest, these curves are usually the building block of outstanding applications in Coding
Theory, Cryptography, Finite Geometry and related areas; see for example [17], [10], [11].
Many results on maximal curves can be seen in [4], [10, Ch. 10] and their references.

As a side remark, a challenging problem arises, namely to find **F**-maximal curves having a friendly plane model. This led to consider certain Kummer extensions of \mathbf{P}^1 (the projective line over the algebraic closure of **F**)

$$(1.1) y^n = f(x)$$

where $n \ge 2$ is an integer and $f(x) \in \mathbf{F}[x]$ is a polynomial such that $y^n - f(x)$ is absolutely irreducible. These curves subsume several classical examples of curves over finite fields as we can see for example in [11], [13], [15]. Without loss of generality we assume throughout this paper that $q^2 \equiv 1 \pmod{n}$ (see [15, p. 51]).

In general, the genus of an **F**-maximal curve \mathcal{X} satisfies the so-called Ihara's bound: $g(\mathcal{X}) \leq g_0 := q(q-1)/2$ (see e.g. [17, Prop. 5.3.3]); we have equality if and only if \mathcal{X} is **F**-isomorphic to the Hermitian curve \mathcal{H} over **F** which can be defined by the plane curve $v^{q+1} = u^{q+1} + 1$ (see [14]). In particular, \mathcal{H} is defined by a curve of type (1.1) and many others examples arise (see e.g. [5], [8]) by taking into consideration a result commonly attributed to J.P. Serre, namely that any curve **F**-dominated by \mathcal{H} is also **F**-maximal [12,

²⁰¹⁰ MSC: 11G20, 11M38, 14G15, 14H25.

Keywords: finite field, maximal curve, Kummer extension. September 14, 2019.

Prop. 6]. We do point out that the converse is not true, being the first counterexample described by Giulietti and Korchmáros [9]; as a matter of fact, they constructed an **F**-maximal curve which cannot be **F**-dominated by \mathcal{H} provided that $q = t^3 > 8$ (nowadays such a curve is simply called *the GK-curve*).

In [20], [19], [18] we basically considered **F**-maximal curves $\mathcal{X}(n, \ell, m)$ with plane models of type (1.1) with $f(x) = x^{\ell}(x^m + 1)$, where any of the following conditions hold true:

- (a) $\ell = 0$ and both n and m divide q + 1;
- (b) $\ell = 1$: nm divide q + 1, or $m \equiv -2 \pmod{n}$ and $q \equiv m + 1 \pmod{nm}$;
- (c) $\ell > 1$ and nm divide q + 1.

In this paper we consider such curves $\mathcal{X}(n, \ell, m)$ subject to any of the following complementary conditions:

- (A) (See Section 2) Both n and m divide q + 1, and $\ell = sm$ with $s \ge 1$ an integer;
- (B) (See Section 3) n, ℓ, m are positive integers such that n divides q + 1, m divides q 1, and n divides $\frac{\ell(q-1)}{m} 1$;
- (C) (See Section 4) We let $q = t^{\alpha}$ with an integer $\alpha \geq 3$ odd, $N = (t^{\alpha} + 1)/(t + 1)$. Thus $\mathcal{X}(n, \ell, m)$ will be certain curves **F**-dominated by the non-singular model of $v^N = u^{t^2} - u$ which in fact it is **F**-maximal; see [1]. We notice that the case $\alpha = 3$ is closely related to the aforementioned GK-curve; see [7].

Remark 1.1. Let q be as above. If m = n, n divides q + 1 and $\ell = sm$, then $\mathcal{X}(n, \ell, m)$ is **F**-isomorphic to $\mathcal{X}(n, 0, n)$ and this is Case (a) above. Thus we shall consider $m \neq n$ in Case (A).

Remark 1.2. Let us recall that the genus of the curve $\mathcal{X}(n, \ell, m)$ defined by (1.1) with $f(x) = x^{\ell}(x^m + 1)$, where we always assume gcd(q, nm) = 1, satisfies (see [20, Lemma2.1])

(1.2)
$$2g(\mathcal{X}) = (n-1)m + 2 - \gcd(n,\ell) - \gcd(n,\ell+m).$$

Moreover, without loss of generality, we can assume $n > \ell$ since otherwise for $\ell \equiv r \pmod{n}$ with $0 \leq r < n$, the curve $\mathcal{X}(n, \ell, m)$ is **F**-isomorphic to $\mathcal{X}(n, r, m)$; see [20, Remark 2.2].

2. Case (A)

In this section we consider the complementary Case (A) above.

Proposition 2.1. Suppose that n, m, s are positive integers such that both n and m divide q + 1. Let $\ell = sm$. Then $\mathcal{X}(n, \ell, m)$ is an **F**-maximal curve.

Proof. We show that \mathcal{X} is **F**-dominated by the Hermitian curve $\mathcal{H} : v^{q+1} = u^{q+1} + 1$. Indeed, set $j := \frac{q+1}{n}$ and $k := \frac{q+1}{m}$. Consider the following morphism

$$\pi: \mathcal{H} \to \mathbf{P}^2, \quad (u, v, 1) \mapsto (x, y, 1) := (u^k, u^{sj}v^j, 1)$$

which corresponds to the field extension $\mathbf{F}(u, v) | \mathbf{F}(x, y)$. Then $y^n = x^{sm}(x^m + 1)$ is the plane model of $\pi(\mathcal{H})$ and hence $\mathcal{X}(n, \ell, m)$ is an **F**-maximal curve. \Box

Example 2.2. Let q, m, s be as in Proposition 2.1. Suppose that n = q + 1, set m = (q+1)/b with $b = (q+1)/m > s \ge 1$. Then by (1.2) the genus g of the curve $\mathcal{X}(n, \ell, m)$, where $\ell = sm$, satisfies

$$2g = mq + 2 - m \gcd((q+1)/m, s) - m \gcd((q+1)/m, s+1); \quad \text{i.e.},$$

(2.1)
$$2g = mq + 2 - m \gcd(b, s) - m \gcd(b, s+1).$$

Thus g is of the form Aq + B where A, B are rational numbers. Recall that the spectrum for the genera of maximal curves over **F** is the set

 $\mathbf{M}(q^2) := \{g \in \mathbb{N}_0 : \text{there is an } \mathbf{F}\text{-maximal curve of genus } g\}.$

A basic problem in Curve Theory over Finite Fields concerns the computation of $M(q^2)$; although its calculation is currently out of reach, in general we have

$$\{g_2, g_1, g_0\} \subseteq \mathbf{M}(q^2) \subseteq [0, g_2] \cup \{g_1, g_0\},\$$

where $g_2 := \lfloor (q^2 - q + 4)/6 \rfloor$, $g_1 := \lfloor (q - 1)^2/4 \rfloor$, and $g_0 = q(q - 1)/2$ is the aforementioned Ihara's bound (see [10, §10.5]). Calculations for $q \leq 16$ can be found in [2].

By using formula (2.1) let us work out next some concrete examples.

- (I) Let s = 1. If b = (q+1)/m > 1 is even (resp. odd), then 2g = m(q-3) + 2 (resp. 2g = m(q-2) + 2), where $1 \le m < q + 1$.
 - (a) Let m = 1. Thus if q odd (resp. q even), then $g = (q 1)/2 \in M(q^2)$ (resp. $g = q/2 \in \mathbf{M}(q^2)$). These values correspondent to the biggest genus that an **F**-maximal hyperelliptic curve can have since in this case, the number of **F**-rational points is upper bounded by $2(q^2 + 1)$.
 - (b) Let m = 2. Then b = (q+1)/2 > 1 is even (resp. odd) if and only if $q \equiv 3 \pmod{4}$ (resp. $q \equiv 1 \pmod{4}$) and so $g = q 2 \in \mathbf{M}(q^2)$ (resp. $g = q 1 \in \mathbf{M}(q^2)$).
 - (c) Let m = 3. Then b = (q+1)/3 > 1 is even if and only if $q \equiv 5 \pmod{6}$ and so $g = (3q-7)/2 \in \mathbf{M}(q^2)$.
 - (d) Let m = 4. Then b = (q+1)/4 > 1 is even (resp. odd) if and only if $q \equiv 7 \pmod{8}$ (resp. $q \equiv 3 \pmod{8}$, q > 3) and so $g = 2q 5 \in \mathbf{M}(q^2)$ (resp. $g = 2q 3 \in \mathbf{M}(q^2)$).
- (II) Let s = 2 and b = (q+1)/m > 2. If $b \equiv 1,5 \pmod{6}$ (resp. $b \equiv 2,4 \pmod{6}$) (resp. $b \equiv 3 \pmod{6}$) (resp. $b \equiv 0 \pmod{6}$), then 2g = m(q-2) + 2 (resp. 2g = m(q-3) + 2) (resp. 2g = m(q-4) + 2) (resp. 2g = m(q-5) + 2).
 - (a) In particular, for m = 1 and $q \equiv 5 \pmod{6}$, $g = (q 3)/2 \in \mathbf{M}(q^2)$.
 - (b) Let m = 2. Then $b = (q+1)/2 \equiv 4 \pmod{6}$ if and only if $q \equiv 7 \pmod{12}$ and so $g = q - 2 \in \mathbf{M}(q^2)$; $b = (q+1)/2 \equiv 3 \pmod{6}$ if and only if $q \equiv 5$

S. TAFAZOLIAN AND F. TORRES

(mod 12) and so $g = q - 3 \in \mathbf{M}(q^2)$; finally, we have that $b = (q+1)/2 \equiv 0$ (mod 6) if and only if $q \equiv 11 \pmod{12}$ and so $g = q - 4 \in \mathbf{M}(q^2)$.

3. Case (B)

In this section we consider the complementary Case (B) stated in the introduction.

Proposition 3.1. Let n, ℓ, m be positive integers such that n divides q+1, m divides q-1and n divides also $\ell \frac{q-1}{m} - 1$. Then the curve $\mathcal{X}(n, \ell, m)$ is **F**-maximal.

Proof. The Hermitian curve \mathcal{H} over \mathbf{F} is also defined by $v^{q+1} = u^q + u$ [17, Lemma 6.4.4]. Set $j := \frac{q+1}{n}$, $k := \frac{q-1}{m}$ and $i := \frac{\ell k - 1}{n}$. Consider the following morphism

 $\pi: \mathcal{H} \to \mathbf{P}^2, \quad (u, v, 1) \mapsto (x, y, 1) := (u^k, u^i v^j, 1).$

Then, after some computations, we find that $\mathcal{X}(n, \ell, m)$ defines $\pi(\mathcal{H})$ and the result follows.

Example 3.2. Let $q \equiv 3 \pmod{4}$ and consider n = q + 1, m = 2 and $\ell = (q - 1)/2$. Then the curve $\mathcal{X} = \mathcal{X}(n, \ell, m)$ is **F**-maximal by Proposition 3.1 and $g(\mathcal{X}) = q$ by relation (1.2) above; i.e., q is in the spectrum set $\mathbf{M}(q^2)$ defined in Example 2.2 (compare with [5, Remark 6.2]).

In this case we observe also that $gcd(n, \ell + m) = 1$ and hence there is just one point P over $x = \infty$. Then we can compute the Weierstrass semigroup at P, cf. [20, Remark 2.8], and therefore one-point AG-codes having good parameters can be constructed; cf. [16].

Example 3.3. Let $q \equiv 11 \pmod{12}$. Then by Examples 2.2, 3.2

$$\{(q-3)/2, (q-1)/2, q-4, q-2, q\} \subseteq \mathbf{M}(q^2).$$

This led to the following natural problem.

Problem 3.4. For a given prime power q find an integer $I = I(q^2)$ such that $[0, I] \subseteq \mathbf{M}(q^2)$ but $I + 1 \notin \mathbf{M}(q^2)$.

According to the results in [2] for $q \leq 7$, $I(q^2) = \lfloor q/2 \rfloor$.

4. Case
$$(C)$$

Here we deal with the complementary Case (C) stated in the introduction. Throughout this section, we fix the following notation.

- t is a prime power and $\alpha \geq 1$ is an integer. We set $q := t^{\alpha}$ and so $q^2 1 = (t^2 1)A(t, \alpha)$ with $A(t, \alpha) := \sum_{i=0}^{\alpha 1} t^{2i}$.
- As above **F** stands for the finite field with $q^2 = t^{2\alpha}$ elements.
- n, ℓ, m are positive integers.

Proposition 4.1. Notation as above. Suppose in addition that $\alpha \geq 3$ is odd, set $N := (t^{\alpha} + 1)/(t + 1)$. Suppose that m divides $t^2 - 1$, n divides both N and $\ell \frac{(t^2 - 1)}{m} - 1$. Then the curve $\mathcal{Y}(n, \ell, m)$ defined by $y^n = x^{\ell}(x^m - 1)$ is **F**-maximal.

Proof. From [1] we know that the non-singular model $\mathcal{Z} = \mathcal{Z}_{\alpha}$ of the plane curve $v^{N} = u^{t^{2}} - u$ is **F**-maximal. Set $a := \frac{N}{n}$, $b := \frac{t^{2}-1}{m}$ and $c := \frac{\ell b-1}{n}$. Consider the following morphism on the function field $\mathbf{F}(u, v)$ of \mathcal{Z}

$$\pi: (u,v) \mapsto (x,y) := (u^b, u^c v^a).$$

After some computations we find that $\mathcal{Y}(n, \ell, m)$ defines a plane model for the covered function field $\pi(\mathbf{F}(u, u))$ and we are done.

Remark 4.2. Notation as above. Suppose that the two conditions below hold true.

- (A) m divides $t^2 1$
- (B) $nm/\gcd(\ell,m)$ divides $q^2 1$.

We shall state sufficient arithmetical conditions on the parameters n, ℓ, m and t in order that the curves $\mathcal{X}(n, \ell, m)$ and $\mathcal{Y}(n, \ell, m)$ defined respectively by $y^n = x^{\ell}(x^m + 1)$ and $y^n = x^{\ell}(x^m - 1)$ be indeed **F**-isomorphic.

There is $\delta \in \mathbf{F}$ such that $\delta^m = -1$ if

(4.1)
$$\frac{t^2 - 1}{m} \text{ is even}.$$

Then via $x \mapsto \delta x$ the curve $\mathcal{Y}(n, \ell, m)$ can be defined by $y^n = -\delta^\ell x^\ell (x^m + 1)$. Now we look for $\eta \in \mathbf{F}$ such that

$$\eta^n = -\delta^\ell;$$

we must have thus an equation of type

1

$$\eta^{mm/\gcd(\ell,m)} = (-1)^{m/\gcd(\ell,m)} (-1)^{\ell/\gcd(\ell,m)}$$

Hence $\eta \in \mathbf{F}$ if any of the following conditions hold true.

(4.2)
$$m/\gcd(\ell,m)$$
 and $\ell/\gcd(\ell,m)$ have the same parity.

 $m/\gcd(\ell,m)$ and $\ell/\gcd(\ell,m)$ have different parity but $(q^2-1)\gcd(\ell,m)/nm$ is even.

Therefore if either (4.1) and (4.2), or (4.1) and (4.3) hold true true, then $\mathcal{X}(n, \ell, m)$ and $\mathcal{Y}(n, \ell, m)$ are **F**-isormorphic via the morphism $(x, y) \to (\delta x, \eta y)$.

Notice that $(q^2 - 1) \operatorname{gcd}(\ell, m)/nm$ is already even if n divides $A(t, \alpha)$ and (4.1) holds.

Example 4.3. Notation as above. We let $\alpha \geq 3$ be odd. We claim that the curve $\mathcal{X} := \mathcal{X}(n, \ell, m)$ is **F**-maximal whenever:

- (1) m divides $t^2 1$ and $(t^2 1)/m$ is even;
- (2) *n* divides both $N = (t^{\alpha} + 1)/(t+1)$ and $\ell \frac{(t^2-1)}{m} 1$.

Indeed, clearly (4.1) above is true and nm divides $q^2 - 1 = (t^2 - 1)A(t, \alpha)$ since N divides $A(t, \alpha)$; hence either (4.2) or (4.3) is satisfied. Thus by Remark 4.2 \mathcal{X} is **F**-isomorphic to $\mathcal{Y}(n, \ell, m)$ and \mathcal{X} is **F**-maximal by Proposition 4.1.

For instance to compute the genus of $\mathcal{X} = \mathcal{X}(n, \ell, m)$ in case $n = 2\ell - 1$, $m = (t^2 - 1)/2$ with t odd, we use (1.2) by observing that $\ell + m = (n + t^2)/2$; hence $gcd(n, \ell) = 1$ and $gcd(n, \ell + m) = 1$ and so $g(\mathcal{X}) = (\ell - 1)(t^2 - 1)/2$.

Example 4.4. In example 4.3 above let $\ell = 4$, n = 7, $m = (t^2 - 1)/2$. The hypotheses t odd and 7 divides $N = (t^3+1)/(t+1) = t^2 - t + 1$ ($\alpha = 3$) are fulfilled if and only if $t \equiv 3, 5$ (mod 14). Hence the curve $\mathcal{X} = \mathcal{X}(7, 4, (t^2 - 1)/2)$ defined by $y^7 = x^4(x^{(t^2-1)/2} + 1)$ is **F**-maximal of genus $g(\mathcal{X}) = 3(t^2 - 1)/2$. We recall that $\#\mathbf{F} = t^6$.

By construction (proof of Proposition 4.1) \mathcal{X} is **F**-covered by \mathcal{Z}_3 given by $v^{t^2-t+1} = u^{t^2} - u$ whose genus is $g(\mathcal{Z}_3) = (t^2 - 1)(t^2 - t)/2$ as follows from (1.2). Now for t = 3, \mathcal{Z}_3 is the curve $v^7 = u^9 - v^3$ of genus 24 which is the first known example, discovered by Garcia and Stichtenoth, of an **F**-maximal curve that cannot be Galois-covered by the corresponding Hermitian curve $\mathcal{H}: y^{28} = x^{27} + x$; see [6].

For t = 3, $\mathcal{X} = \mathcal{X}(7, 4, 4)$ is **F**-maximal of genus $g(\mathcal{X}) = 12$. Thus we are naturally led to the following.

Question 4.5. Let **F** be the finite field with 3⁶ elements. Is the curve $\mathcal{X} = \mathcal{X}(7, 4, 4)$ above **F**-Galois covered by the Hermitian curve over **F**?

Unfortunately the method in [3, Prop. 5.1] (or in [6]) cannot be applied here.

Remark 4.6. For an AG-code C with parameters [n(C), k(C), d(C)] built on a curve \mathcal{X} over **F** (the finite field of order q^2) with many points, we have

$$k(C) + d(C) \ge n(C) + 1 - g(\mathcal{X});$$

see e.g. [Cor. 2.2.3]Sti. Thus the performance of C is better whenever n(C) is large compare with $g(\mathcal{X})$. In particular, if the curve is \mathbf{F} maximal and C is a one-point AG-code, the performance of C is better if q^2 is large compare with g. Therefore, the curves in Example 4.4 are of higher interest in Coding Theory.

Acknowledgments. The authors were in part supported respectively by FAPESP/SP-Brazil (Grant 2017/19190-5) and by CNPq-Brazil (Grant 310623/2017-0). The second author thanks P. Chacón for her constant support and friendship.

References

- M. Abdón, J. Bezerra and L. Quoos, Further examples of maximal curves, J. Pure Appl. Algebra 213 (2009), 1192–1196.
- [2] N. Arakelian, S. Tafazolian and F. Torres, On the spectrum for the genera of maximal curves over small fields, Adv. Math. Commun. 12 (2018), 143–149.

- [3] I. Duursma and K-O. Mak, On maximal curves which are not Galois subcovers of the Hermitian curve, Bull. Braz. Math. Soc. New Series 43 (2012), 453–465.
- [4] R. Fuhrmann, A. Garcia and F. Torres, On maximal curves, J. Number Theory 67 (1997), 29–51.
- [5] A. Garcia, H. Stichtenoth and C. P. Xing, On subfields of Hermitian function fields, Composito Math. 120 (2000), 137–170.
- [6] A. Garcia and H. Stichtenoth, A maximal curve which is not a Galois subcover of the Hermitian curve, Bull. Braz. Math. Soc. New Series 37 (2006), 139–152,
- [7] A. Garcia, C. Güneri and H. Stichtenoth, A generalization of the Giulietti-Korchmáros maximal cure, Adv. Geom. 10 (2010), 427–434.
- [8] M. Giulietti, J.W.P. Hirschfeld, G. Korchmáros and F. Torres, Curves covered by the Hermitian curve, Finite Fields Appl. 12 (2006), 539–564.
- [9] M. Giulietti and G. Korchmáros, A new family of maximal curves over a finite field, Math. Ann. 343 (2009), 229–245.
- [10] J. W.P, Hirschfeld, G. Korchmáros and F. Torres, "Algebraic curves over a finite field", Princeton Univ. Press, 2008.
- [11] N. E. Hurt, "Many Rational Points: Coding Theory and Algebraic Geonetry", Kluwer, 2003.
- [12] G. Lachaud, Sommes d'Eisenstein et nombre de points de certaines courbes algébriques sur les corps finis, C.R. Acad. Sci. Paris 305 (1987), 729–732.
- [13] R. Lidl and H. Niederreiter, "Finite Fields", Addison-Wesley, 1983.
- [14] H-G. Rück and H. Stichtenoth, A characterization of Hermitian function fields over finite fields, J. Reine Angew. Math. 457 (1994), 185–188.
- [15] S.A. Stepanov, "Arithmetic of Algebraic Curves", Consultans Bureau, 1994.
- [16] H. Stihtenoth, A note on Hermitian codes over $GF(q^2)$, IEEE Trans. Inform. Theory **34** (1988), 1345–1348.
- [17] H. Stichtenoth, "Algebraic function fields and codes", second ed., Grad. Texts in Math., vol. 254, Springer-Verlag, 2009.
- [18] S. Tafazolian and F. Torres, On maximal curves of Fermat type, Adv. Geom. 13 (2013), 613–617.
- [19] S. Tafazolian and F. Torres, On the curve $y^n = x^m + x$ over finite fields, J. Number Theory 145 (2014), 51–66.
- [20] S. Tafazolian and F. Torres, On the curve $Y^n = X^{\ell}(X^m + 1)$ over finite fields, Adv. Geom. 19 (2019), 263–268.

IMECC-UNICAMP, R. SÉRGIO BUARQUE DE HOLANDA, 651, CIDADE UNIVERSITÁRIA "ZEFERINO VAZ", 13083-859, CAMPINAS, SP, BRAZIL.

Email address: tafazolian@ime.unicamp.br

Email address: ftorres@ime.unicamp.br