Explosion in a growth model with cooperative
interaction on an infinite graph

Bruna de Oliveira Goncalves! Marina Vachkovskaial

August 27, 2019

!Departamento de Estatistica, Instituto de Matemética, Estatistica e Computacao Cien-
tifica, Universidade de Campinas, rua Sérgio Buarque de Holanda, 651, CEP 13083-859,
Campinas SP, Brasil

e-mails: ral162348Qime.unicamp.br, marinav@ime.unicamp.br,

Abstract

In this paper we study explosion/non-explosion of a continuous
time growth process with cooperative interaction on Z,. We con-
sider symmetric neighborhood and different types of rate functions
and prove that explosion occurs for exponential rates, but not for
polynomial. We also present some simulations to illustrate the explo-
sion types.
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Introduction

In this paper we study a probabilistic model for the asymptotic behavior
of particles adsorption process on an infinite graph. Adsorption may be
defined as the process of accumulation of a substance on a surface. The
adsorption process can be classified into two types: Physical Adsorption or
chemical adsorption. The physical adsorption happen when molecules or
atoms adhere to the adsorbent surface by intermolecular interactions while
in chemical adsorption there are chemical attraction forces or chemical bond
between substance and surface [3].



The basic model of adsorption is the random sequential adsorption (RSA),
this model refers to a process where particles are randomly introduced in a
system without overlaps [4]. The RSA is not appropriate for many physical,
chemical and biological processes, in these cases, the model of cooperative
sequential adsorption (ASC) is more appropriate. In ASC the adsorption
probability depends on a configuration formed by locations of previously ad-
sorbed particles, which may contribute to the adsorption of the next particle
or vice versa.

The adsorption is important in a number of situations, for example, the
use of activated charcoal in refrigerators to retain odor from food, the use
of activated charcoal to remove impurities in water, besides the adsorption
presents decisive influence in the interactions between cells of the human
body and implants (see [1], [5] and [7]).

Therefore, the adsorption process is of great importance to the research
of materials that can, besides being used as adsorbents, be economically
viable. Thus, the goal of this paper is to study the behavior of the adsorption
process using a probabilistic model. Our model is motivated by multilayer
adsorption models without restrictions on the numbers of adsorbed particles
and considers the ASC model. We studied the asymptotic structure of the
configuration formed by the particles since there is no limitation as to the
number of particles adsorbed at each site.

The probability of adsorption at the site k is proportional to different
rates, exponential e*U* or polynomial (\;U;(z))®, where A, > 0, a € N and
Uy is the number of particles adsorbed in the neighborhood of site k. Thus
the number of particle in the neighborhood of site k and the value of A
influence the adsorption probability of the next particle.

The study of the asymptotic structure of adsorption when time increases
is a typical problem of the models of urns. In particular, the model is directly
related to the model of Polya urns for the exponential case (see [2]). In the
general model of Polya urn colored balls are added in an urn and a ball is
randomly withdrawn from the urn, this ball is returned to the urn along with
another additional ball of the same color as the drawn ball. In our model
each site ¢ correspond the different colors of the balls in the Polya urn and
the probability of the site adsorbing the particle is proportional to I';.

Our main result states that the explosion occurs in the exponential model
for all lambdas, in the polynomial rate model degree at least 1 or any degree if
A; grows fast enough in ¢, and no explosion occurs when a < 1 and lambdas
are bounded. We also present some simulation to illustrate the types of



explosion.

1 The model and results

Define the growth process on N in the following way. Let &(¢) € {0,1,2,...}
be the number of particles at site ¢ € N at time ¢ > 0. We start with one
particle at i = 1, so £&(0) =1 and £;(0) = 0 for all j > 1.

Then, the process

X(t) = (€1<t)7£2(t)7 ’ ) € U{1727 - 'n}N =: ()

is a continuous time Markov chain with the following dynamics. Given
X(t) =z = (&,&,...) € Q the next particle is allocated to site ¢ with

rate
{ f, Ui(z)), Ui(x) #0

Filw) := 0, Uy(z) = 0,

(1)
where \; > 0 for all ¢ and Uj is given by

_ Sic1 + &+ &, 1>1
Ui_{ &1+ &, =1 @

The quantity U;(z) is called the potential of a site i given the configuration
x. When A; > 0 for all 7 and f is an increasing function, this dynamics
characterizes a cooperative sequential adsorption.

Let wy,ws, ... be transition moments:

w = inf{t, X(t) £ X(0)}

w, = inf{t>w, 1,X(t) # X(wn,_1)}

The transition matrix P of the embedded Markov chain is given by

L

#7 if y=z+e¢

Py = S5 @) | 3)
0, otherwise



where e; = (&1,&,---) with § = 1 e & = 0 for all j # i. Note that
Z;’;l I';(z) < oo, since the number of particle is always finite if we start
with a finite configuration.

Note that the sequence of random jump times w,, can be written as w,, :=

Z?Zl o, and wy := 0, where o, is exponential time between adsorption of
particles. Let ( = lim w,, then we say that explosion occurs if {( < oo.
n—r oo

Checking whether or not the phenomenon of explosion occurs can be difficult,
since it requires knowledge of the entire trajectory of the embedded chain,
but there are some constructive criteria [6], that we are going to use. Define
measurable functions in state space (X, F’) by

mF ={f:X—>R| fis F' — measurable}, (4)
Generator’s domain is then

Dom(T) := {f € mF': Y Tuylf(y) < +00,Vz € X} (5)

yeX\z

thus, Dom (I") is the set of non-negative functions on X and the generator
['f(x) is defined by

Df(x) = Tayf(y) (6)

yeX

Now we are ready to state our main results.

Theorem 1.1 If

where A\; > 0 for all i and U; is defined in (2). Then for all v € ZS° we have
( < 00, so the process explodes.

[i(x) = { MU Ui(a) #0

The next result addresses the occurrence or not of explosion in the poly-
nomial model.

Theorem 1.2 [f

) i), Ui(x) #0
[i(z) = { 0, Uiz 0

where o > 0, N\; > 0 for all i and U; is defined in (2). We have
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(i) Ifa>1, then { < oo for allz € ZY.

(i) Ifa<1land )\, <c foralli and c € R, then P,({ = +o0) =1 for all
zeZl.

(iii) If o <1, but \; is increasing at a polynomial rate with a degree greater
than or equal to i, then ¢ < oo for all z € ZY.

2 Proofs

We are going to use the following results from [6]. Theorem 1.9.:
Theorem 2.1 The following are equivalent:

1. There ezist f € Dom.(I") strictly positive and € > 0 such that I'f(x) <
—e, V.

2. The explosion time ( satisfies E,( < 400, Vz € X.

The next theorem (Theorem 1.14 from [6]) guarantees the non-explosion:
Theorem 2.2 Let f € Dom (). If
1. f— o0,

2. there exist an increasing (not necessarily strictly) function g : Ry —
R, whose inverse is locally integrate but has non integrate tail (i.e.

G(z) = fOZ % < 400, for all z € Ry but Zlggo G(z) = ),

3. Tf(x) <g(f(x)) for all x € X,
then P,(¢ = +00) =1 for all x € X.



2.1 Proof of theorem 1.1

Without loss of generality, assume that the configuration x € Z° has at least
one particle at site 1. Obviously, this will always be true if we start with one
particle in 1. The function

1
@) = Soer (9)

where

&1+ &2, i=1" (10)

satisfies then the conditions of Theorem 2.1. Indeed,

U, = {5i—1+§i+§z‘+1, 1>1

Tf(z) =) Tayf(y)

yeX

= Y Luy(fly) - f(2))

yeX\{z}

— Z Cosre (f(x+6) — f(x))

> 1 1
_ AiUi(x) _
= 26 (eAlUl(m—&-ei) 6>\1U1(x)> (11)
(12)

If the particle is adsorbed out of the neighborhood of site 1 then Uy {z+¢;} =
Ui{z} and if the particle is adsorbed in the neighborhood of site 1 then
Ul{.]? + ei} = Ul{x} + 1. Thus,

2
1 1
_ § AiUi(z) —

=1
_ 6)\1U1($)€_>‘1U1(z) (6_>\1 . 1) + 6)\2U2($)€—)\1U1(I) (e—)\l — ].)
_ (€_>\1 B 1) (1 _’_6(>\2U2(Z‘)—>\1U1(33))) (13)

Therefore, there exists € > 0 such that I'f(z) < —e, which implies { < 0o
a.s. [



2.2 Proof of theorem 1.2

Again, without loss of generality, assume that the configuration x € Z° has
at least one particle at site 1.
(i) Consider a > 1 and take

f(x) = Ul(x)ﬂ’ (14>
where 0 < < o — 1. Then,
— Z Lyoie; (f(z+€) — f(2))
9) N 1 1
= 2 (\Ui(z)) (U1($+6i)6 - Ul(a:)ﬁ) (15)
2 N 1 1
= ;(AZUZ(I')) ((Ul(a:) + 1)[3 - (Ul(;p))ﬁ‘)
aUl(.T)a 1 -
AT (1 - <1 i U1<x>) ) "

as 0 < B <a—1,s0 ( < oo a.s. and by Theorem 2.1 explosion occurs.
(7i) Consider o < 1 and first suppose A; < 1 for all ¢ and consider

fla) = 200, i

(note that the number of particles is always finite). The Item 1 of Theorem
2.2 is satisfied, since f — oo. Define g : R, — R, by

9(y) == 3y + /. (19)

The function g(y) satisfies the conditions of Item 2 of Theorem 2.2. Indeed,

= Zﬂ: Z—dy :2n Z o0
G(z)—/o o /03y+\/§ 31(3f+1)<+ , (20)
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2
for all z € R, and moreover lim, ., G(z) = lim,_, 3 In(3y/z 4+ 1) = oc.
Thus,

Lf(x) =) Tuyf(y)

= Z(/\iUi(x))a (f(x+e)— f(2)). (21)
As
2
fatey=d @5 =1 (22)
flz)+1, i #1
we have

=Y W)
< iUZ(x) + w, as o < 1 and Uj(x) > 1,
= g(f()). 2

As T'f(xz) < g(f(x)) for all z € X where a < 1, by Theorem 2.2 we have
P.(¢ = 400) =1 for all x € X that is, no explosion a.s.
If \; <cwith ¢ > 1, for all i we can define f(x) as

21 Ali(x)
fla) = £ (24
and proceed analogously.

(i11) Consider o < 1 and the following function:

1
B Y

Tmax

where ipa = max{i: & > 1}, > 0. Then,

fx) = (25)

8



Tf(x) =) Tayf(y)

yeX

— ZFI’H& (f(x+e;) — f(x))

= > NTi(@)* (fla+e) = (). (26)

If the particle is placed in a place other than iy, + 1 then f(z +¢;) = f(x),

1
otherwise f(x +¢;) = s 17 Thus,
ZmaX

1 1
T — (\ e _
f(x) <>\’Lmax+l§1ma){) ((imax + 1)5 ig}ép()
BNt 1Eiman)”
N B+1

Zmax

< (27)
So, if the rate of growth of ); is polynomial with degree p > é there exist
B > 0 and € > 0 such that I'f(z) < —¢ for all z € X and by Theorem 2.1
explosion occurs. O

3 Simulations

Simulations were performed considering a finite number of sites and different
formulas for the parameters \;. The simulation of the process consisted of
assigning pre-set values to A and considering an initial configuration X (0).
The calculations were performed using Statistical Computational System R
(R Core Team, 2017).

For i — \; we considered increasing functions, decreasing functions that
have local maximums and constant functions. In addition, different initial
configurations were considered. At each iteration a new site is chosen to
receive a new particle with probability previously defined in (??). For the
choice of site the inverse transform method was used.

An explosion can occur vertically or horizontally. We say that an ex-
plosion is vertical if a finite number of sites adsorbs all particles, and an
explosion is horizontal otherwise (that is, infinite number of sites is occupied
in finite time).



3.1 Exponential Adsorption Rate
The next simulations illustrate the adsorption in the exponential model.
That is .
AiUi(z
b U; 0
O, UZ (.T) = O,

considering different formulas for the parameters \;.

3.1.1 Decreasing Lambdas

We can see that the process explodes vertically, at i = 1 (maximum value
of ;). The figure 1 shows where each particle was adsorbed, each i site
has probability of adsorption related to A; = 1/i. The initial configuration
considered was = = (1,0,...). The Figures show the adsorption process of
the first 10, 50, 100 and 1000 particles, respectively.
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Figure 1: Particle Adsorption when \; = 1/i, initial configuration = =

(1,0,...) and the transition moments (a) n=10 (b) n=50 (c¢) n=100 e (d)
n=1000.

The figure 1 shows the site where the first particles were adsorbed from
the initial configuration, with particles only in the first 12 sites, each 7 site
has probability of adsorption related to A; = 1/i and the neighborhood of
each site.
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Figure 2: Particle Adsorption when \; = 1/, initial configuration with par-
ticles in the first 12 sites, and the transition moments (a) n=10 (b) n=>50 (c)
n=100 e (d) n=1000.

Figure 3 shows the site where each particle was adsorbed considering
that each site 7 has probability of adsorption related to A\; = 1/e* and initial
configuration z such that & = 0 for all © > 12, ie the first 12 sites containing
a random amount of particles.

12



10
1

40 50
| |

Particula

Particula
30

|

20
|

10
|

2 4 6 8 10 12 14 2 4 6 8 10 12 14

Sitio Sitio
(a) (b)
g | g |
o | s
s B s B
E § o |
< 7 <
o ; o
o e s N o 8 o o
T T T T T T T T T T T T T T
2 4 6 8 10 12 14 2 4 6 8 10 12 14
Sitio Sitio
(c) (d)
Figure 3: Particle Adsorption when \; = 1/¢', initial configuration with

particles in the first 12 sites, and the transition moments (a) n=10 (b) n=50
(¢) n=100 e (d) n=1000.

3.1.2 Increasing Lambdas

We know that the process explodes and we can see that the explosion is
horizontal, although the number of particles at each site can be quite large.
But, when &; gets large, the probability that the next particle will fall at 741
becomes close to 1, so its impossible for &; to go to infinity. Figure 4 shows
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the site at which each particle was adsorbed considering that each ¢ site has
probability of adsorption related to \; =i and the initial configuration with
one particle at site 1.
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Figure 4: Particle Adsorption when \; = 4, initial configuration x =

(1,0,...), and the transition moments (a) n=10 (b) n=>50 (c) n=100 e (d)
n=1000.

Figure 5 shows where each particle is adsorbed, considering an initial
configuration with a random number of particles in the first 8 sites.
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Figure 5: Particle Adsorption when )\, = ¢!, initial configuration z =

(20,9,37,44,44,9,40,50,0,0,...), and the transition moments (a) n=10 (b)
n=>50 (¢) n=100 e (d) n=1000.

Figure 6 shows where each particle is adsorbed, considering an initial
configuration with a random number of particles in the first 12 sites.

15



10
1
50
|

40
|

Particula
Particula

20
|

10
|

2 4 6 8 10 12 14 2 4 6 8 10 12 14
Sitio Sitio
(a) (b)
o (=3
g Ch
8 1 8-
o
s 87 s 87
S S
& )
& g g
e 8
& 8 -
o o -
T T T T T T T T T T T T T T
2 4 6 8 10 12 14 2 4 6 8 10 12 14
Sitio Sitio
(c) (d)

Figure 6: Particle Adsorption when \; = In(7), initial configuration = =
(34,51,41,64, 50, 16,21,6,29,9,37,67,0,0...), and the transition moments
(a) n=10 (b) n=50 (c¢) n=100 e (d) n=1000.

3.1.3 General case

Simulations were performed with different initial configurations to verify the

adsorption process of the particles when the function ¢ — \; has local max-

ima. The explosion is vertical and always occurs at a local maximum.
Figure 7 shows the site at which each particle was adsorbed considering
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that each 7 site has probability of adsorption related to A; = |sin(i)| and the
initial configuration with one particle at site 1.
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Figure 7: Particle Adsorption when \; = |sin(¢)], initial configuration x =

(1,0,0...), and the transition moments (a) n=10 (b) n=>50 (c) n=100 e (d)
n=1000.

We can see in the figure 7 that the first particles are adsorbed by sites 1
and 2 and after some particles have been adsorbed the site 2 will adsorb all
the next particles.
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Figure 8 shows the site where the particles are adsorbed considering an
initial configuration with a random amount of particles in the first 8 sites. For
this particular case the initial setting was = = (2, 19, 21, 17, 29, 14, 25, 10,0, . . .)
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Figure 8: Particle Adsorption when \; = |sin(¢)|, initial configuration x =

(2,19,21,17,29,14,25,10,0- - - ), and the transition moments (a) n=10 (b)
n=>50 (c) n=100 e (d) n=1000.

Considering the initial configuration of Figure 8 we can see that the first
1000 particles are adsorbed by site 5 which is also a local maximum.
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3.1.4 Constant Lambdas

Something interesting occurs here. As in [2], it can happen that all the
particles are observed by two neighbor sites. The Figure 9 shows the sites
where each particle is adsorbed.
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(1,0,0,---), and the transition moments (a) n=10 (b) n=>50 (c) n=100 e
(d) n=1000.

On the above figure all the particles are absorbed by sites 1 and 2, nothing
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at 3. The probability that the next particle will be absorbed by 1 or by 2
are equal.

Figure 10 shows the sites where each particle is adsorbed considering the
initial configuration where the first 12 sites have particles.

10
1
50
|

Particula

Particula
30

|

20
|

10

2 4 6 8 10 2 4 6 8 10
Sitio Sitio
(a) (b)
o o
& g
8 1 8
o
s 87 s 87
< g
2 8
5 5
o g | N § |
] &1
o - o 4
T T T T T T T T T T
2 4 6 8 10 2 4 6 8 10
Sitio Sitio
(c) (d)

Figure 10: Particle adsorption when \; = 1 and initial configuration x =
(28,4,22,25,11,21,13,23,30,3, 14,21,0,- - - ): (a) n=100 (b) n=1000.

In Figure 10 we can see that all particles are adsorbed by site 8. We
concluded from the simulations that two sites with similar adsorption prob-
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abilities adsorb all particles from instant ¢ and if a site is much more likely
than other sites to adsorb the first particle, then it will adsorb all particles
from instant ¢.

3.2 Polynomial Adsorption Rate
The next simulations illustrate the adsorption in the polynomial model. That
is
) Ui(=))*, Ui(z) #0
0, Ul (.T) = 0,

considering different formulas for the parameters \; and a.
The figure 11 shows how particles are adsorbed when adsorption occurs
at a polynomial rate where A\ = 10 and a > 1.
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Figure 11: Particle Adsorption when \; = 10, o = 2, initial configuration
x = (1,0,0,---), and the transition moments (a) n=10 (b) n=50 (c¢) n=100
e (d) n=1000.

Considering the initial configuration of Figure 11 we can see that the first
1000 particles are adsorbed by sites 1,2,3 and 4, due to the initial config-
uration. According to the theorem 1.2 explosion occurs so in this case the
explosion occurs at the first sites.

The figure 12 shows how particles are adsorbed when adsorption occurs
at a polynomial rate where A = 20 and a > 1.
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Figure 12: Particle Adsorption when \; = 20, o = 2, initial configuration
x = (1,0,0,---), and the transition moments (a) n=10 (b) n=50 (c¢) n=100
e (d) n=1000.

We can see in the figure 12 that the first particles are adsorbed by sites
1 and 2.

The next figure show the adsorption in the polynomial model with in-
creasing lambdas and o > 1.
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Figure 13: Particle Adsorption when \; = i, @ = 20, initial configuration
x = (1,0,0,---), and the transition moments (a) n=10 (b) n=50 (c¢) n=100
e (d) n=1000.

According to the theorem 1.2 explosion occurs and in the Figure 13 occurs
horizontal explosion.

The Figure 14 show the adsorption in the polynomial model with limited
lambdas and o < 1.
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Figure 14: Particle Adsorption when \; = 10, a = 0, 2, initial configuration
x = (1,0,0,---), and the transition moments (a) n=10 (b) n=50 (c¢) n=100
e (d) n=1000.

Considering the initial configuration of Figure 11 we can see that the
first 1000 particles are adsorbed by sites 1,2,3,4,5 and 6, due to the initial
configuration. According to the theorem 1.2 no explosion occurs if lambdas
is limited and o < 1.

The Figure 15 show the adsorption in the polynomial model with o < 1,
but ); is increasing at a polynomial rate with a degree greater than or equal
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Figure 15: Particle Adsorption when \; = i'0, o = 0, 2, initial configuration
x = (1,0,0,---), and the transition moments (a) n=10 (b) n=50 (c¢) n=100
e (d) n=1000.

We can see in the Figure 15 that horizontal explosion occurs.
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