Estimates for n-widths of sets of smooth functions on complex spheres

Deimer J. J. Aleans¹, Sergio A. Tozoni²

¹Instituto de Matemática, Universidade Estadual de Campinas, SP, Brasil
²Instituto de Matemática, Universidade Estadual de Campinas, SP, Brasil

Abstract

In this work we investigate n-widths of multiplier operators Λ_* and Λ, defined for functions on the complex sphere Ω_d of \mathbb{C}^d, associated with sequences of multipliers of the type $\{\lambda^*_{m,n}\}_{m,n\in\mathbb{N}}$, $\lambda^*_{m,n} = \lambda(m + n)$ and $\{\lambda_{m,n}\}_{m,n\in\mathbb{N}}$, $\lambda_{m,n} = \lambda(\max\{m,n\})$, respectively, for a bounded function λ defined on $[0, \infty)$. If the operators Λ_* and Λ are bounded from $L^p(\Omega_d)$ into $L^q(\Omega_d)$, $1 \leq p, q \leq \infty$, and U_p is the closed unit ball of $L^p(\Omega_d)$, we study lower and upper estimates for the n-widths of Kolmogorov, linear, of Gelfand and of Bernstein, of the sets $\Lambda_* U_p$ and ΛU_p in $L^q(\Omega_d)$. As application we obtain, in particular, estimates for the Kolmogorov n-width of classes of Sobolev, of finitely differentiable, infinitely differentiable and analytic functions on the complex sphere, in $L^q(\Omega_d)$, which are order sharp in various important situations.

Keywords: Complex sphere, Width, Multiplier, Smooth function.

MSC 2010 Classification numbers: 41A46, 42B25, 42B15.

1 Introduction

In [2, 3, 10, 11, 12, 13, 14, 15, 16, 17, 18] techniques were developed to obtain estimates for n-widths of multiplier operators defined for functions on torus and on two-points homogeneous spaces M^d: S^d, $\mathbb{P}^d(\mathbb{R})$, $\mathbb{P}^d(\mathbb{C})$, $\mathbb{P}^d(\mathbb{H})$, $\mathbb{P}^{16}(\text{Cay})$. In this work we continue the development of methods of estimating n-widths of multiplier operators.

The studies on asymptotic estimates for Kolmogorov n-widths of Sobolev classes on the circle were performed by several important mathematicians such as Rudin, Stechkin, Gluskin, Ismagilov, Maiorov, Makovoz and Scholz in [6, 20, 21, 29, 31, 32], they were initiated by Kolmogorov [9] in 1936 and completed by Kashin [7, 8] in 1977. Several techniques were applied in these different cases, among them we highlight a technique of discretization due to Maiorov [6, 20, 21, 29, 31, 32], which was initiated by Kolmogorov [9] in 1936 and completed by Kashin [7, 8] in 1977. Among the mathematicians who worked with n-widths of sets of analytic functions, we highlight Babenko, Fisher, Micchelli, Taikov and Tichomirov, who obtained estimates for sets of analytic functions in Hardy spaces in [1, 5, 33, 34]. Among the different tools used, we can emphasize the properties of the class of Blaschke products of degree m or less. In 1980, Melkman in [22] obtained estimates for a set of entire functions in $C[-T, T]$, using other technique. One of the goals of this work, is to give an unified treatment in the study of n-widths of sets of functions defined on complex spheres, determined by multiplier operators.

Let $\lambda : [0, \infty) \to \mathbb{C}$ be a bounded function and consider the sequences $\Lambda_* = (\lambda^*_{m,n})_{m,n\in\mathbb{N}}$, $\lambda^*_{m,n} = \lambda(m + n)$ and $\Lambda = (\lambda_{m,n})_{m,n\in\mathbb{N}}$, $\lambda_{m,n} = \lambda(\max\{m,n\})$. Let Ω_d be the unit sphere of \mathbb{C}^d and for $m, n \in \mathbb{N}$, let $H_{m,n}$ be the subspace of $L^2(\Omega_d)$ of all complex spherical harmonics of bi-degree (m, n). Given $f \in L^2(\Omega_d)$, for each $m, n \in \mathbb{N}$, there is an unique $Y^{(m,n)} \in H_{m,n}$ such that $f = \sum_{m,n} Y^{(m,n)}$ with convergence in the norm of $L^2(\Omega_d)$ (see Section 2 for definitions and properties). For $f \in L^2(\Omega_d)$ we define $\Lambda_* f = \sum_{m,n} \lambda^*_{m,n} Y^{(m,n)}$ and $\Lambda f = \sum_{m,n} \lambda_{m,n} Y^{(m,n)}$ where the convergence occurs in the norm of $L^2(\Omega_d)$. Let U_p be the closed unit ball of $L^p(\Omega_d)$, $1 \leq p \leq \infty$. In this paper we study asymptotic estimates for the n-widths of Kolmogorov, linear, of Gelfand and of Bernstein, of the sets $\Lambda_* U_p$ and ΛU_p in $L^q(\Omega_d)$, for $1 \leq p, q \leq \infty$.

¹ra162238@ime.unicamp.br
²tozoni@ime.unicamp.br

The first author was financially supported by Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq, Brazil) and by the Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES, Brazil).
Consider two Banach spaces X and Y. The norm of X will be denoted by $\|\cdot\|$ or $\|\cdot\|_X$ and the closed unit ball $\{ x \in X : \|x\| \leq 1 \}$ by B_X. Let A be a compact, convex and centrally symmetric subset of X. The Kolmogorov n-width of A in X is defined by
\[
d_n(A, X) := \inf_{X_n} \sup_{x_n \in A} \inf_{y_n \in X_n} \|x_n - y_n\|_X,
\]
where X_n runs over all subspaces of X of dimension n. The linear n-width $\delta_n(A, X)$ is defined by
\[
\delta_n(A, X) := \inf_{P_n} \sup_{x \in A} \|x - P_n(x)\|_X,
\]
where P_n runs over all bounded linear operators $P_n : X \to X$ whose range has dimension n. The Gelfand n-width of A in X is defined by
\[
d^n(A, X) = \inf_{L^n} \sup_{x \in A^n} \|x\|_X,
\]
where L^n runs over all subspaces of X of codimension n. The Bernstein n-width of A in X is defined by
\[
b_n(A, X) = \sup_{X_{n+1}} \sup \{ \lambda : \lambda B_X \cap X_{n+1} \subseteq A \},
\]
where X_{n+1} is any $(n+1)$-dimensional subspace of X. The following inequality is always valid:
\[
b_n(A, X) \leq \min \{ d_n(A, X), d^n(A, X) \}.
\]

We define the n-widths of Kolmogorov, linear, Gelfand and Bernstein of a operator $T \in \mathcal{L}(X, Y)$, respectively, by
\[
d_n(T) = d_n(T(BX), Y), \quad \delta_n(T) = \delta_n(T(BX), Y), \quad d^n(T) = d^n(T(BX), Y), \quad b_n(T) = b_n(T(BX), Y).
\]

Consider $T \in \mathcal{L}(X, Y)$ and let T^* be its adjoint operator. If T is compact or Y is reflexive, then (see [28], p. 34)
\[
d^n(T^*) = d_n(T).
\]

In Section 2 we make a brief study about real and complex spherical harmonics. In Section 3 we study estimates for n-widths of sets of functions on the complex sphere Ω_d, associated with the multiplier operators of the type Λ. We prove that the n-widths of the sets ΛU_p in $L^q(\Omega_d)$ can be obtained from n-widths of sets of functions associated with multiplier operators on the real sphere S^{2d-1}. As application we obtain estimates for the Kolmogorov n-width of Sobolev classes and of finitely differentiable, infinitely differentiable and analytic functions on the complex sphere.

In Section 4 and in the following sections we study n-widths of sets of functions on the complex sphere Ω_d associated with the multiplier operators of the type Λ. We note that in this case the results cannot be transferred from results already obtained to the real sphere S^{2d-1}. In Section 4 we study estimates for Levy means of special norms on finite-dimensional Banach spaces which are associated with the multiplier sequences $(\lambda_{m,n})_{m,n \in \mathbb{N}}$.

In Section 5 we prove two theorems which provide us with lower and upper estimates for Kolmogorov n-widths of the sets ΛU_p in $L^q(\Omega_d)$, for general multiplier operators of the type Λ. The main tool used in these proofs are the results from Section 4.

In Section 6 we apply the results of the study of the Kolmogorov n-widths of the multiplier operators $\Lambda^{(1)}$ and $\Lambda^{(2)}$ associated with the functions $\lambda^{(1)}(t) = t^{-\gamma}(\ln t)^{-\xi}$ for $t > 1$, $\lambda^{(1)}(t) = 0$ for $0 \leq t \leq 1$, and $\lambda^{(2)}(t) = e^{-\gamma t^r}$ for $t \geq 0$, where $\gamma, \xi, r \in \mathbb{R}$, $\gamma, r > 0$ and $\xi \geq 0$, respectively. We have that the sets $\Lambda^{(1)} U_p$ and $\Lambda^{(1)}_+ U_p$ are sets of finitely differentiable functions on Ω_d, and $\Lambda^{(2)} U_p$ and $\Lambda^{(2)}_+ U_p$ are sets of infinitely differentiable functions if $0 < r < 1$ and of analytic functions if $r \geq 1$ (see [24, 25]). We prove that estimates for the Kolmogorov n-widths of the sets $\Lambda^{(1)} U_p$ and $\Lambda^{(2)} U_p$ in $L^q(\Omega_d)$ are sharp when $2 \leq p, q < \infty$.

We note that the order of decrease of the n-widths $d_n(\Lambda^{(1)} U_p, L^q)$ and $d_n(\Lambda^{(1)}_+ U_p, L^q)$ is the same, but it is different for the n-widths $d_n(\Lambda^{(2)} U_p, L^q)$ and $d_n(\Lambda^{(2)}_+ U_p, L^q)$.

In this work there are several universal constants which enter into the estimates. These positive constants are mostly denoted by the letters C, C_1, C_2, \ldots. We did not carefully distinguish between the different constants, neither did we try to get good estimates for them. The same letter will be used to denote different universal constants in different parts of the paper. For ease of notation we will write $a_n \gg b_n$ for two sequences if $a_n \geq C b_n$ for $n \in \mathbb{N}$, $a_n \ll b_n$ if $a_n \leq C b_n$ for $n \in \mathbb{N}$, and $a_n \asymp b_n$ if $a_n \leq b_n$ and $a_n \geq b_n$. Also, we will write $(a)_+ = a$ if $a > 0$ and $(a)_- = 0$ if $a \leq 0$.

2 Analysis on the spheres

We write $\mathbb{N} = \{0, 1, 2, \ldots\}$. For $x, y \in \mathbb{R}^d$ we denote by $\langle x, y \rangle$ the usual inner product $\langle x, y \rangle = x_1 y_1 + \cdots + x_d y_d$. Let
\[S^{d-1} = \{ x \in \mathbb{R}^d : \langle x, x \rangle = 1 \} \]

be the unit sphere in \(\mathbb{R}^d \). Let \(\tau_d \) be the Lebesgue measure on \(S^{d-1} \), consider the usual Banach spaces \(L^p(S^{d-1}) \), \(1 \leq p \leq \infty \) of \(\tau_d \)-measurable complex functions on \(S^{d-1} \) and let \(U_p = U_p(S^{d-1}) = \{ \phi \in L^p(S^{d-1}) : \| \phi \|_p \leq 1 \} \). We denote by \(\mathcal{H}_k \) the subspace of \(L^2(S^{d-1}) \) of all spherical harmonics of degree \(k \), that is, the space of the restrictions to \(S^{d-1} \) of all polynomials \(P(x_1, \ldots, x_d) \) which are homogeneous of degree \(k \) and harmonic. Given \(f \in L^2(S^{d-1}) \), for each \(k \in \mathbb{N} \), there exists an unique \(Y^{(k)} \in \mathcal{H}_k \) such that

\[f = \sum_{k=0}^{\infty} Y^{(k)} , \]

where the series converges to \(f \) in \(L^2(S^{d-1}) \). Let \(\pi_k : L^2(S^{d-1}) \to \mathcal{H}_k \) be the harmonic projection operator, \(\pi_k(f) = Y^{(k)} \). For each \(x \in S^{d-1} \) and \(k \in \mathbb{N} \), there exists an unique function \(Z_x^{(k)} \in \mathcal{H}_k \), called the zonal harmonic of degree \(k \) with pole \(x \), such that

\[\pi_k f(x) = \int_{S^{d-1}} f(y) Z_x^{(k)}(y) d\tau(x), \quad f \in L^2(S^{d-1}) . \]

We have that \(\mathcal{H}_k \perp \mathcal{H}_l \), for \(k \neq l \), with respect to the usual inner product in \(L^2(S^{d-1}) \) and for \(k \geq 2 \),

\[d_k = \dim \mathcal{H}_k = \binom{d+k-1}{k} - \binom{d+k-3}{k-2} . \]

Let \(\{ Y_j \}_{j=1}^{d_k} \) be an orthonormal basis of \(\mathcal{H}_k \). The following addition formula is known:

\[\sum_{j=1}^{d_k} Y_j^{(k)}(x) Y_j^{(k)}(y) = Z_x^{(k)}(y) = \frac{d+2k-2}{\omega_d(d-2)} P_k^{(d-2)/2}(\langle x, y \rangle), \quad x, y \in S^{d-1} , \]

where \(\omega_d \) denotes the surface area of \(S^{d-1} \) and \(P_k^{(d-2)/2} \) denotes the Gegenbauer polynomial of degree \(k \). Let us denote by \(\tilde{Z}_d^{(k)} \) the function

\[\tilde{Z}_d^{(k)}(t) = \frac{d+2k-2}{\omega_d(d-2)} P_k^{(d-2)/2}(t), \quad t \in [-1,1] . \]

Let \(\mathcal{T} = \mathcal{T}_d : \mathbb{C}^d \to \mathbb{R}^{2d} \) be given by

\[\mathcal{T}(z) = (x_1, y_1, \ldots, x_d, y_d), \quad z_k = x_k + i y_k, \quad k = 1, \ldots, d . \]

For \(z, w \in \mathbb{C}^d \), we denote by \(\langle z, w \rangle \) the usual inner product \(\langle z, w \rangle = z_1 w_1 + \cdots + z_d w_d \). Let

\[\Omega_d = \{ z \in \mathbb{C}^d : \langle z, z \rangle = 1 \} \]

be the unit sphere in \(\mathbb{C}^d \). We denote by \(\Upsilon \) or \(\Upsilon_d \), the restriction of \(\mathcal{T} \) to \(\Omega_d \). Since \(\Upsilon(\Omega_d) = S^{2d-1} \) we can define the measure \(\sigma_d \) on the Borel \(\sigma \)-algebra \(B(\Omega_d) \) of \(\Omega_d \) by \(\sigma_d(E) = \tau_{2d}(\Upsilon(E)), E \in B(\Omega_d) \). A measurable function \(f : \Omega_d \to \mathbb{C} \) is \(\sigma_d \)-integrable if

\[\int_{\Omega_d} f d\sigma_d = \int_{S^{2d-1}} (f \circ \Upsilon^{-1}) d\tau_{2d} \]

is well defined. We denote by \(L^p = L^p(\Omega_d), 1 \leq p \leq \infty \), the vector space of all measurable functions defined on \(\Omega_d \) and with values in \(\mathbb{C} \), satisfying

\[\| f \|_p := \left(\int_{\Omega_d} |f(z)|^p d\sigma_d(z) \right)^{1/p} < \infty, \quad 1 \leq p < \infty , \]

\[\| f \|_\infty := \text{ess sup}_{z \in \Omega_d} |f(z)| < \infty . \]

The space \(L^2(\Omega_d) \) is a Hilbert space with the inner product given by

\[(f, g) = \int_{\Omega_d} f(z) \overline{g(z)} d\sigma_d(z), \quad f, g \in L^2(\Omega_d) . \]

Let \(U_p = U_p(\Omega_d) = \{ \phi \in L^p(\Omega_d) : \| \phi \|_p \leq 1 \}, \mathcal{D} = \{ z \in \mathbb{C} : |z| \leq 1 \} \) and let \(\nu_\alpha \) be the Borel measure on \(\mathcal{D} \) given by
\[\nu_{\alpha}(E) = \int_E (1 - |z|^2)\alpha d\mu_1(z), \quad E \in B(\mathbb{D}). \]

where \(\alpha > -1 \) and \(\mu_1 \circ \overline{Y}_1^{-1} \) is the Lebesgue measure on \(\mathbb{R}^2 \). For \(f \in L^1(\Omega_d) \) and \(K \in L^1(\mathbb{D}, \nu_{\alpha}) \), the convolution function \(f \ast K \) is defined by

\[(f \ast K)(w) = \int_{\Omega_d} f(z)K((z, w))d\sigma_d(z), \quad w \in \Omega_d. \]

Let \(\alpha = (\alpha_1, \ldots, \alpha_d) \in \mathbb{N}^d \) and \(z = (z_1, \ldots, z_d) \in \mathbb{C}^d \). We write \(|\alpha| = \alpha_1 + \cdots + \alpha_d \), \(z^\alpha = z_1^{\alpha_1} \cdots z_d^{\alpha_d} \) and \(\overline{\alpha} = (\overline{\alpha}_1, \ldots, \overline{\alpha}_d) \). We denote by \(\mathcal{P}(\mathbb{C}^d) \) the vector space of all polynomials in the independent variables \(z \) and \(\overline{\alpha} \). If \(p \in \mathcal{P}(\mathbb{C}^d) \) then there are \(m, n \in \mathbb{N} \) such that

\[p(z) = p(z, \overline{\alpha}) = \sum_{|\alpha| \leq m, |\beta| \leq n} p_{\alpha, \beta} z^\alpha \overline{\alpha}^\beta, \quad z \in \mathbb{C}^d, \quad p_{\alpha, \beta} \in \mathbb{C}, \quad \alpha, \beta \in \mathbb{N}^d. \]

The vector subspace of \(\mathcal{P}(\mathbb{C}^d) \) formed by the polynomials that are homogeneous of degree \(m \) in the variable \(z \) and of degree \(n \) in the variable \(\overline{\alpha} \), will be denoted by \(\mathbb{P}_{m,n}(\mathbb{C}^d) \). The subspace of \(\mathbb{P}_{m,n}(\mathbb{C}^d) \) of all polynomials that are in the kernel of the complex laplacian

\[\Delta_{(2d)} := \frac{d}{j=1} \left(\frac{\partial^2}{\partial z_j \partial \overline{z}_j} \right) \]

will be denoted by \(\mathbb{H}_{m,n}(\mathbb{C}^d) \).

The space of the restrictions of the polynomials in \(\mathbb{P}_{m,n}(\mathbb{C}^d) \) to the complex sphere \(\Omega_d \) will be denoted by \(\mathcal{P}_{m,n}(\Omega_d) \) and of the restrictions of the polynomials in \(\mathbb{P}_{m,n}(\mathbb{C}^d) \) to \(\Omega_d \) by \(\mathcal{H}_{m,n} = \mathcal{H}_{m,n}(\Omega_d) \). We have that \(\mathcal{H}_{m,n} \perp \mathcal{H}_{r,s} \), for \((m, n) \neq (r, s) \), with respect to the usual inner product in \(L^2(\Omega_d) \). The elements of \(\mathcal{H}_{m,n} \) are called complex spherical harmonics of degree \(m \) in \(z \) and degree \(n \) in \(\overline{\alpha} \). Let \(m, n \in \mathbb{N} \) and \(m + n = k \). Since \(\mathcal{H}_{m,n} \subset \{ Y \circ Y : Y \in \mathcal{H}_k \} \) and there is an orthonormal basis of \(\mathcal{H}_k \) consisting of only real functions, then also there is an orthonormal basis of \(\mathcal{H}_{m,n} \) consisting of only real functions. The dimension of \(\mathcal{H}_{m,n} \) is given by

\[d_{m,n} = \dim \mathcal{H}_{m,n} = \binom{m + d - 1}{m} \binom{n + d - 1}{n} - \binom{m + d - 2}{m - 1} \binom{n + d - 2}{n - 1}. \]

We observe that there is an absolute constant \(C > 0 \) such that

\[\frac{(m + n)(mn)^{d-2}}{(d-1)!(d-2)!} \leq d_{m,n} \leq \frac{(m + n)(mn)^{d-2}}{(d-1)!(d-2)!} + C(m + n)m^{d-2}n^{d-3}, \quad (m, n) \in \mathbb{N}^2. \]

It is known (see [30], Chapter 12) that if \(f \in L^2(\Omega_d) \) then there exists an unique decomposition

\[f = \sum_{m,n \in \mathbb{N}} Y^{(m,n)}, \]

where \(Y^{(m,n)} \in \mathcal{H}_{m,n} \) for \(m, n \in \mathbb{N} \) and the above series converges to \(f \) in \(L^2(\Omega_d) \). The projection operator \(\pi_{m,n} \) from \(L^2(\Omega_d) \) on \(\mathcal{H}_{m,n} \) is defined by \(\pi_{m,n}f = Y^{(m,n)} \). For every \(w \in \Omega_d \) there exists an unique \(Z_{w}^{(m,n)} \in \mathcal{H}_{m,n} \) that satisfies\((\pi_{m,n}f)(w) = (f, Z_{w}^{(m,n)}) \), \(f \in L^2(\Omega_d) \). The function \(Z_{w}^{(m,n)} \) is called the zonal harmonic of degree \((m, n) \) with pole \(w \).

Next, we introduce some classes of disk polynomials. The disk polynomial of degree \(m \) in \(z \) and degree \(n \) in \(\overline{\alpha} \) associated to the integer \(d - 2 \) is the polynomial \(R_{m,n}^{d-2}(z) \) given by

\[R_{m,n}^{d-2}(z) = \begin{cases} \frac{1}{P^{(d-2,m-n)}_{n}(1)} z^{m-n} P^{(d-2,m,n)}_{n}(2|z|^2 - 1), & \text{if } m \geq n, \\ \frac{1}{P^{(d-2,m-n)}_{n}(1)} z^{n-m} P^{(d-2,n-m)}_{n}(2|z|^2 - 1), & \text{if } m < n, \end{cases} \]

where \(P^{(d-2,m-n)}_{k} \) is the usual Jacobi polynomial of degree \(k \) associated to the pair of numbers \((d - 2, m - n) \). Let \(\{ Y_{j} \}_{j=1}^{d_{m,n}} \) be an orthonormal basis of \(\mathcal{H}_{m,n} \). The following addition formula is known:

\[Z_{w}^{(m,n)}(z) = \sum_{k=1}^{d_{m,n}} Y_{k}(w)Y_{k}(z) = \frac{d_{m,n}}{\omega_{d}} R_{m,n}^{d-2}((z, w)), \quad w, z \in \Omega_d, \]

where \(\omega_{d} = \sigma_{d}(\Omega_d) = \tau_{2d}(S^{2d-1}) \). In particular

\[Z_{w}^{(m,n)}(w) = \sum_{k=1}^{d_{m,n}} |Y_{k}(z)|^2 = \frac{d_{m,n}}{\omega_{d}}. \]
Let us denote by $\hat{Z}^{(m,n)}$ the function

$$\hat{Z}^{(m,n)}(t) = \frac{d_{m,n}}{ω_d} P^{d-2}_{m,n}(t), \quad t ∈ \mathbb{D},$$

and let $e = e_d = (0, 0, ..., 0, 1)$, $f ∈ L^2(Ω_d)$. The convolution product $f * Z^{(m,n)}_ε$ is given by

$$f * Z^{(m,n)}_ε(w) = f * \hat{Z}^{(m,n)}(w) = \int_{Ω_d} f(z)Z^{(m,n)}_w(z) dσ_d(z) = (π_{m,n} f)(w).$$

It follow a relationship between the real zonal harmonics on S^{2d-1} and the complex zonal harmonics on $Ω_d$, as a consequence, we obtain an expression relating polynomials on the disk and Gegenbauer polynomials.

Proposition 2.1. For any $k ∈ \mathbb{N}$ and $x ∈ S^{2d-1}$, we have that

$$Z^{(k)}_x ∘ Ψ = \sum_{m+n=k} Z^{(m,n)}_w, \quad Ψ = Ψ^{-1}(x).$$

Corollary 2.2. Given $z, w ∈ Ω_d,$

$$\frac{2d + 2k - 2}{ω_d(2d - 2)} P^{(2d-2)/2}_k((Ψ(z), Ψ(w))) = \sum_{m+n=k} \hat{Z}^{(m,n)}((z, w)).$$

We denote $\hat{Z}^{(k)}_d = \sum_{m+n=k} \hat{Z}^{(m,n)}$ and we have from the above corollary that $\hat{Z}^{(k)}_d((Ψ(z), Ψ(w))) = \hat{Z}^{(k)}_d((z, w))$, $z, w ∈ Ω_d$. For a detailed study about real and complex spherical harmonics see [4, 23, 30].

3 Multiplier operators of type $Λ_s$

We denote by H the vector space generated by the union $∪_{m,n} H_{m,n}$. The elements of H are linear finite combinations of elements of the subspaces $H_{m,n}$ and H is dense in $L^p(Ω_d)$ for $1 ≤ p < ∞$. Also we denote by \hat{H} the vector space generated by the union $∪_{k} H_k$ which is dense in $L^p(S^{2d-1})$ for $1 ≤ p < ∞$.

Let $Λ = \{λ_{m,n}\}_{m,n ∈ \mathbb{N}}$ be a sequence of complex numbers and $1 ≤ p, q ≤ ∞$. If for any $φ ∈ L^p(Ω_d)$ there is a function $f = Λφ ∈ L^q(Ω_d)$ with formal expansion in spherical harmonic

$$f ∼ \sum_{m,n ∈ \mathbb{N}} λ_{m,n} φ ∗ \hat{Z}^{(m,n)},$$

such that $||Λ||_{p,q} = \sup\{||Λφ||_q : φ ∈ U_p\} < ∞$, we say that the multiplier operator $Λ$ is bounded from L^p into L^q with norm $||Λ||_{p,q}$. Now let $Λ = \{λ_k\}_{k ∈ \mathbb{N}}$ be a sequence of complex numbers and $1 ≤ p, q ≤ ∞$. If for any $φ ∈ L^p(S^{2d-1})$ there is a function $f = Λφ ∈ L^q(S^{2d-1})$ with formal expansion in spherical harmonic

$$f ∼ \sum_{k ∈ \mathbb{N}} λ_k φ ∗ \hat{Z}^{(k)},$$

such that $||Λ||_{p,q} = \sup\{||Λφ||_q : φ ∈ U_{p}\} < ∞$, we say that the multiplier operator $Λ$ is bounded from L^p into L^q with norm $||Λ||_{p,q}$.

Lemma 3.1. Let $λ : [0, ∞) → \mathbb{C}$ be a bounded function, $λ^*_{m,n} = λ(m + n)$ and $λ_k = λ(k)$ for $m,n,k ∈ \mathbb{N}$. Consider the multiplier operators associated with the sequences $Λ = \{λ_{m,n}\}_{m,n ∈ \mathbb{N}}$ and $Λ = \{λ_k\}_{k ∈ \mathbb{N}}$ defined on H and on \hat{H} respectively. Let $1 ≤ p, q ≤ ∞$ and suppose that $Λ_s$ is bounded from L^p to L^q. Then

$$Λ_sφ = \left(Λ(φ ∘ Ψ^{-1})\right) ∘ Ψ, \quad φ ∈ L^p(Ω_d)$$

and

$$Λ_sU_p = (ΛU_p) ∘ Ψ = \{φ ∘ Ψ : φ ∈ \hat{Λ}U_p\}.$$

Proof. For $φ ∈ L^2(Ω_d)$ we get $||Λ_sφ||_2 ≤ (sup_{m,n ∈ \mathbb{N}} ||λ^{*}_{m,n}||_1) ||φ||_2$, then $Λ_s$ is a bounded operator on $L^2(Ω_d)$. Thus

$$Λ_sφ = \sum_{k=0}^∞ \sum_{m+n=k} λ(m+n) φ ∗ \hat{Z}^{(m,n)} = \sum_{k=0}^∞ λ(k) φ ∗ \left(\sum_{m+n=k} \hat{Z}^{(m,n)}\right) = \sum_{k=0}^∞ λ(k) φ ∗ \hat{Z}^{(k)}.$$
where the above series converges in L^2. On the other hand, from Corollary 2.2, for $w \in \Omega_d$ we have
\[
\varphi \ast \hat{Z}_d^{(k)}(w) = \int_{\Omega_d} \varphi(z) \hat{Z}_d^{(k)}((z, w))d\sigma_d(z)
\]
\[
= \int_{\Omega} \varphi(z) \hat{Z}_k^{(W(z))}(T(w))d\sigma_d(z)
\]
\[
= \int_{S^{2d-1}} \hat{Z}_k^{(w)}(x)(\varphi \circ T^{-1})(x)d\nu_d(x)
\]
\[
= (\hat{Z}_d^{(k)} \ast (\varphi \circ T^{-1}))(T(w)).
\]
Thus
\[
\Lambda_\ast \varphi = \left(\sum_{k=0}^{\infty} \lambda(k) \hat{Z}_d^{(k)} \ast (\varphi \circ T^{-1}) \right) \circ T = (\tilde{\Lambda}(\varphi \circ T^{-1})) \circ T, \quad \varphi \in L^2(\Omega_d).
\]
For $2 \leq p \leq \infty$, we have that $L^\infty(\Omega_d) \subseteq L^p(\Omega_d) \subseteq L^2(\Omega_d)$, then $\Lambda_\ast \varphi = (\tilde{\Lambda}(\varphi \circ T^{-1})) \circ T$ for all $\varphi \in L^p(\Omega_d)$ with $2 \leq p \leq \infty$, in particular for $\varphi \in \mathcal{H}$. It follows for $1 \leq p < \infty$ that
\[
\|\Lambda_\ast \varphi\|_{p, q} = \sup \{\|\Lambda_\ast \varphi\|_q : \varphi \in U_p \cap \mathcal{H}\}
\]
\[
= \sup \{\|\tilde{\Lambda}(\varphi \circ T^{-1})\|_q : \varphi \circ T^{-1} \in \tilde{\mathcal{U}}_p \cap \tilde{\mathcal{H}}\}
\]
\[
= \sup \{\|\tilde{\Lambda}_\ast h\|_q : h \in \tilde{\mathcal{U}}_p \cap \tilde{\mathcal{H}}\}
\]
\[
= \|\tilde{\Lambda}\|_{p, q}.
\]
Thus $\tilde{\Lambda}$ is a bounded operator from $L^p(S^{2d-1})$ to $L^q(S^{2d-1})$.

Now consider $1 \leq p \leq 2$. Given $\varphi \in L^p(\Omega_d)$ and for each $n \in \mathbb{N}$, let $\varphi_n \in \mathcal{H}$ be such that $\varphi_n \to \varphi$ in $L^p(\Omega_d)$. Then $\Lambda_\ast \varphi_n \to \Lambda_\ast \varphi$ in $L^q(\Omega_d)$, $\Lambda_\ast \varphi_n = (\tilde{\Lambda}(\varphi_n \circ T^{-1})) \circ T$ and $\tilde{\Lambda}(\varphi_n \circ T^{-1}) \to \tilde{\Lambda}(\varphi \circ T^{-1})$ in $L^q(S^{2d-1})$. Therefore $\Lambda(\varphi_n \circ T^{-1}) \circ T \to \Lambda(\varphi \circ T^{-1}) \circ T$ in $L^q(\Omega_d)$, then $\Lambda_\ast \varphi = (\tilde{\Lambda}(\varphi \circ T^{-1})) \circ T$ q.t.p. Thus we proved (3) and the proof of (4) follows easily from (3). \hfill \Box

Theorem 3.2. Let Λ_\ast and $\tilde{\Lambda}$ as in Lemma 3.1. Then
\[
d_n(\Lambda_\ast U_p(\Omega_d), L^q(\Omega_d)) = d_n(\tilde{\Lambda_\ast U}_p(S^{2d-1}), L^q(S^{2d-1})),
\]
\[
d_n(\Lambda_\ast U_p(\Omega_d), L^q(\Omega_d)) = d_n(\tilde{\Lambda_\ast U}_p(S^{2d-1}), L^q(S^{2d-1})),
\]
\[
d_n(\Lambda_\ast U_p(\Omega_d), L^q(\Omega_d)) = d_n(\tilde{\Lambda_\ast U}_p(S^{2d-1}), L^q(S^{2d-1})),
\]
\[
d_n(\Lambda_\ast U_p(\Omega_d), L^q(\Omega_d)) = d_n(\tilde{\Lambda_\ast U}_p(S^{2d-1}), L^q(S^{2d-1})),
\]
\[
d_n(\Lambda_\ast U_p(\Omega_d), L^q(\Omega_d)) = d_n(\tilde{\Lambda_\ast U}_p(S^{2d-1}), L^q(S^{2d-1})),
\]

Proof. By the Lemma 3.1
\[
d_n(\Lambda_\ast U_p(\Omega_d), L^q(\Omega_d)) = \inf_{X_n} \sup_{f \in \Lambda_\ast U_p} \inf_{g \in X_n} \|f - g\|_{L^q(\Omega_d)}
\]
\[
= \inf_{X_n} \sup_{f \in \Lambda_\ast U_p} \inf_{g \in X_n} \|f \circ T^{-1} - g \circ T^{-1}\|_{L^q(S^{2d-1})}
\]
\[
= \inf_{X_n \circ T} \sup_{f \in (\tilde{\Lambda_\ast U}_p)_{\circ T}} \inf_{g \in X_n \circ T} \|f \circ T^{-1} - g \circ T^{-1}\|_{L^q(S^{2d-1})}
\]
\[
= \inf_{X_n \circ T} \sup_{f \in (\tilde{\Lambda_\ast U}_p)_{\circ T}} \inf_{g \in X_n \circ T} \|\tilde{f} - \tilde{g}\|_{L^q(S^{2d-1})}
\]
\[
= d_n(\tilde{\Lambda_\ast U}_p(S^{2d-1}), L^q(S^{2d-1})),
\]
where X_n runs over all subspaces of $L^q(\Omega_d)$ of dimension n and \tilde{X}_n over all subspaces of $L^q(S^{2d-1})$ of dimension n;
\[
d_n(\Lambda_\ast U_p(\Omega_d), L^q(\Omega_d)) = \inf_{L^n} \sup_{f \in (\Lambda_\ast U_p)_{\circ L^n}} \|f\|_{L^q(\Omega_d)}
\]
\[
= \inf_{L^n} \sup_{f \in (\tilde{\Lambda_\ast U}_p)_{\circ L^n}} \|f \circ T^{-1}\|_{L^q(S^{2d-1})}
\]
\[
= \inf_{L^n} \sup_{f \in (\tilde{\Lambda_\ast U}_p)_{\circ L^n}} \|\tilde{f}\|_{L^q(S^{2d-1})}
\]
\[
= d_n(\tilde{\Lambda_\ast U}_p(S^{2d-1}), L^q(S^{2d-1})),
\]
where L^n runs over all subspaces of $L^q(\Omega_d)$ of codimension n and \tilde{L}^n over all subspaces of $L^q(S^{2d-1})$ of codimension n:

\[
d_n(\Lambda_u u_p(\Omega_d), L^q(\Omega_d)) = \inf_{P_n} \sup_{f \in \Lambda_u u_p} \| f - P_n(f) \|_{L^q(\Omega_d)}
\]

\[
d_n(\Lambda_u u_p(\Omega_d), L^q(\Omega_d)) = \inf_{P_n} \sup_{f \in \Lambda_u u_p} \| f - P_n(f) \|_{L^q(\Omega_d)}
\]

\[
d_n(\Lambda_u u_p(\Omega_d), L^q(\Omega_d)) = \inf_{P_n} \sup_{f \in \Lambda_u u_p} \| f - P_n(f) \|_{L^q(\Omega_d)}
\]

\[
d_n(\Lambda_u u_p(\Omega_d), L^q(\Omega_d)) = \inf_{P_n} \sup_{f \in \Lambda_u u_p} \| f - P_n(f) \|_{L^q(\Omega_d)}
\]

where P_n runs over all bounded linear operators $P_n : L^q(\Omega_d) \to L^q(\Omega_d)$ whose range has dimension n and \tilde{P}_n over all bounded linear operators $\tilde{P}_n : L^q(S^{2d-1}) \to L^q(S^{2d-1})$ whose range has dimension $n + 1$.

Remark 3.3. For $\gamma \in \mathbb{R}$, we denote $\Lambda^\gamma = \{\lambda^\gamma_m\}_{m,n \in \mathbb{N}}$, with $\lambda^\gamma_m = \lambda^\gamma(m + n)$, where the function $\lambda^\gamma : [0, \infty) \to \mathbb{R}$ is defined by $\lambda^\gamma(t) = (t(t + 2d - 2))^{-\gamma/2}$ if $t > 0$ and $\lambda(0) = 0$. The Sobolev space W_γ^p on Ω_d with $\gamma > 0$, $1 \leq p \leq \infty$, is defined as the set

\[
W_\gamma^p = \{ \varphi \in L^p(\Omega_d) : \Lambda^{-\gamma} \varphi \in L^p(\Omega_d) \} = \{ c + \Lambda^\gamma \psi : c \in \mathbb{R}, \ \psi \in L^p(\Omega_d) \},
\]

endowed with norm

\[
\| \varphi \|_{W_\gamma^p} = \| \Lambda^{-\gamma} \varphi \|_p + \| \varphi \|_p.
\]

We define the Sobolev classe W_γ^p as the set

\[
W_\gamma^p = \{ \Lambda^\gamma \varphi : \varphi \in U_p \} = \Lambda^\gamma U_p, \quad \gamma > 0, \quad 1 \leq p \leq \infty.
\]

Now let $\tilde{\lambda}^\gamma = \{ \tilde{\lambda}^\gamma_k \}_{k \in \mathbb{N}}$, $\tilde{\lambda}^\gamma_k = \lambda^\gamma(k)$. The Sobolev classe \tilde{W}_γ^p on S^{2d-1} is given by

\[
\tilde{W}_\gamma^p = \{ \tilde{\lambda}^\gamma \varphi : \varphi \in \tilde{U}_p \} = \tilde{\lambda}^\gamma \tilde{U}_p.
\]

Applying the Lemma 3.1 for the operator Λ^γ we get

\[
W_\gamma^p = \{ \varphi \circ \mathbf{T} : \varphi \in \tilde{W}_\gamma^p \},
\]

and by Theorem 3.2 we have that

\[
d_n(W_\gamma^p(\Omega_d), L^q(\Omega_d)) = d_n(\tilde{W}_\gamma^p(S^{2d-1}), L^q(S^{2d-1})), \quad (5)
\]

\[
d_n(W_\gamma^p(\Omega_d), L^q(\Omega_d)) = d_n(\tilde{W}_\gamma^p(S^{2d-1}), L^q(S^{2d-1})), \quad (6)
\]

\[
d_n(W_\gamma^p(\Omega_d), L^q(\Omega_d)) = \delta_n(\tilde{W}_\gamma^p(S^{2d-1}), L^q(S^{2d-1})), \quad (7)
\]

\[
b_n(W_\gamma^p(\Omega_d), L^q(\Omega_d)) = b_n(\tilde{W}_\gamma^p(S^{2d-1}), L^q(S^{2d-1})). \quad (8)
\]

The estimates in the theorem below follow as a consequence of (5) and of estimates already obtained for the Kolmogorov n-width for the Sobolev classes \tilde{W}_γ^p on the real sphere S^{2d-1}, which can be found in [2, 3, 11, 12, 14, 16, 18].
Theorem 3.4. For the Kolmogorov n-width of Sobolev classes on Ω_d, we have in particular the following estimates:

(a) if $1 \leq p = q \leq \infty$, $2 \leq q \leq p < \infty$, $\gamma > 0$, $$d_n(W^\gamma_p(\Omega_d), L^q(\Omega_d)) \propto n^{-\gamma/(2d-1)};$$

(b) if $1 \leq p = q \leq \infty$, $2 \leq q \leq p \leq \infty$, $\gamma > 0$, $$n^{-\gamma/(2d-1)}(\ln n)^{-1/2} \ll d_n(W^\gamma_p(\Omega_d), L^q(\Omega_d)) \ll n^{-\gamma/(2d-1)};$$

(c) if $2 \leq q \leq p < \infty$, $\gamma/(2d-1) > 1/2$, $$d_n(W^\gamma_p(\Omega_d), L^q(\Omega_d)) \propto n^{-\gamma/(2d-1)};$$

(d) if $2 \leq q \leq p \leq \infty$, $\gamma/(2d-1) > 1/2$, $$n^{-\gamma/(2d-1)} \ll d_n(W^\gamma_p(\Omega_d), L^q(\Omega_d)) \ll n^{-\gamma/(2d-1)}(\ln n)^{1/2};$$

(e) if $1 \leq p \leq q \leq 2$, $\gamma/(2d-1) > 1/p-1/q$, $$d_n(W^\gamma_p(\Omega_d), L^q(\Omega_d)) \propto n^{-\gamma/(2d-1)+1/p-1/q};$$

(f) if $1 \leq p \leq q \leq 2$, $\gamma > 0$, $$d_n(W^\gamma_p(\Omega_d), L^q(\Omega_d)) \propto n^{-\gamma/(2d-1)};$$

(g) if $1 \leq p \leq q \leq 2$, $\gamma > 0$, $$n^{-\gamma/(2d-1)}(\ln n)^{-1/2} \ll d_n(W^\gamma_p(\Omega_d), L^q(\Omega_d)) \ll n^{-\gamma/(2d-1)};$$

(h) if $1 \leq q \leq 2 < q < \infty$, $\gamma/(2d-1) > 1/p$, $$d_n(W^\gamma_p(\Omega_d), L^q(\Omega_d)) \propto n^{-\gamma/(2d-1)+1/p-1/2};$$

(i) if $1 \leq p \leq 2 \leq q \leq \infty$, $\gamma/(2d-1) > 1/p$, $$n^{-\gamma/(2d-1)+1/p-1/2} \ll d_n(W^\gamma_p(\Omega_d), L^q(\Omega_d)) \ll n^{-\gamma/(2d-1)+1/p-1/2}(\ln n)^{1/2}.$$

Other estimates for the Kolmogorov n-widths of the Sobolev classes $W^\gamma_p(\Omega_d)$, as also to the n-widths of Gelfand, linear and Bernstein, can be obtained using (6)-(8).

Remark 3.5. For $\gamma, \xi \in \mathbb{R}$, $\gamma > 0$ and $\xi \geq 0$, we denote $\Lambda^{(1)} = \{\Lambda^{(1),m,n}\}_{m,n\in\mathbb{N}}$, with $\Lambda^{(1),m,n} = \lambda^{(1)}(m+n)$, where the function $\lambda^{(1)} : [0, \infty) \to \mathbb{R}$ is defined by $\lambda^{(1)}(t) = t^{-\gamma}(\ln t)^{-\xi}$ for $t > 1$ and $\lambda^{(1)}(t) = 0$ for $0 \leq t \leq 1$. We have that $\Lambda^{(1)}U_p$ is a set of finitely differentiable functions on Ω_d, in particular, $\Lambda^{(1)}U_p$ is a Sobolev-type class if $\xi = 0$. Now for $\gamma, r \in \mathbb{R}$, with $\gamma > 0$, we denote $\Lambda^{(2)} = \{\Lambda^{(2),m,n}\}_{m,n\in\mathbb{N}}$, with $\Lambda^{(2),m,n} = \lambda^{(2)}(m+n)$, where the function $\lambda^{(2)} : [0, \infty) \to \mathbb{R}$ is defined by $\lambda^{(2)}(t) = e^{-t^r}$ for $t \geq 0$. We have that $\Lambda^{(2)}U_p$ is a set of infinitely differentiable ($0 < r < 1$) or analytic ($r \geq 1$) functions on Ω_d.

The results of the next three theorems follow as a consequence of the Theorem 3.2 and of results proved in [18].

Theorem 3.6. If $1 \leq p \leq \infty$, $2 \leq q \leq \infty$ and $\gamma/(2d-1) > 1/p$ we have $$d_n(\Lambda^{(1)}U_p, L^q) \ll n^{-\gamma/(2d-1)+(1/p-1/2)}(\ln n)^{-\xi} \begin{cases} q^{1/2}, & \text{if } q < \infty, \\ (\ln n)^{1/2}, & \text{if } q = \infty, \end{cases}$$

and for $\gamma/(2d-1) > 1/p-1/q$, $$d_n(\Lambda^{(1)}U_p, L^q) \gg n^{-\gamma/(2d-1)}(\ln n)^{-\xi} \vartheta_n,$$

where $$\vartheta_n = \begin{cases} 1, & \text{if } 1 \leq p \leq 2, 1 < q \leq 2, \\ 1, & \text{if } 2 \leq p < \infty, 2 \leq q \leq \infty, \\ 1, & \text{if } 1 \leq p \leq 2 \leq q \leq \infty, \\ (\ln n)^{-1/2}, & \text{if } 1 \leq p \leq 2, q = 1, \\ (\ln n)^{-1/2}, & \text{if } p = \infty, 2 \leq q \leq \infty. \end{cases}$$
In particular, if $\gamma/(2d - 1) > 1/p, 2 \leq p, q < \infty,$

$$d_n(A^{(1)}_n U_p, L^q) \asymp n^{-\gamma/(2d-1)} (\ln n)^{-\xi}.$$

Theorem 3.7. For $\gamma, r \in \mathbb{R}$ such that $\gamma > 0$, $0 < r \leq 1$ and for all $k \in \mathbb{N}$ we have that

$$d_k(\Lambda_{r,1}^{(2)} U_p, L^q) \gg \nu A_{r,1}^{(2)} \varrho_k,$$

where

$$\varrho_k = \gamma \left(\frac{(2d-1)!}{2} \right)^{r/(2d-1)}$$

and ϱ_k is given in the previous theorem.

Theorem 3.8. For $0 < r \leq 1, 1 \leq p \leq \infty, 2 \leq q \leq \infty$ and for all $k \in \mathbb{N}$, we have that

$$d_k(\Lambda_{r,1}^{(2)} U_p, L^q) \ll \nu A_{r,1}^{(2)} k^{(1-r)/(2d-1)(1/p-1/2)} \cdot \left\{ \begin{array}{ll} q^{1/2} \gamma/(\ln k)^{1/2}, & \text{if } q < \infty, \\ 1, & \text{if } q = \infty, \end{array} \right.$$

where ϱ_k is the constant given in the previous theorem.

Other estimates for the Kolmogorov n-width for the operator $\Lambda_{r,1}^{(2)}$ when $r \in \mathbb{R}, r > 1$, can also be obtained from results in [18].

4 Estimates for Levy means

In this paper, from this point forward, we will consider only the multiplier operators Λ associated with the norm $|(m,n)| = \max\{m,n\}$.

Given $l, N, m, n, M_1, M_2 \in \mathbb{N}$, with $M_1 < M_2$, we consider the following notations:

- $A_l = \{(m,n) \in \mathbb{N}^2 : |(m,n)| \leq l\}$, $A_{-1} = \emptyset$, $a_l = \#(A_l \setminus A_{l-1})$
- $H_l = \bigoplus_{(m,n) \in A_l \setminus A_{l-1}} H_{m,n}$, $d_l = \dim H_l = \sum_{(m,n) \in A_l \setminus A_{l-1}} d_{m,n}$.
- $T_N = \bigoplus_{l=0}^N H_l = \bigoplus_{(m,n) \in AN} H_{m,n}$, $T_{M_1,M_2} = \bigoplus_{(m,n) \in AM_1 \setminus AM_1} H_{m,n}$ and $s = \dim T_{M_1,M_2}$.

In this section and in the following sections we will consider $H_{m,n}$ and T_{M_1,M_2} as real vector subspaces of the real vector spaces $L^p(\Omega_l, \mathbb{R}), 1 \leq p \leq \infty$.

Proposition 4.1. There are positive constants C_1, C_2, C_3 such that

$$\frac{2}{d!} (d-1)!^{2d-2} - C_1 l^{2d-3} \leq \dim H_l \leq \frac{2}{d!} (d-1)! l^{2d-2} + C_2 l^{2d-3},$$

$$\frac{2}{d!} (d-1)! N^{2d-1} \leq \dim T_N \leq \frac{2}{d!} (d-1)! N^{2d-1} + C_3 N^{2d-2}. \tag{10}$$

In particular, $\dim H_l \asymp l^{2d-2}$ and $\dim T_N \asymp N^{2d-1}$.

Proof. The proofs of (9) and (10) are easily obtained using (2) and integration to estimate finite sums. \hfill \Box

Let $E = (\mathbb{R}^n, \| \cdot \|)$ be a n-dimensional real Banach space with unit ball $B_E = \{ x \in \mathbb{R}^n : \|x\| \leq 1 \}$, and let $|||x||| = (∑_{k=1}^n |x_k|^2)^{1/2}$ and $(x,y) = ∑_{k=1}^n x_ky_k$ be the euclidean norm and the inner product on \mathbb{R}^n. Let $S^{n-1} = \{ x \in \mathbb{R}^n : |||x||| = 1 \}$ be the euclidean unit sphere in \mathbb{R}^n. The Levy mean of the norm $|| \cdot ||$ on \mathbb{R}^n is defined by

$$M(|| \cdot ||) = M(\mathbb{R}^n, || \cdot ||) = \left(∫_{S^{n-1}} ||x||^2 dμ(x) \right)^{1/2},$$

where $μ$ denotes the normalized Lebesgue measure on S^{n-1}.
Remark 4.2. For $M_1 + 1 \leq l \leq M_2$ let $A_l \setminus A_l^{-1} = \{(m_l^j, n_l^j) : 1 \leq j \leq a_l\}$ such that $|m_l^j, n_l^j| \leq |(m_l^{j+1}, n_l^{j+1})|$ for $1 \leq j \leq a_l - 1$ and let $(Y_1^{m_l^j, n_l^j}, \ldots, Y_{d_{m_l^j, n_l^j}}^{m_l^j, n_l^j})$ be an orthonormal basis of $\mathcal{H}_{m_l^j, n_l^j}$ consisting of only real functions.

We denote $Y_{i}^{l,j} = Y_{i}^{m_l^j, n_l^j}$, $d_{i,j} = d_{m_l^j, n_l^j}$ and $\mathcal{H}_{i,j} = \mathcal{H}_{m_l^j, n_l^j}$. We consider the orthonormal basis

$$\{\xi_k\}_{k=1}^{M_2} = \bigcup_{l=M_1+1}^{M_2} \bigcup_{j=1}^{a_l} \{Y_{i}^{l,j}, \ldots, Y_{d_{i,j}}^{l,j}\}$$

of \mathcal{T}_{M_1, M_2} endowed with the order $Y_1^{M_1+1,1}, \ldots, Y_{d_{M_1+1}}^{M_1+1,1}, Y_1^{M_1+1,a_{M_1+1}}, \ldots, Y_{d_{M_1+1}}^{M_1+1,a_{M_1+1}}, \ldots, Y_1^{M_2,1}, \ldots, Y_{d_{M_2}}^{M_2,1}, \ldots, Y_1^{M_2,a_{M_2}}, \ldots, Y_{d_{M_2}}^{M_2,a_{M_2}}$. Let $J : \mathbb{R}^s \to \mathcal{T}_{M_1, M_2}$ be the coordinate isomorphism which assigns to $\alpha = (\alpha_1, \ldots, \alpha_s) \in \mathbb{R}^s$ the function

$$J(\alpha) = \sum_{k=1}^{s} \alpha_k \xi_k = \sum_{l=M_1+1}^{M_2} \sum_{j=1}^{a_l} \alpha_l^{l,j} Y_{i}^{l,j}$$

where $(\alpha_1, \ldots, \alpha_s) = (\alpha_1^{M_1+1,1}, \ldots, \alpha_{d_{M_1+1}}^{M_1+1,1}, \alpha_1^{M_1+1,a_{M_1+1}}, \ldots, \alpha_{d_{M_1+1}}^{M_1+1,a_{M_1+1}}, \ldots, \alpha_1^{M_2,1}, \ldots, \alpha_{d_{M_2}}^{M_2,1}, \ldots, \alpha_1^{M_2,a_{M_2}}, \ldots, \alpha_{d_{M_2}}^{M_2,a_{M_2}})$. Consider a function $\lambda : [0, \infty) \to \mathbb{R}$, such that $\lambda(t) \neq 0$ for $t \geq 0$ and let $\Lambda = \{\lambda_{m,n}\}_{m,n \in \mathbb{N}}$ be the sequence of multipliers defined by $\lambda_{m,n} = \lambda((m, n))$. For $M_1 + 1 \leq l \leq M_2$ and $1 \leq j \leq a_l$, we write $\lambda_l^{j} = \lambda_{m_l^j, n_l^j} = \lambda((m_l^j, n_l^j))$. Let $\Lambda_s = \{\lambda_l\}_{l=1}^{s}$ be the numerical sequence

$$\Lambda_s = \left\{ \frac{\lambda_1^{M_1+1}}{d_{M_1+1}}, \ldots, \frac{\lambda_1^{M_2}}{d_{M_2}} \right\}$$

Consider the multiplier operator Λ_s on \mathcal{T}_{M_1, M_2} defined by

$$\Lambda_s \left(\sum_{k=1}^{s} \alpha_k \xi_k \right) = \sum_{k=1}^{s} \lambda_k \alpha_k \xi_k.$$

We also denote by Λ_s the multiplier operator defined on \mathbb{R}^s by

$$\Lambda_s(\alpha_1, \ldots, \alpha_s) = (\lambda_1 \alpha_1, \ldots, \lambda_s \alpha_s).$$

For $\xi \in \mathcal{T}_{M_1, M_2}$ and $1 \leq p \leq \infty$, we define

$$\|\xi\|_{\Lambda_s,p} = \|\Lambda_s \xi\|_p,$$

and for $\alpha \in \mathbb{R}^s$ we define

$$\|\alpha\|_{(\Lambda_s,p)} = \|J(\alpha)\|_{\Lambda_s,p}.$$ The application $\mathcal{T}_{M_1, M_2} \ni \xi \mapsto \|\xi\|_{\Lambda_s,p}$ is a norm on \mathcal{T}_{M_1, M_2} and the application $\mathbb{R}^s \ni \alpha \mapsto \|\alpha\|_{(\Lambda_s,p)}$ is a norm on \mathbb{R}^s. We denote

$$B_{\Lambda_s,p} = B_{\Lambda_s,p} = \{\xi \in \mathcal{T}_{M_1, M_2} : \|\xi\|_{\Lambda_s,p} \leq 1\},$$

$$B_{(\Lambda_s,p)} = B_{(\Lambda_s,p)} = \{\alpha \in C^s : \|\alpha\|_{(\Lambda_s,p)} \leq 1\}.$$ If Λ_s is the identity operator I, we will write $\|\cdot\|_{I,p} = \|\cdot\|_p$, $\|\cdot\|_{(I,p)} = \|\cdot\|_p$, $B_{I,p} = B_p$ and $B_{(I,p)} = B_p$.

Theorem 4.3. Let $\lambda : [0, \infty) \to \mathbb{R}$ be a positive and monotonic function, $s = \dim \mathcal{T}_{M_1, M_2}$ and consider the orthonormal system $\{\xi_k\}_{k=1}^{s}$ of \mathcal{T}_{M_1, M_2} and the multiplier operator Λ_s on \mathcal{T}_{M_1, M_2} as in Remark 4.2. If λ is non-increasing, then there is an absolute constant $C > 0$ such that:

(a) If $2 \leq p < \infty$, we have

$$s^{-1/2} \left(\sum_{l=M_1+1}^{M_2} \lambda(l)^2 d_l \right)^{1/2} \leq M \|\cdot\|_{\Lambda_s,p} \leq C \omega_d \lambda^{1/p-1/2} p^{1/2} s^{-1/2} \left(\sum_{l=M_1+1}^{M_2} \lambda(l-1)^2 d_l \right)^{1/2}.$$
(b) If \(p = \infty \), we have
\[
 s^{-1/2} \left(\sum_{l=M_1+1}^{M_2} (\lambda(l))^2 \right)^{1/2} \leq M(\| \cdot \|_{(\Lambda, \infty)}) \leq C_\omega d^{-1/2} s^{-1/2} \left(\sum_{l=M_1+1}^{M_2} (\lambda(l-1))^2 \right)^{1/2}.
\]

(c) If \(1 \leq p \leq 2 \), we have
\[
 \frac{\omega}{2} s^{-1/2} \left(\sum_{l=M_1+1}^{M_2} (\lambda(l))^2 \right)^{1/2} \leq M(\| \cdot \|_{(\Lambda, p)}) \leq s^{-1/2} \left(\sum_{l=M_1+1}^{M_2} (\lambda(l-1))^2 \right)^{1/2}.
\]

(d) If \(p = 2 \), we have
\[
 s^{-1/2} \left(\sum_{l=M_1+1}^{M_2} (\lambda(l))^2 \right)^{1/2} \leq M(\| \cdot \|_{(\Lambda, p)}) \leq s^{-1/2} \left(\sum_{l=M_1+1}^{M_2} (\lambda(l-1))^2 \right)^{1/2}.
\]

If \(\lambda \) is non-decreasing, then we obtain the estimates in (a), (b), (c) and (d) permuting \(\lambda(l) \) for \(\lambda(l-1) \).

Proof. Suppose \(\lambda \) a non-increasing function. For a continuous function \(f \) on \(S^{n-1} \) consider the function \(\tilde{f} \) defined on \(\mathbb{R}^n \setminus \{0\} \) by \(\tilde{f}(x) = |||x|||^2 f(x/|||x|||) \). It is known that
\[
 \int_{S^{n-1}} f(x) d\mu(x) = \frac{2\pi}{n} \int \tilde{f}(x) d\gamma(x),
\]
(11)
where \(d\gamma(x) = e^{-\pi |||x|||^2} dx \) denotes the Gaussian measure on \(\mathbb{R}^n \). Let \(\{r_k\}_{k=1}^\infty \) be the sequence of Rademacher’s functions given by \(r_k(\theta) = \text{sign} \sin(2^k \pi \theta), \theta \in [0,1], k \in \mathbb{N} \) and let
\[
 \delta^n(\theta) = m^{-1/2}(r_{(i-1)m+1}(\theta) + \ldots + r_{im}(\theta)), \quad m \in \mathbb{N}, \quad i = 1, 2, \ldots, n.
\]
It follows by Lemma 2.1 in Kwapien [19], p. 585, that if \(h : \mathbb{R}^n \rightarrow \mathbb{R} \) is a continuous function satisfying \(h(x_1, \ldots, x_n)e^{-\sum_{k=1}^n |x_k|} \rightarrow 0 \), uniformly when \(\sum_{k=1}^n |x_k| \rightarrow \infty \), then
\[
 \int_{\mathbb{R}^n} h(x) d\gamma(x) = \lim_{m \rightarrow \infty} \int_0^1 h((2\pi)^{-1/2}(\delta^n_1(\theta), \ldots, \delta^n_m(\theta))) d\theta.
\]
(12)
Now, we consider \(f(x) = |||x|||^2(\Lambda, p), x \in S^{n-1} \) and \(h(x) = \tilde{f}(x) = f(x), x \in \mathbb{R}^n \) applying (11) and (12), we obtain
\[
 \int_{S^{n-1}} |||x|||^2(\Lambda, p) d\mu(x) = \frac{2\pi}{n} \lim_{m \rightarrow \infty} \int_0^1 \left(\int_{\Omega_d} \sum_{i=1}^s \tilde{\lambda}_i \delta^n_1(\theta) |\xi_i(z)|^p d\sigma_d(z) \right)^{2/p} d\theta.
\]
(13)
Denoting \(\tilde{\xi}_{(i-1)m+k}(z) = m^{-1/2} \xi_i(z), z \in \Omega_d \) and \(\tilde{\lambda}_{(i-1)m+k} = \tilde{\lambda}_i \), for \(i = 1, \ldots, s; k = 1, \ldots, m \) and \(m = 1, 2, \ldots \)
we obtain
\[
 \sum_{i=1}^s \tilde{\lambda}_i \delta^n_1(\theta) \xi_i(z) = \sum_{j=1}^{m^s} r_j(\theta) \tilde{\lambda}_j \tilde{\xi}_j(z).
\]
(14)
Hence, by (13) and (14),
\[
 \int_{S^{n-1}} |||x|||^2(\Lambda, p) d\mu(x) = \lim_{m \rightarrow \infty} \int_0^1 \left(\int_{\Omega_d} \sum_{j=1}^{m^s} r_j(\theta) \tilde{\lambda}_j \tilde{\xi}_j(z) \right)^{2/p} d\sigma_d(z) d\theta.
\]
(15)
Using the addition formula we get
\[
\sum_{j=1}^{m_s} |\tilde{\lambda}_j \tilde{\xi}_j(z)|^2 = \left(\sum_{i=1}^{m} \sum_{k=1}^{m} |\lambda_{(i-1)m+k} \tilde{\xi}_{(i-1)m+k}(z)|^2 \right) = \sum_{i=1}^{m} \sum_{k=1}^{m} |\tilde{\lambda}_i|^2 \left| m^{-1/2} \xi_i(z) \right|^2
\]
\[
= \sum_{l=M_1+1}^{M_2} \sum_{j=1}^{a_l} \left| \lambda_j(z) \right|^2 \sum_{i=1}^{2m_s} |\tilde{\lambda}_i \tilde{\xi}_i(z)|^2
\]
\[
\leq \sum_{l=M_1+1}^{M_2} (\lambda(l-1))^2 \sum_{j=1}^{a_l} \frac{d_{i,j}}{\omega_d}
\]
\[
= \sum_{l=M_1+1}^{M_2} (\lambda(l-1))^2 \frac{d_{i}}{\omega_d}
\]
and analogously,
\[
\sum_{j=1}^{2m_s} |\tilde{\lambda}_j \tilde{\xi}_j(z)|^2 \geq \sum_{l=M_1+1}^{M_2} (\lambda(l))^2 \frac{d_{i}}{\omega_d}.
\]

Therefore, from Jensen’s inequality, Khintchine’s inequality (see [27], p. 41) and (15), we obtain for \(2 \leq p \leq \infty\),
\[
M(\| \cdot \|_{(\Lambda_p, \rho)}) \leq s^{-1/2} \lim_{m \to \infty} \left(\int_{\Omega_d} \left(\sum_{j=1}^{m} \left| \int_{0}^{1} r_j(\theta) \lambda_j \tilde{\xi}_j(z) \right|^p d\theta d\sigma_d(z) \right)^{2/p} \right)^{1/2}
\]
\[
\leq \gamma(p) s^{-1/2} \lim_{m \to \infty} \left(\int_{\Omega_d} \left(\sum_{j=1}^{m} \left| \tilde{\lambda}_j \tilde{\xi}_j(z) \right|^2 \right)^{p/2} d\sigma_d(z) \right)^{1/p},
\]
\[
\leq \gamma(p) s^{-1/2} \lim_{m \to \infty} \left(\int_{\Omega_d} \left(\sum_{l=M_1+1}^{M_2} (\lambda(l-1))^2 \frac{d_{i}}{\omega_d} \right)^{p/2} d\sigma_d(z) \right)^{1/p} \]
\[
\leq C_1 p^{1/2} s^{-1/2} \omega_d^{1/p-1/2} \sum_{l=M_1+1}^{M_2} (\lambda(l-1))^2 \frac{d_{i}}{\omega_d} ,
\]
where \(C_1\) is obtained from the fact that \(\gamma(p) \approx p^{1/2}\), and hence we get the upper estimate in (a). On the other hand, for \(p = 1\), it follows from Khintchine’s inequality, Jensen’s inequality and (15)
\[
M(\| \cdot \|_{(\Lambda_1, \rho)}) = s^{-1/2} \lim_{m \to \infty} \left(\int_{0}^{1} \left(\int_{\Omega_d} \left| \sum_{j=1}^{m} r_j(\theta) \lambda_j \tilde{\xi}_j(z) \right| d\sigma_d(z) \right)^2 d\theta \right)^{1/2}
\]
\[
\geq s^{-1/2} \lim_{m \to \infty} \int_{\Omega_d} \int_{0}^{1} \left| \sum_{j=1}^{m} r_j(\theta) \lambda_j \tilde{\xi}_j(z) \right| d\theta d\sigma_d(z)
\]
\[
\geq \beta(1) s^{-1/2} \lim_{m \to \infty} \int_{\Omega_d} \left(\sum_{j=1}^{m} \left| \tilde{\lambda}_j \tilde{\xi}_j(z) \right|^2 \right)^{1/2} d\sigma_d(z)
\]
\[
\geq \frac{1}{2} s^{-1/2} \omega_d^{1/2} \left(\sum_{l=M_1+1}^{M_2} (\lambda(l))^2 \frac{d_{i}}{\omega_d} \right)^{1/2} .
\]

Since the Levy mean is an increasing function of \(p\), it follows that
\[
M(\| \cdot \|_{(\Lambda_p, \rho)}) \geq M(\| \cdot \|_{(\Lambda_1, \rho)}) \geq \frac{1}{2} s^{-1/2} \omega_d^{1/2} \left(\sum_{l=M_1+1}^{M_2} (\lambda(l))^2 \frac{d_{i}}{\omega_d} \right)^{1/2} , \quad 1 \leq p \leq 2,
\]

12
thus we obtain the lower estimate in (c).

Now, we will obtain the inequalities in (d). For $x \in \mathbb{R}^s$, we have

$$\|x\|_{(\Lambda,2)}^2 = \sum_{i=M_1+1}^{M_2} \sum_{j=1}^{a_i} |a_i^{(j)}|^2 \sum_{i=1}^{d_{i,j}} (x_{i}^{(j)})^2 \|\psi_{i}^{(j)}\|_2^2$$

$$\leq \sum_{i=M_1+1}^{M_2} \left(\sup_{1 \leq j \leq a_i} \lambda_i^{(j)} \right)^2 \sum_{j=1}^{d_{i,j}} (x_{i}^{(j)})^2$$

$$\leq \sum_{i=M_1+1}^{M_2} (\lambda(l-1))^2 \sum_{j=1}^{d_{i,j}} (x_{i}^{(j)})^2,$$

and

$$\int_{S^{s-1}} x_i^2 d\mu(x) = \frac{1}{s} \sum_{i=1}^{s} \int_{S^{s-1}} x_i^2 d\mu(z) = \frac{1}{s} \int_{S^{s-1}} \|x\|^2 d\mu(x) = \frac{1}{s}, \quad i = 1, \ldots, s.$$

Thus

$$\int_{S^{s-1}} \|x\|_{(\Lambda,2)}^2 d\mu(z) \leq \sum_{i=M_1+1}^{M_2} (\lambda(l-1))^2 \int_{S^{s-1}} \sum_{j=1}^{d_{i,j}} (x_{i}^{(j)})^2 d\mu(x)$$

$$= \frac{1}{s} \sum_{i=M_1+1}^{M_2} (\lambda(l-1))^2 d_i,$$

and consequently

$$M(\|\cdot\|_{(\Lambda,2)}) \leq s^{-1/2} \left(\sum_{i=M_1+1}^{M_2} (\lambda(l-1))^2 d_i \right)^{1/2}.$$

Analogously we get

$$M(\|\cdot\|_{(\Lambda,2)}) \geq s^{-1/2} \left(\sum_{i=M_1+1}^{M_2} (\lambda(l))^2 d_i \right)^{1/2}.$$

Therefore we obtain (d). Since the Levy mean $M(\|\cdot\|_{(\Lambda,\rho)})$ is an increasing function of ρ for $1 \leq \rho \leq \infty$, the lower estimates in (a),(b) and the upper estimate in (c) follow from (d).

Finally, we will find the upper estimate in (b). Any polynomial $t_s \in T_{M_1,M_2}$, can be expressed as $t_s = D_{M_1,M_2} * t_s$, where $D_{M_1,M_2} = \sum_{(m,n) \in A_{M_1} \setminus A_{M_1 M_2}} Z_{\epsilon}^{(m,n)}$ and from Young’s inequality, we get

$$\|t_s\|_{\infty} = \|D_{M_1,M_2} * t_s\|_{\infty} \leq \|D_{M_1,M_2}\|_{\infty} \|t_s\|_{1},$$

and since $D_{M_1,M_2} = D_{M_1,M_2} * D_{M_1,M_2}$, then

$$\|D_{M_1,M_2}\|_{\infty} \leq \|D_{M_1,M_2}\|_{2}^2 = \frac{s}{\omega_d},$$

and thus $\|t_s\|_{\infty} \leq s \|t_s\|_{1}/\omega_d$. Furthermore, if I denotes the identity operator, we have

$$\|I(t_s)\|_{\infty} \leq \frac{s}{\omega_d} \|t_s\|_{1}, \quad \|I(t_s)\|_{\infty} \leq \|t_s\|_{\infty}.$$

Applying the Riesz-Thorin Interpolation Theorem to the above inequalities , we obtain

$$\|t_s\|_{\infty} = \|I(t_s)\|_{\infty} \leq \left(\frac{s}{\omega_d} \right)^{1/p} \|t_s\|_{p}, \quad 1 \leq p \leq \infty. \quad (16)$$

Similarly, we can show that

$$\|t_s\|_{p} \leq \left(\frac{s}{\omega_d} \right)^{1/2 - 1/p} \|t_s\|_{2}, \quad 2 \leq p \leq \infty. \quad (17)$$
To obtain the upper estimate in (b), we apply (16) and the upper estimate in (a) with \(p = \ln s \), and we get

\[
M(\| \cdot \|_{(\lambda, \infty)}) \leq \left(\frac{s}{\omega_d} \right)^{1/p} \left(\int_{S^{d-1}} \| x \|_{(\lambda, p)}^2 \, d\mu(x) \right)^{1/2} \\
\leq \left(\frac{s}{\omega_d} \right)^{1/p} C_1 p^{1/2} s^{-1/2} \omega_d^{1/2} \left(\frac{M_2}{\sum_{l=0}^{m} (\lambda(l-1))^2 d_l} \right)^{1/2} \\
= e C_1 (\ln s)^{1/2} s^{-1/2} \omega_d^{1/2} \left(\sum_{l=0}^{m} (\lambda(l-1))^2 d_l \right)^{1/2}.
\]

If \(\lambda \) is a non-decreasing function, the proof is analogous. \(\square \)

5 Estimates for \(n \)-widths of general multiplier operators

Consider a \(n \)-dimensional Banach space \(E = (\mathbb{R}^n, \| \cdot \|) \). The dual norm of \(\| \cdot \| \) is defined by \(\| x \|_0 = \sup \{ |\langle x, y \rangle| : y \in B_E \} \), where \(\langle x, y \rangle \) denotes the usual inner product of the elements \(x, y \in \mathbb{R}^n \). The dual space \((\mathbb{R}^n, \| \cdot \|_0)\) of \(E \) will be denoted by \(E^0 \).

Theorem 5.1. ([26]) There exists an absolute constant \(C > 0 \) such that, for every \(0 < \rho < 1 \) and \(n \in \mathbb{N} \), there exists a subspace \(F_k \subseteq \mathbb{R}^n \), with \(\dim F_k = k > pn \) and

\[
\| \alpha \| \leq C M (\| \cdot \|_0) (1 - \rho)^{-1/2} \| \alpha \|,
\]

\(\alpha \in F_k \).

Theorem 5.2. Let \(1 \leq q \leq p \leq 2 \), \(0 < \rho < 1 \), \(s = \dim T_N \), \(T_N = \bigoplus_{l=0}^{N} \mathcal{H}_l \), \(d_l = \dim \mathcal{H}_l \) and let \(\lambda : [0, \infty) \to \mathbb{R} \) be a positive and non-increasing function with \(\lambda(t) \neq 0 \) for \(t \geq 0 \) and \(\Lambda = \{ \lambda_{m,n} \}_{m,n \in \mathbb{N}} \), \(\lambda_{m,n} = \lambda((m,n)) \). Then there is an absolute constant \(C > 0 \) such that

\[
\min \{ d_{[\rho s - 1]}(\Lambda^s, p), d_{[\rho s - 1]}(\Lambda^s, q) \} \geq C (1 - \rho)^{1/2} s^{1/2} \left(\sum_{l=1}^{N} (\lambda(l))^2 d_l \right)^{-1/2} \vartheta_{q,s}
\]

where

\[
\vartheta_{q,s} = \begin{cases}
(1 - 1/q)^{1/2}, & q > 1, \\
(\ln s)^{-1/2}, & q = 1,
\end{cases}
\]

and \([\rho s - 1]\) denotes the integer part of the number \(\rho s - 1 \).

Proof. Let \(x, y \in \mathbb{R}^s = J^{-1} T_N \). The Hölder’s inequality implies that

\[
\| x \|_{(\Lambda, q)}^0 = \sup \{ |\langle x, y \rangle| : y \in B^s_{(\Lambda, q)} \} \\
\leq \sup \left\{ \left\| \int_{\Omega_s}(Jx)(Jy) d\sigma_s \right\| : Jy \in \Lambda_{s}^{-1}(B^s_{q}) \right\} \\
= \sup \left\{ \left\| \int_{\Omega_s}(\Lambda_{s}^{-1}Jx)(J\overline{y}) d\sigma_s \right\| : J\overline{y} \in B^s_{q} \right\} \\
\leq \sup \{ \| \Lambda_{s}^{-1}Jx \| q \| J\overline{y} \| q : J\overline{y} \in B^s_{q} \} \\
\leq \| \Lambda_{s}^{-1}Jx \| q = \| x \|_{(\Lambda_{s}^{-1}, q')}
\]

where \(1/q + 1/q' = 1 \) and \(\Lambda_{s}^{-1} = \{ \lambda_{m,n}^{-1} \}_{m,n \in \mathbb{N}} \). Taking \(0 < \rho < 1 \), the Theorem 5.1 guarantees the existence of a subspace \(F_k \subseteq \mathbb{R}^s \), \(\dim F_k = k > \rho s \), such that

\[
\| x \|_{(2)} = \| x \|_{(s)} \leq C M (\| \cdot \|_{(\Lambda, q)}) (1 - \rho)^{-1/2} \| x \|_{(\Lambda, q)},
\]

\[
\leq C' M (\| \cdot \|_{(\Lambda_{s}^{-1}, q')}) (1 - \rho)^{-1/2} \| x \|_{(\Lambda, q)},
\]

14
for all \(x \in F_k \). Thus, for \(\epsilon = (C\')^{-1}(1 - \rho)^{1/2} \left(M\left(\frac{1}{\|((1 - \rho)\Lambda^{-1})^q\|}\right) \right)^{-1} \), we have that \(\epsilon B_{\theta(A_{\Lambda})} \cap F_k \subseteq B_{\Lambda_{(2)}}^s \).

From Theorem 4.3, since \(2 \leq q' \leq \infty \), it follows that
\[
\epsilon \geq C(1 - \rho)^{1/2} \left\{ \begin{array}{ll}
(q')^{-1/2}s^{1/2} \left(\sum_{i=1}^{N}(\lambda(l))^{-2}d_l \right)^{-1/2}, & q' < \infty, \\
(s/\ln s)^{1/2} \left(\sum_{i=1}^{N}(\lambda(l))^{-2}d_l \right)^{-1/2}, & q' = \infty,
\end{array} \right.
\]
and since \(1/q + 1/q' = 1 \),
\[
\epsilon \geq C(1 - \rho)^{1/2} \left\{ \begin{array}{ll}
(1 - 1/q)^{1/2}s^{1/2} \left(\sum_{i=1}^{N}(\lambda(l))^{-2}d_l \right)^{-1/2}, & q > 1 \\
(s/\ln s)^{1/2} \left(\sum_{i=1}^{N}(\lambda(l))^{-2}d_l \right)^{-1/2}, & q = 1.
\end{array} \right.
\]

We have that \(\Lambda_\alpha = \Lambda |_{\tau_N} \) and since \(B_2^s \subseteq U_2 \), then \(\Lambda_\alpha(B_2^s) \subseteq \Lambda(U_2) \), therefore
\[
\min\{d_{[\rho s - 1]}(\Lambda U_p, L^q), d^{[\rho s - 1]}(\Lambda U_p, L^q)\} \\
\geq \min\{d_{[\rho s - 1]}(\Lambda U_2, L^q), d^{[\rho s - 1]}(\Lambda U_2, L^q)\} \\
\geq b_{[\rho s - 1]}(\Lambda U_2, L^q) \\
\geq b_{[\rho s - 1]}(\Lambda, B_2^s, L^q).
\]

Taking \(X_k = J(F_k) \) we obtain \(\epsilon B_{\theta(A_{\Lambda})} \cap X_k \subseteq \Lambda_\alpha B_2^s \). Thus by the definition of Bernstein \(n \)-width
\[
b_{[\rho s - 1]}(\Lambda_\alpha B_2^s, L^q) \geq b_{k - 1}(\Lambda_\alpha B_2^s, L^q) \geq \epsilon
\]
and consequently
\[
\min\{d_{[\rho s - 1]}(\Lambda U_p, L^q), d^{[\rho s - 1]}(\Lambda U_p, L^q)\} \geq \epsilon,
\]
thus concluding the proof of the theorem.

The next result follows applying Theorem 5.2, (1) and basic properties of \(n \)-widths.

Corollary 5.3. In the conditions of Theorem 5.2, we have
\[
d_{[\rho s - 1]}(\Lambda U_p, L^q) \geq C'(1 - \rho)^{1/2}s^{1/2} \left(\sum_{i=1}^{N}(\lambda(l))^{-2}d_l \right)^{-1/2} \kappa_\alpha,
\]
where
\[
\kappa_\alpha = \left\{ \begin{array}{ll}
1, & 1 \leq p \leq 2, 1 \leq q \leq 2, \\
1, & 2 \leq p < \infty, 2 \leq q \leq \infty, \\
1, & 1 \leq p \leq 2, q = 1, \\
(ln s)^{-1/2}, & 1 \leq p \leq 2, q < 1, \\
(ln s)^{-1/2}, & p = \infty, 2 \leq q \leq \infty.
\end{array} \right.
\]

Theorem 5.4. Let \(\lambda : (0, \infty) \rightarrow \mathbb{R} \) be a positive and non-increasing function and let \(\Lambda = \{\lambda_{m,n}\}_{m,n \in \mathbb{N}}, \lambda_{m,n} = \lambda([(m,n)]) \). Suppose \(1 \leq p \leq 2 \leq q \leq \infty \) and that the multiplier operator \(\Lambda \) is bounded from \(L^1 \) to \(L^2 \). Let \(\{N_k\}_{k=0}^\infty \) and \(\{m_k\}_{k=0}^M \) be sequences of natural numbers such that \(N_k < N_{k+1}, N_0 = 0 \) and \(\sum_{k=0}^M m_k \leq \beta \). Then there exists an absolute constant \(C > 0 \) such that
\[
d_\beta(\Lambda U_p, L^q) \leq C \left(\sum_{k=1}^{M} \lambda(N_k)\vartheta_{m_k} + \sum_{k=M+1}^\infty \lambda(N_k) \left(\theta_{N_k, N_{k+1}} \right)^{1/p - 1/q} \right),
\]
where
\[
\vartheta_{m_k} = \frac{\theta_{N_k, N_{k+1}}^{1/p}}{(m_k)^{1/2}} \left\{ \begin{array}{ll}
q^{1/2}, & 2 \leq q < \infty, \\
(q/2)^{1/2}, & q = \infty,
\end{array} \right. \quad \text{and} \quad \theta_{N_k, N_{k+1}} = \sum_{j=N_k+1}^{N_{k+1}} \dim \mathcal{H}_j, k \geq 1.
\]
Proof. Let \(T_{M_1,M_2} = \bigoplus_{l=0}^{M_2} H_l \); \(s = \dim T_{M_1,M_2} = \sum_{l=0}^{M_2} d_l \), \(B^*_p = U_p \cap T_{M_1,M_2} \), \(B^*_p = J^{-1} B^*_p \), \(\lambda(0) = 0 \) and \(0 < \rho < 1 \). The Theorem 5.1 guarantees the existence of a subspace \(F_k \) of \(\mathbb{R}^s \), with \(\dim F_k = k > \rho s \), such that, for all \(\alpha \in F_k \),
\[
\| x \|_2 \leq C M \left(\| \cdot \|_q \right) (1 - \rho)^{-1/2} \| x \|_q.
\]
If \(m = s - k \), then \((1 - \rho)^{-1/2} < (s/m)^{1/2} \). Applying the Theorem 4.3 for \(\Lambda_s = 1d \), we get
\[
\| x \|_2 \leq C \| x \|_q \left(\frac{m}{s} \right)^{1/2} \left\{ q^{1/2}, \frac{(\ln s)^{1/2}}{q} \right\}, \quad 2 \leq q < \infty, \quad q = \infty.
\]
Therefore, by (1)
\[
d_m (B^*_p, L^q \cap T_{M_1,M_2}) = d^m \left(\left(B^*_p \right)^0 \cap \mathbb{K}_k \right)
\leq C \left(\frac{s}{m} \right)^{1/2} \left\{ q^{1/2}, \frac{(\ln s)^{1/2}}{q} \right\}, \quad 2 \leq q < \infty, \quad q = \infty.
\]
Let \(B^{N_k,N_{k+1}}_p = U_p \cap T_{N_k,N_{k+1}} \) and for \(f \in \Lambda U_p \subseteq L^2(\Omega_d) \), let \(S_N(f) = \sum_{(m,n) \in A_N} f * \tilde{Z}^{(m,n)} \), \(\phi_{N_k,N_{k+1}}(f) := S_{N_{k+1}}(f) - S_{N_k}(f), k \geq 1, \phi_{N_0,N_1}(f) = S_1(f) \). Since \(S_{N_k}(f) \to f \) in \(L^2(\Omega_d) \), then
\[
\lim_{j \to \infty} \left\| \sum_{k=1}^{\infty} \phi_{N_k,N_{k+1}}(f) \right\|_2 = 0.
\]
Then it is easy to see that
\[
\Lambda U_p \subseteq \bigoplus_{k=0}^{\infty} (\phi_{N_k,N_{k+1}} \circ \Lambda) U_p, \quad 1 \leq p \leq 2.
\]
But, for each \(\varphi \in U_p, \phi_{N_k,N_{k+1}}(\Lambda \varphi) = \Lambda(\phi_{N_k,N_{k+1}}(\varphi)) \), therefore
\[
\Lambda U_p \subseteq \bigoplus_{k=0}^{\infty} (\Lambda \circ \phi_{N_k,N_{k+1}}) U_p.
\]
Now, given \(\varphi \in U_p \),
\[
\| (\Lambda \circ \phi_{N_k,N_{k+1}}) \varphi \|_2 \leq \left\| \sum_{l=0}^{N_{k+1}} \lambda(l-1) \sum_{(m,n) \in A_l \backslash A_l-1} \varphi * \tilde{Z}^{(m,n)} \right\|_2 \leq \lambda(N_k) \left\| \sum_{l=0}^{N_{k+1}} \sum_{(m,n) \in A_l \backslash A_l-1} \varphi * \tilde{Z}^{(m,n)} \right\|_2 = \lambda(N_k) \| \phi_{N_k,N_{k+1}}(\varphi) \|_2,
\]
and by Young’s inequality
\[
\| \phi_{N_k,N_{k+1}}(\varphi) \|_2 \leq \| \varphi \|_p \left\| \sum_{(m,n) \in A_k \backslash A_{k+1}} Z_c^{(m,n)} \right\|_1 \frac{1}{(3/2-1/p)}.
\]
Using properties of the zonal harmonic functions, we have
\[
\left\| \sum_{(m,n) \in A_{k+1} \backslash A_k} Z_c^{(m,n)} \right\|_{L^q}^2 = \sum_{(m,n) \in A_{k+1} \backslash A_k} \int_{R_d} Z_c^{(m,n)} \frac{Z_c^{(m,n)}}{\omega_d} d\sigma_d = \sum_{(m,n) \in A_{k+1} \backslash A_k} Z_c^{(m,n)}(\varphi) = \sum_{(m,n) \in A_{k+1} \backslash A_k} \frac{d_{m,n}}{\omega_d} = \frac{\theta_{N_k,N_{k+1}}}{\omega_d}.
\]
and therefore by (21), for \(p = 1 \) we obtain \(\| \phi_{N_k,N_{k+1}}(\varphi) \|_2 \leq \omega_d^{-1/2} \theta_{N_k,N_{k+1}}^{1/2} \| \varphi \|_1 \). Furthermore, for \(p = 2 \), and \(\varphi \in U_2 \) we get \(\| \phi_{N_k,N_{k+1}}(\varphi) \|_2 \leq \| \varphi \|_2 \). Applying the Riesz-Thorin Interpolation theorem to the last two inequalities, it follows for \(1 \leq p \leq 2 \) that
\[
\| \phi_{N_k,N_{k+1}}(\varphi) \|_2 \leq \omega_d^{1/2-1/p} \theta_{N_k,N_{k+1}}^{1/p-1/2} \| \varphi \|_p \leq \omega_d^{1/2-1/p} \theta_{N_k,N_{k+1}}^{1/p-1/2}.
\]
Thus, from (20) and (19),
\[
A U_p \subseteq \bigoplus_{k=0}^{\infty} \omega_d^{1/2-1/p} \lambda(N_k) \theta_{N_k,N_{k+1}}^{1/p-1/2} B_2^{N_k,N_{k+1}}.
\]
By (17) for \(2 \leq q \leq \infty \), we have for \(\varphi \in B_2^{N_k,N_{k+1}} \) that
\[
\| \varphi \|_q = \| \phi_{N_k,N_{k+1}}(\varphi) \|_q \leq \omega_d^{1/q-1/2} \theta_{N_k,N_{k+1}}^{1/2-1/q} \| \phi_{N_k,N_{k+1}}(\varphi) \|_2 \leq \omega_d^{1/q-1/2} \theta_{N_k,N_{k+1}}^{1/2-1/q},
\]
and therefore \(B_2^{N_k,N_{k+1}} \subseteq \omega_d^{1/q-1/2} \theta_{N_k,N_{k+1}}^{1/2-1/q} B_2^{N_k,N_{k+1}} \). Consequently by (22)
\[
A U_p \subseteq \bigoplus_{k=0}^{M} \omega_d^{1/2-1/p} \theta_{N_k,N_{k+1}}^{1/p-1/2} \lambda(N_k) B_2^{N_k,N_{k+1}} + \bigoplus_{k=M+1}^{\infty} \omega_d^{1/q-1/2} \theta_{N_k,N_{k+1}}^{1/2-1/q} B_2^{N_k,N_{k+1}}.
\]
Finally, using (18), (23) and properties of \(n \)-widths, we get
\[
d_\beta(A U_p, L^q) \leq \sum_{k=0}^{M} \omega_d^{1/2-1/p} \lambda(N_k) \theta_{N_k,N_{k+1}}^{1/p-1/2} d_{m_k} (B_2^{N_k,N_{k+1}}, L^q \cap \mathcal{T}_{N_k,N_{k+1}}) + \sum_{k=M+1}^{\infty} \omega_d^{1/q-1/2} \lambda(N_k) \theta_{N_k,N_{k+1}}^{1/2-1/q} d_{m_k} (B_2^{N_k,N_{k+1}}, L^q \cap \mathcal{T}_{N_k,N_{k+1}}) \leq C \left(\sum_{k=0}^{M} \lambda(N_k) \theta_{m_k} + \sum_{k=M+1}^{\infty} \lambda(N_k) \theta_{N_k,N_{k+1}}^{1/p-1/q} \right).
\]

Remark 5.5. We will improve the estimate obtained in the previous theorem, specifying the sequences \(N_k \) and \(m_k \). We define \(N_1 = N \in \mathbb{N} \) and
\[
N_{k+1} = \min \{ l \in \mathbb{N} : e \lambda(l) \leq \lambda(N_k) \}.
\]
Let \(\theta_{N_k,N_{k+1}} \) be as in Theorem 5.4. For \(\epsilon > 0 \) we define
\[
M = \left[\frac{\ln \theta_{N_1,N_2}}{\epsilon} \right], \quad m_k = [e^{-\epsilon k} \theta_{N_1,N_2}] + 1, \quad k = 1, \ldots, M, \quad m_0 = \theta_{0,N}.
\]
Hence,
\[
\sum_{k=1}^{M} m_k = \sum_{k=1}^{M} ([e^{-\epsilon k} \theta_{N_1,N_2}] + 1) \leq M + \theta_{N_1,N_2} \sum_{k=0}^{M} (e^{-\epsilon})^k \leq C_e \theta_{N_1,N_2},
\]
where \(C_e > 0 \) depends only on \(\epsilon \). Applying the previous theorem for
\[
\beta = m_0 + \sum_{k=1}^{M} m_k = \sum_{s=0}^{N} \dim \mathcal{H}_s + \sum_{k=1}^{M} m_k,
\]
and writing \(d_\beta = d_\beta(A U_p, L^q) \), we have
\[
d_\beta \leq C \sum_{k=1}^{M} \lambda(N_k) \theta_{N_k,N_{k+1}}^{1/p} \left(\frac{q^{1/2}}{m_k^{1/2}} \right) (\ln \theta_{N_k,N_{k+1}})^{1/2}, \quad 2 \leq q < \infty,
\]
\[
+ C \sum_{k=M+1}^{\infty} \lambda(N_k) \theta_{N_k,N_{k+1}}^{1/p-1/q} \left(\frac{q^{1/2}}{m_k^{1/2}} \right) (\ln \theta_{N_k,N_{k+1}})^{1/2}, \quad q = \infty,
\]
\[
\leq C \lambda(N) \sum_{k=1}^{M} e^{-k(1-\epsilon/2)} \theta_{N_k,N_{k+1}}^{1/p} \theta_{N_k,N_{k+1}}^{1/q} \left(\frac{q^{1/2}}{(\ln \theta_{N_k,N_{k+1}})^{1/2}} \right), \quad 2 \leq q < \infty,
\]
\[
+ C \lambda(N) \sum_{k=M+1}^{\infty} e^{-k(1-\epsilon/2)} \theta_{N_k,N_{k+1}}^{1/p-1/q} \theta_{N_k,N_{k+1}}^{1/q} \left(\frac{q^{1/2}}{(\ln \theta_{N_k,N_{k+1}})^{1/2}} \right), \quad q = \infty,
\]

17
Definition 5.6. Let N_k, M and $\theta_{N_k, N_{k+1}}$ be as in the previous remark. We say that $\Lambda = \{\lambda_{m,n}\}_{m,n \in \mathbb{N}} \in \mathcal{K}_{p, \epsilon}$, $\epsilon > 0$, $1 \leq p \leq 2$, if $\lambda(k + 1) \leq \lambda(k)$, $N_{k+1} > N_k$, for all $k \in \mathbb{N}$ and if for all $N \in \mathbb{N}$, there exists a constant $C_{p, \epsilon}$, depending only on d, ϵ and p, such that

$$\sum_{k=1}^{M} e^{-k(1-\epsilon/2)\theta_{N_k, N_{k+1}}^{1/p}} \leq C_{p, \epsilon}\theta_{N_1, N_2}^{1/p-1/2}. \quad (25)$$

Corollary 5.7. Let $\Lambda = \{\lambda_{m,n}\}_{m,n \in \mathbb{N}}$ and $\theta_{N_k, N_{k+1}}$ be as in the previous theorem, and let $\epsilon > 0$, N_k, M, $\{m_k\}_{k=0}^{M}$ and β be as in the previous remark. Let $1 \leq p \leq 2 \leq q \leq \infty$ and suppose that $\Lambda \in \mathcal{K}_{p, \epsilon}$, for a fixed $\epsilon > 0$. Then there exists a constant $C_{p, \epsilon}$ such that

$$d_{\beta}(\Lambda U_p, L^q) \leq C_{p, \epsilon} \lambda(N)\theta_{N_1, N_2}^{1/p-1/2} \left\{ \sup_{1 \leq k \leq M} (\ln\theta_{N_k, N_{k+1}})^{1/2}, \quad 2 \leq q < \infty, \right. \left. + C_{p, \epsilon} \lambda(N) \sum_{k=M+1}^{\infty} e^{-k\theta_{N_k, N_{k+1}}^{1/p-1/2}} \right\}.$$

Remark 5.8. We note that the Theorems 5.2 and 5.4, and the Corollaries 5.3 and 5.7 hold if we consider a function λ such that $t \rightarrow |\lambda(t)|$ is a positive and non-increasing function. Simply we change $\lambda(t)$ by $|\lambda(t)|$.

6 Applications

Let $\lambda^{(1)}, \lambda^{(2)} : [0, \infty) \rightarrow \mathbb{R}$ be defined by $\lambda^{(1)}(t) = t^{-\gamma}(\ln t)^{\xi}$ for $t > 1$, $\lambda^{(1)}(t) = 0$ for $0 \leq t \leq 1$, and $\lambda^{(2)}(t) = e^{-t^r}, \ t \geq 0$, where $\gamma, \xi, r \in \mathbb{R}$, $\gamma, r > 0$, $\xi \geq 0$. In this section we consider the multiplier operators associated with the sequences $\Lambda^{(1)} = (\lambda^{(1)}_{m,n})_{m,n \in \mathbb{N}}$ and $\Lambda^{(2)} = (\lambda^{(2)}_{m,n})_{m,n \in \mathbb{N}}$ where $\lambda^{(1)}_{m,n} = \lambda^{(1)}((m,n), \lambda^{(2)}_{m,n} = \lambda^{(2)}((m,n), \{(m,n)\} = \max\{m,n\}$.

Remark 6.1. We will prove that, if $\gamma > (2d - 1)/2$, then the multiplier operator $\Lambda^{(1)}$ is bounded from L^1 to L^2. Given $\varphi \in U_1$, for each $k \in \mathbb{N}^*$, let

$$\varphi_k = \sum_{l=1}^{k} (m,n) \in A_l \setminus A_{l-1} \varphi * Z^{(m,n)}.$$

We obtain that

$$\Lambda^{(1)} \varphi_k = \sum_{l=1}^{k} (m,n) \in A_l \setminus A_{l-1} \lambda_{m,n} \varphi * Z^{(m,n)},$$

and thus $d_{\beta} \geq l^2 d^{2-2}$, we obtain

$$\|\Lambda^{(1)} \varphi_k\|_2^2 = \int_{\mathbb{R}^d} \Lambda^{(1)} \varphi_k \Lambda^{(1)} \varphi_k d\sigma_d \leq \sum_{l=1}^{k} (m,n) \in A_l \setminus A_{l-1} \|\lambda_{m,n}^2 \varphi * Z^{(m,n)}\|_2^2 \leq \sum_{l=1}^{k} (m,n) \in A_l \setminus A_{l-1} \|\lambda_{m,n}^2 \varphi * Z^{(m,n)}\|_2^2 \leq \sum_{l=1}^{k} (m,n) \in A_l \setminus A_{l-1} \omega_d \lambda_{m,n}^2 \lambda_{l-1}^2 \lambda_{l-1}^2 \leq C_2 \sum_{l=1}^{k} \|\Lambda^{(1)} \varphi_k\|_2 \leq (C_2)^{1/2},$$

and thus $\Lambda^{(1)}$ is bounded from L^1 to L^2.

Theorem 6.2. For $1 \leq p \leq \infty$, $2 \leq q \leq \infty$, $\gamma > (2d - 1)/p$ if $1 \leq p \leq 2$ and $\gamma > (2d - 1)/2$ if $p \geq 2$, and for all $m \in \mathbb{N}$, we have

$$d_m(\Lambda^{(1)} U_p, L^q) \leq m^{-\gamma/(2d-1) + (1/p - 1/2)} (\ln m)^{-\xi} \left\{ \begin{array}{ll} q^{1/2}, & 2 \leq q < \infty, \\ (\ln m)^{1/2}, & q = \infty. \end{array} \right.$$
Taking \(a = N_k \), we get \(e^{1/(\gamma + \delta)} N_k < b < e^{1/\gamma} N_k \). But \(N_k < b \leq N_{k+1} < b + 1 \) and therefore

\[
e^{1/(\gamma + \delta)} N_k \leq N_{k+1} \leq e^{1/\gamma} N_k + 1, \quad k \geq 1.
\]

Considering that \(d_i = \dim \mathcal{H}_i \propto l^{2d-2} \), integrating the function \(x^{2d-2} \), we obtain

\[
\theta_{N_k, N_{k+1}} \asymp \sum_{s = N_k + 1}^{N_{k+1}} s^{2d-2} \leq \sum_{s = 0}^{N_{k+1} - 1} s^{2d-2} + N_{k+1}^{2d-2} \asymp N_{k+1}^{2d-1}.
\]

Furthermore using (27), we get

\[
\theta_{N_k, N_{k+1}} \asymp \sum_{j = N_k + 1}^{N_{k+1}} j^{2d-2} > N_{k+1}^{2d-1} \left(1 + \frac{N_k}{N_{k+1}} \right)^{2d-1} \asymp N_{k+1}^{2d-1} \left(1 - 2^{2d+1} \left(1 + (2d - 1)e^{-1/\gamma + \delta} \right) \right) + N_{k+1}^{2d-1} \sum_{s = 0}^{N_{k+1} - 1} s^{2d-2} e^{-2/\gamma + \delta} + \ldots + e^{-2d+1/(\gamma + \delta)}
\]

Thus, by (29) and (28), it follows that

\[
\theta_{N_k, N_{k+1}} \asymp N_{k+1}^{2d-1}, \quad k \geq 1,
\]

and using (27) we obtain

\[
e^{k/(\gamma + \delta)} N \leq N_{k+1} \leq C_{\gamma} e^{k/\gamma} N, \quad k \geq 1.
\]

Let \(M = [e^{-1} \ln \theta_{N_1, N_2}] \) be as in Remark 5.5. We have that \(M \asymp e^{-1} \ln N \asymp e^{-1} \ln s \). By (30) and (31),

\[
\sigma = \sum_{k = M+1}^{\infty} e^{-k} \left(\theta_{N_k, N_{k+1}} \right)^{1/p-1/q} \ll \sum_{k = M+1}^{\infty} e^{-k} \left(e^{k/\gamma} N \right)^{(2d-1)(1/p-1/q)} = N^{(2d-1)(1/p-1/q)} \sum_{k = M+1}^{\infty} e^{-k(1-(2d-1)(1/p-1/q)/\gamma)}.
\]

Since \(M \asymp e^{-1} \ln N \), then there exists a positive constant \(C \) such that

\[
\sigma \ll N^{(2d-1)(1/p-1/q)} \sum_{k = [Ce^{-1} \ln N]}^{\infty} e^{-k(1-(2d-1)(1/p-1/q)/\gamma)},
\]

and since \(1 \leq p \leq 2 \leq q \leq \infty \) and \(\gamma > (2d - 1)(1/p - 1/q) \), we have that \(1 - (1/p - 1/q)(2d - 1)/\gamma > 0 \) and thus

\[
\sum_{k = [Ce^{-1} \ln N]}^{\infty} e^{-k(1-(2d-1)(1/p-1/q)/\gamma)} \asymp \frac{e^{-(1-(2d-1)(1/p-1/q)/\gamma)Ce^{-1} \ln N}}{1 - e^{-(1-(2d-1)(1/p-1/q)/\gamma)}} \ll N^{-C(1-(2d-1)(1/p-1/q)/\gamma)/\epsilon}.
\]

Therefore we obtain by (32) that

\[
\sigma \ll N^{(2d-1)(1/p-1/q)-C(1-(2d-1)(1/p-1/q)/\gamma)/\epsilon}.
\]

So, taking \(0 < \epsilon < C(1-(2d-1)(1/p-1/q)/\gamma)/(2d-1)(1/p-1/q) \), we get

\[
\sigma \ll 1.
\]
Next we will prove that $\Lambda^{(1)} \in K_{c,p}$ for some $\epsilon > 0$. Remembering that $M \asymp \epsilon^{-1} \ln N$, by (30) and (31), it follows that

$$\sum_{k=1}^{M} e^{-k(1-\epsilon/2)} \frac{\theta_{N_k,N_{k+1}}^{1/p}}{\theta_{N_1,N_2}^{1/2}} \leq \sum_{k=1}^{[C\epsilon^{-1} \ln N]} e^{-k(1-\epsilon/2)} \frac{\theta_{N_k,N_{k+1}}^{1/p}}{\theta_{N_1,N_2}^{1/2}} \leq \sum_{k=1}^{[C\epsilon^{-1} \ln N]} e^{-k(1-\epsilon/2)} \frac{(e^{k/\gamma N})^{(2d-1)/p}}{(e^{(1/\gamma N)(2d-1)/2})} \leq N^{(2d-1)(1/p-1/2)} \sum_{k=1}^{[C\epsilon^{-1} \ln N]} e^{-k(1-\epsilon/2)-(2d-1)/\gamma p}.$$

Since $\gamma/(2d-1) > 1/p$, we have $t = -(1-\epsilon/2 - (2d-1)/\gamma p) < 0$ if $0 < \epsilon/2 < 1 - (2d-1)/\gamma p$ and consequently

$$\sum_{k=1}^{M} e^{-k(1-\epsilon/2)} \frac{\theta_{N_k,N_{k+1}}^{1/p}}{\theta_{N_1,N_2}^{1/2}} \leq C_{c,p} N^{(2d-1)(1/p-1/2)}.$$

By (31) there exists a constant C_1, such that $C_1 e^{(2d-1)/(\gamma + \delta)} N^{2d-1} \leq \theta_{N_1,N_2}$ and then

$$\sum_{k=1}^{M} e^{-k(1-\epsilon/2)} \frac{\theta_{N_k,N_{k+1}}^{1/p}}{\theta_{N_1,N_2}^{1/2}} \leq C_{c,p} N^{(2d-1)(1/p-1/2)}.$$

that is, $\Lambda^{(1)} \in K_{c,p}$. Now, by Remark 6.1 we have that $\Lambda^{(1)}$ is bounded from $L^1(\Omega_d)$ to $L^2(\Omega_d)$, and hence from Corollary 5.7 and (33), we obtain

$$d_\beta(\Lambda^{(1)} U_p, L^p) \ll \lambda(N) \theta_{N_1,N_2}^{1/p-1/2} \left\{ \begin{array}{ll} q^{1/2}, & 2 \leq q < \infty, \\ \sup_{1 \leq k \leq M} (\ln \theta_{N_k,N_{k+1}})^{1/2}, & q = \infty, \\ + \lambda(N). \end{array} \right.$$

For $1 \leq k \leq M$, using (30), (31), the definition of M, and the fact that $s \asymp N^{2d-1}$, we obtain

$$\theta_{N_k,N_{k+1}} \ll (e^{k/\gamma N})^{2d-1} \leq (e^{M/\gamma N})^{2d-1} \leq e^{(2d-1)(C \ln N)/\gamma + C N^{2d-1}} = N^{(2d-1)+C/\gamma} \ll s^{1+C/\gamma},$$

and thus $\ln(\theta_{N_k,N_{k+1}}) \ll \ln(s^{1+C/\gamma}) = (1+C/\gamma) \ln s \ll \ln s$. Furthermore, by (30) and (31), it follows that $\theta_{N_1,N_2}^{1/p-1/2} \ll N^{(2d-1)(1/p-1/2)}$ and therefore

$$d_\beta(\Lambda^{(1)} U_p, L^q) \ll \lambda(N) N^{(2d-1)(1/p-1/2)} \left\{ \begin{array}{ll} q^{1/2}, & 2 \leq q < \infty, \\ (\ln s)^{1/2}, & q = \infty. \end{array} \right.$$

Now, since $s \asymp N^{2d-1}$, then $N^{-\gamma} \asymp s^{-\gamma/(2d-1)}$, $N^{(2d-1)(1/p-1/2)} \asymp s^{1/p-1/2}$ and $(\ln N)^{-\xi} \asymp (\ln N)^{-\xi} \asymp (\ln s)^{-\xi}$. Consequently

$$d_\beta(\Lambda^{(1)} U_p, L^q) \ll s^{-\gamma/(2d-1)+1/(p-1/2)}(\ln s)^{-\xi} \left\{ \begin{array}{ll} q^{1/2}, & 2 \leq q < \infty, \\ (\ln s)^{1/2}, & q = \infty. \end{array} \right.$$

From Remark 5.5, $\beta \asymp s + \sum_{j=1}^{M} e^{-\epsilon j} \theta_{N_1,N_2}$ and keeping in mind that $s \asymp N^{2d-1}$ and $M \asymp \epsilon^{-1} \ln N$, by (30) and (31) we get

$$\beta \ll N^{2d-1} + e^{(2d-1)/\gamma} N^{2d-1} \sum_{j=1}^{[C\epsilon^{-1} \ln N]} (e^{-\epsilon j}) \ll N^{2d-1},$$

that is, there exists a constant $C_2 \in \mathbb{N}$ such that $\beta \leq C_2 N^{2d-1}$. Given $m \in \mathbb{N}$, let $N \in \mathbb{N}$ such that $C_2 N^{2d-1} \leq m \leq C_2 (N + 1)^{2d-1}$. It follows by (34) that

$$d_m(\Lambda^{(1)} U_p, L^q) \ll m^{-\gamma/(2d-1)+1/(p-1/2)}(\ln m)^{-\xi} \left\{ \begin{array}{ll} q^{1/2}, & 2 \leq q < \infty, \\ (\ln m)^{1/2}, & q = \infty. \end{array} \right.$$

for $1 \leq p \leq 2$. The case $2 \leq p \leq \infty$, follows because $\Lambda(U_p) \subset \Lambda(U_2)$. □
Theorem 6.3. For $\gamma > (2d - 1)/2$ and for all $m \in \mathbb{N}$, we have
\begin{equation}
D_m(\Lambda^{(1)} U_p, L^q) \gg m^{-\gamma/(2d-1)} (\ln m)^{-\xi} \kappa_m,
\end{equation}
where
\[\kappa_m = \begin{cases}
1, & 1 \leq p \leq 2, 1 < q \leq 2, \\
1, & 2 \leq p < \infty, 2 \leq q \leq \infty, \\
1, & 1 \leq p \leq 2, q = 1, \\
(\ln m)^{-1/2}, & p = \infty, 2 \leq q \leq \infty.
\end{cases} \]

Proof. We have that $d_l \approx l^{2d-2}$ and $s = \dim T_N \asymp N^{2d-1}$, and thus
\begin{align*}
\left(\sum_{l=1}^{N} (\lambda(l))^{-2} d_l \right)^{-1/2} &\geq C (1 - 1/2)^{1/2} s^{1/2} \left(\sum_{l=1}^{N} (\lambda(l))^{-2} d_l \right)^{-1/2} s^{-\gamma/(2d-1)-1/2} (\ln s)^{-\xi} \kappa_s \\
&\gg s^{-\gamma/(2d-1)-1/2} (\ln s)^{-\xi} \kappa_s = s^{-\gamma/(2d-1)} (\ln s)^{-\xi} \kappa_s.
\end{align*}

Finally, taking $m = [s/3] \leq [(s - 2)/2]$ we have that $m \gg s$ and thus
\begin{equation}
D_m(\Lambda^{(1)} U_p, L^q) \geq D_{[(s-2)/2]}(\Lambda^{(1)} U_p, L^q) \geq s^{-\gamma/(2d-1)} (\ln s)^{-\xi} \kappa_s \gg m^{-\gamma/(2d-1)} (\ln m)^{-\xi} \kappa_m.
\end{equation}

Remark 6.4. We will prove that the multiplier operator $\Lambda^{(2)}$ is bounded from L^p to L^q, for $1 \leq p, q \leq \infty$. We will show that this result is true for $p = 1$ and $q = \infty$ and the other cases will follow immediately from inequalities between norms. Given $\varphi \in U_1$, we have that
\[\Lambda^{(2)} \varphi \sim \sum_{l=1}^{\infty} \sum_{(m,n) \in A_l \setminus A_{l-1}} \lambda_{m,n} \varphi \ast \tilde{Z}^{(m,n)} \]
and thus
\[\| \Lambda^{(2)} \varphi \|_\infty \leq \sup_{\omega \in D_1} \left| \sum_{(m,n) \in A_1 \setminus A_{l-1}} \lambda_{m,n} \varphi \ast \tilde{Z}^{(m,n)}(\omega) \right| \leq \sum_{l=1}^{\infty} \| a_l \|_\infty,
\]
where $a_l(\omega) = \sum_{(m,n) \in A_l \setminus A_{l-1}} \lambda_{m,n} \varphi \ast \tilde{Z}^{(m,n)}(\omega)$. Let
\begin{align*}
D_l(\omega) &= \sum_{(m,n) \in A_l \setminus A_{l-1}} \lambda_{m,n} Z^{(m,n)}(\omega), \\
\overline{D}_l(\omega) &= \sum_{(m,n) \in A_l \setminus A_{l-1}} \lambda_{m,n} Z^{(m,n)}(\omega).
\end{align*}

We have that $D_l = \overline{D}_l \ast \overline{D}_l$ and $a_l = \varphi \ast D_l$. It follows by Young’s inequality that
\begin{align*}
\| D_l \|_\infty &= \| \overline{D}_l \ast \overline{D}_l \|_\infty \leq \| \overline{D}_l \|_2 \| \overline{D}_l \|_2 \\
&= \sum_{(m,n) \in A_l \setminus A_{l-1}} \lambda_{m,n} \frac{d_{m,n}}{\omega_d} \\
&\leq \frac{\lambda(l-1)}{\omega_d} d_l \leq C_1 \lambda(l-1)^{2d-2}
\end{align*}
and hence
\[\| a_l \|_\infty = \| \varphi \ast D_l \|_\infty \leq \| \varphi \|_1 \| D_l \|_\infty \leq C_1 \lambda(l-1)^{2d-2}.
\]
Moreover there is a constant C_2 such that $e^{-\gamma t} t^{2d} \leq C_2$, for all $l \in \mathbb{N}$ and therefore
\[
\|a_l\|_\infty \leq C_1 \lambda (l-1)^{2d-2} = C_1 e^{-\gamma (l-1)} r^{2d-2} \leq C_3 e^{-\gamma (l-1)^r} (l-1)^{2d-2} \leq C_4 l^{-2}.
\]
Thus
\[
\|\Lambda^{(2)} \varphi\|_\infty \leq \sum_{i=1}^{\infty} \|a_l\|_\infty \leq \sum_{i=1}^{\infty} C_4 l^{-2} = C_5,
\]
so $\Lambda^{(2)}$ is bounded from $L^1(\Omega_d)$ to $L^\infty(\Omega_d)$.

Theorem 6.5. Consider the sequences $\phi_k = \dim \mathcal{T}_k$, $\psi_k = \phi_k^{1-r/(2d-1)} - 1$ and κ_k as in Theorem 6.3. Then
\[
d_{[\psi_k]}(\Lambda^{(2)} U_p, L^q) \gg e^{-R \psi_k^{(2d-1)}} \kappa_k, \quad r > 0, \quad k \in \mathbb{N},
\]
\[
d_{[\psi_k]}(\Lambda^{(2)} U_p, L^q) \gg e^{-R \psi_k^{(2d-1)}} \kappa_k, \quad 0 < r \leq 2d - 1, \quad k \in \mathbb{N},
\]
\[
d_{\phi_{k-1}}(\Lambda^{(2)} U_p, L^q) \gg e^{-R \phi_{k-1}^{(2d-1)}} \kappa_k, \quad r > 2d - 1, \quad k \in \mathbb{N},
\]
where
\[
\mathcal{R} = \gamma \left(\frac{d! (d-1)!}{2} \right)^{r/(2d-1)}.
\]
Proof. For $\theta, \eta, r > 0$ and $\eta \geq r - 1$, we have
\[
\sum_{k=1}^{N} e^{\theta k r^k} \eta = \sum_{k=1}^{N} \left(\frac{1}{\theta} \right)^{k-1-r+\eta} e^{\theta k r^k} \eta \leq N^{1-r+\eta} \int_{1}^{N+1} e^{\theta x r^{(r-1)} d x} \leq N^{1-r+\eta} e^{\theta (N+1)^r}.
\]
Since there is a positive constant C_1 such that $(N+1)^r \leq N^r + C_1 N^{-1}$, then
\[
e^{\theta (N+1)^r} \leq e^{\theta C_1} e^{\theta N^r} = C_2 e^{\theta N^r}.
\]
Let us fix $N \in \mathbb{N}$ and let $s = \dim \mathcal{T}_N, D = 2/dl(d-1)!$. By the Proposition 4.1 we have
\[
DN^{2d-1} \leq s \leq DN^{2d-1} + C_3 N^{2d-2}.
\]
From the above estimates, we obtain $N^r \leq D^{-r/(2d-1)} s^{r/(2d-1)}$ and $N^r \geq D^{-r/(2d-1)} s^{r/(2d-1)} - C_4 N^{-1}$ for a positive constant C_4 and for $r > 0$. Therefore, for $\mathcal{R} = \gamma D^{-r/(2d-1)}$ and the fact that $s \approx N^{2d-1}$, we get
\[
-\mathcal{R} s^{r/(2d-1)} \leq -\gamma N^r \leq -\mathcal{R} s^{r/(2d-1)} + C_5 s^{(r-1)/(2d-1)},
\]
for $r > 0$. The above estimates also hold if we put $N + 1$ in the place of N. If $\rho = 1 - s^{-r/(2d-1)}$, using (40), we get
\[
(1 - \rho)^{1/2} s^{1/2} \left(\sum_{l=1}^{N} \left(\frac{\lambda(l)}{l} \right)^{-2} d_l \right)^{-1/2} \gg s^{-r/2(2d-1)+1/2} \left(N^{1-r+2d-2} e^{2\gamma N^r} \right)^{-1/2} \gg e^{-\gamma N^r},
\]
and hence it follows by Corollary 5.7 and (41) that
\[
d_{[\rho s^{-r/(2d-1)}-1]}(\Lambda^{(2)} U_p, L^q) = d_{[\rho s]}(\Lambda^{(2)} U_p, L^q) \gg e^{-\gamma N^r} \kappa_s \gg e^{-\mathcal{R} s^{r/(2d-1)}} \kappa_s.
\]
The above estimate says that, for $r > 0$
\[
d_{[\psi_N]}(\Lambda^{(2)} U_p, L^q) \gg e^{-\mathcal{R} \psi_N^{(2d-1)}} \kappa_{\phi_N},
\]
but, since $\phi_N = \dim \mathcal{T}_N \approx N^{2d-1}$, we have that $\kappa_{\phi_N} \approx \kappa_N$ and therefore we get (36). Furthermore, if $r > 2d - 1$, then
\[
[\psi_N] = [\phi_N - \phi_N^{1-r/(2d-1)} - 1] = [\phi_N - 1] \quad \text{and thus (38) follows from (36).}
\]
Consider $0 < r \leq 2d - 1$. Then
\[
\left(1 - s^{-r/(2d-1)} \right)^{r/(2d-1)} = 1 - s^{-r/(2d-1)} \frac{r}{2d-1} \left(1 + \frac{2d-1-r}{2d-1} s^{-r/(2d-1)} + \ldots \right) = 1 - s^{-r/(2d-1)} S_s,
\]
and there exists a positive constant C_r such that $0 < S_r \leq C_r$ for all $s \in \mathbb{N}$. Therefore
\[
(\psi_N + 1)^r/(2d-1) = \left(s - s^{1-r}/(2d-1) \right)^{r/(2d-1)} = s^r/(2d-1) \left(1 - s^{1-r}/(2d-1) \right)^{r/(2d-1)} \geq s^r/(2d-1) \left(1 - C_r s^{-r}/(2d-1) \right) = s^r/(2d-1) - C_r,
\]
thus
\[
e^{-R(\psi_N + 1)^r/(2d-1)} \leq e^{-R(\phi_N^r/(2d-1) - C_r)} \ll e^{-Rs^r/(2d-1)}.
\] (42)

and from (36) we get
\[
d_{[\psi_N]}(\Lambda(2)U_p, L^q) \gg e^{-R(\psi_N + 1)^r/(2d-1)} k_N.
\] (43)

Now let $0 < r \leq 1$. Using the Mean Value Theorem we get $(N + 1)^r - N^r = r(N + e)^{r-1} < rN^{r-1} \leq r$, and then $1 < e^{-\gamma N^r} / e^{-\gamma(N+1)^r} \leq e^{\gamma r}$. From (36) and (41) it follows that
\[
d_{[\psi_N]}(\Lambda(2)U_p, L^q) \gg e^{-\gamma(N+1)^r} k_{N+1} \gg e^{-\gamma N^r} k_N
\]
\[
\gg e^{-Rs^r/(2d-1)} k_N
\]
\[
= e^{-R\phi_N^r/(2d-1)} k_N,
\]
and using (42) we obtain
\[
d_{[\psi_N]}(\Lambda(2)U_p, L^q) \gg e^{-R\phi_N^r/(2d-1)} k_N \gg e^{-R(\psi_N + 1)^r/(2d-1)} k_N.
\] (44)

If $k \in \mathbb{N}$ and $[\psi_N] < k \leq [\psi_{N+1}]$, then from (44)
\[
d_k(\Lambda(2)U_p, L^q) \gg d_{[\psi_N]}(\Lambda(2)U_p, L^q) \gg e^{-R(\psi_N + 1)^r/(2d-1)} k_N
\]
\[
\gg e^{-R\phi_N^r/(2d-1)} k_N \gg e^{-Rk^r/(2d-1)} k_N
\]
and thus we proved (39).

Finally, if $0 < r \leq 2d - 1$, we get $e^{Rr^r/(2d-1)} \simeq e^{R(l+1)^r/(2d-1)}$, $l \in \mathbb{N}$ and thus it follows from (43) that
\[
d_{[\psi_N]}(\Lambda(2)U_p, L^q) \gg e^{-R(\psi_N + 1)^r/(2d-1)} k_N \gg e^{-R\phi_N^r/(2d-1)} k_N,
\]
that is, we proved (37).

\[\square\]

Theorem 6.6. Let ϕ_k be as in Theorem 6.5. Then for $0 < r \leq 1$, $1 \leq p \leq \infty$, $2 \leq q \leq \infty$ and for all $k \in \mathbb{N}$, we have
\[
d_k(\Lambda(2)U_p, L^q) \ll e^{-Rk^r/(2d-1)} k(1-r/(2d-1))(1/p-1/2)_+ \begin{cases} 1, & 2 \leq q < \infty, \\ (\ln k)^{1/2}, & q = \infty, \end{cases}
\] (45)

and for all $r > 1$ and all $k \in \mathbb{N}$,
\[
d_{\phi_k}(\Lambda(2)U_p, L^q) \ll e^{-\gamma k^r} \begin{cases} k^{(2d-2)(1/p-1/2)_+}, & 1 \leq p \leq 2 \leq q \leq \infty, \\ k^{(2d-2)(1/2-1/2)_+}, & 2 \leq p, q \leq \infty, \end{cases}
\] (46)

where \mathcal{R} is the constant given in Theorem 6.5.

Proof. Suppose $0 < r \leq 1$ and let $\lambda(x) = e^{-\gamma x^r}$. For $k \in \mathbb{N}$, let $x_k \in \mathbb{R}$, $e\lambda(x_k) = \lambda(N_k)$. Then $x_k = (N_k^r + 1/\gamma)^{1/r}$ and $N_k < x_k \leq N_{k+1} < x_k + 1$. Therefore
\[
(N_k^r + 1/\gamma)^{1/r} \leq N_{k+1} \leq (N_k^r + 1/\gamma)^{1/r} + 1.
\] (47)

We have that
\[
N_{k+1}^r \leq (N_k^r + 1/\gamma) \left[1 + r(N_k^r + 1/\gamma)^{-1/r} + \frac{r(r-1)}{2!}(N_k^r + 1/\gamma)^{-2/r} + \cdots \right]
\]
\[
\leq (N_k^r + 1/\gamma) \left[1 + C_1(N_k^r + 1/\gamma)^{-1/r} \right] = (N_k^r + 1/\gamma) + C_1(N_k^r + 1/\gamma)^{1-1/r}
\]
and since $0 < r \leq 1$, then $(N_k^r + 1/\gamma)^{1-1/r} \leq 1$ and therefore $N_{k+1}^r \leq N_k^r + C_1$. Thus
\[
N_k^r + \frac{1}{\gamma} \leq N_{k+1}^r \leq N_k^r + C_1
\]
and using that $N_1 = N$, we show that
\[N^r + \frac{k}{7} \leq N_{k+1}^r \leq N^r + C_1 k. \] (48)
By (47), $N_{k+1} \asymp (N_k^r + 1/\gamma)^{1/r} = N_k \left(1 + N_k^{r-1}/\gamma\right)^{1/r}$, and then
\[N_{k+1} \asymp N_k \left(1 + \frac{1}{r\gamma} N_k^{-r} + \frac{1-r}{2r^2 \gamma^2} N_k^{-2r} + \frac{(1-r)(1-2r)}{6r^3 \gamma^3} N_k^{-3r} + \ldots \right)^{1/r}. \]
Thus $N_{k+1} - N_k \asymp N_k^{1-r}$. On the other hand
\[\theta_{N_k, N_{k+1}} \asymp N_k^{2d-r-1}, \] (49)
consequently, from (48), (49) and for $\epsilon > 0$ and k sufficiently large, we obtain
\[\left(\frac{\theta_{N_k, N_{k+1}}}{\theta_{N_1, N_2}} \right)^{r/(2d-r-1)} \asymp \left(\frac{N_k^r \delta_k}{N_k^{2d-r-1}} \right)^{r/(2d-r-1)} = N^{-r} N_k^r \]
\[\leq 1 + C_1 k N^{-r} \leq 1 + C_1 k. \]
Hence, for any $\delta > 0$, there exists $C_2 > 0$ such that
\[\left(\frac{\theta_{N_k, N_{k+1}}}{\theta_{N_1, N_2}} \right)^{r/(2d-r-1)} \leq C_2 e^{\delta k}, \quad k \geq 0, \] and taking $\delta' = \delta(2d-r-1)/r$, we get
\[\frac{\theta_{N_k, N_{k+1}}}{\theta_{N_1, N_2}} \leq C_2 e^{\delta' k}, \quad k \geq 0. \] (50)
For $1 \leq p \leq 2$,
\[\sum_{k=1}^{M} e^{-k(1-\epsilon)} \left(\frac{\theta_{N_k, N_{k+1}}}{\theta_{N_1, N_2}} \right)^{1/p} \leq (C_2')^{1/p} \sum_{k=1}^{M} e^{-k(1-\epsilon)} e^{\delta' k/p} \leq (C_2')^{1/p} \sum_{k=1}^{\infty} e^{-k(1-\epsilon-\delta'/p)} \leq C_3, \]
where $\epsilon, \delta \in \mathbb{R}$ are chosen satisfying $\epsilon + \delta' > 1$. Thus
\[\sum_{k=1}^{M} e^{-k(1-\epsilon)} \left(\frac{\theta_{N_k, N_{k+1}}}{\theta_{N_1, N_2}} \right)^{1/p} \leq \sum_{k=1}^{M} e^{-k(1-\epsilon)} \left(\frac{\theta_{N_k, N_{k+1}}}{\theta_{N_1, N_2}} \right)^{1/p} \leq C_3 \theta_{N_1, N_2}^{1/p}, \]
and then $\Lambda(\epsilon) = K_{2\epsilon,p}$. Therefore it follows from Corollary 5.7 that
\[d_{\beta}(\Lambda(\epsilon)) \leq C_{\epsilon,p} \lambda(N) \theta_{N_1, N_2}^{1/p-1/q} \left(\sup_{1 \leq k \leq M} \theta_{N_k, N_{k+1}} \right)^{1/2}, \quad 2 \leq q < \infty, \]
\[+ C_{\epsilon,p} \lambda(N) \sum_{k=M+1}^{\infty} e^{-k \theta_{N_k, N_{k+1}}^{1/p-1/q}}. \] (51)
Furthermore, by (49) and (50) we have that
\[\lambda(N) \sum_{k=M+1}^{\infty} e^{-k \theta_{N_k, N_{k+1}}^{1/p-1/q}} = \lambda(N) \theta_{N_1, N_2}^{1/p-1/q} \sum_{k=M+1}^{\infty} e^{-k \theta_{N_k, N_{k+1}}^{1/p-1/q}} \bigg/ \theta_{N_1, N_2} \]
\[\leq C_4 \lambda(N) N^{(2d-r-1)(1/p-1/q)} \sum_{k=M+1}^{\infty} e^{-k \delta' k} \]
\[= C_4 \lambda(N) N^{(2d-r-1)(1/p-1/q)} \left(e^{-1-\delta''} \right)^{M+1} \frac{1}{1 - e^{-1-\delta''}} \]
\[\leq C_6 \lambda(N) N^{(2d-r-1)(1/p-1/q)} \left(e^{-1-\delta''} \right)^M, \]
where $\delta'' = \delta'(1/p-1/q)$, $\delta'' < 1$. We have that $M \asymp \epsilon^{-1} \ln \theta_{N_1, N_2}$ and $\theta_{N_1, N_2} \asymp N^{2d-r-1}$, and hence
\[\lambda(N) \sum_{k=M+1}^{\infty} e^{-k \theta_{N_k, N_{k+1}}^{1/p-1/q}} \leq C_7 \lambda(N) N^{(2d-r-1)(1/p-1/q)} \left(e^{-1-\delta''} \right)^{\epsilon} \leq C_7 \lambda(N), \]
\[24 \]
if $0 < e < C_3(1 - \delta'')/(1/p - 1/q)$. Then it follows by (49) and (51) that

$$d_\beta(\Lambda(2) U_p, L^q) \leq e^{-\gamma' N'} N'(2d-r-1)(1/p-1/2) \left\{ \begin{array}{ll} \frac{q^{1/2}}{\ln^r \phi_N}, & 2 \leq q < \infty, \\
\frac{q^{1/2}}{(\ln s)^{1/2}}, & q = \infty, \end{array} \right. \tag{52}$$

By (48) and (49), we get $\theta_{N_1, N_2} \asymp N_1^{d-1} = (N_1^{(2d-1)})^{r/(2d-r-1)} \leq (N' + C_1(k-1))^{r/(2d-r-1)}$ and considering that $M \leq e^{-1} \ln \theta_{N_1, N_2}$, $\theta_{N_1, N_2} \asymp N^{2d-r-1} N^{d-1}$ and $N^{2d-1} \approx s$ we get $\ln \theta_{N_k, N_{k+1}} \approx \ln s$. Therefore by (52)

$$d_\beta(\Lambda(2) U_p, L^q) \ll e^{-\gamma' N'} N'(2d-r-1)(1/p-1/2) \left\{ \begin{array}{ll} \frac{q^{1/2}}{\ln s^{1/2}}, & 2 \leq q < \infty, \\
\frac{q^{1/2}}{(\ln s)^{1/2}}, & q = \infty, \end{array} \right. \tag{53}$$

From Remark 5.5, (24) and (49), we get

$$\beta = m_0 + \sum_{k=1}^M m_k = \sum_{k=0}^M \dim H_s + \sum_{k=1}^M m_k \leq s + C_3 \theta_{N_1, N_2} \leq s + C_3 N^{2d-r-1},$$

and since $N^{2d-1} \approx s$, it follows that $\beta \leq s + C_3 s^{-r/(2d-1)}$ and then

$$d_{s+C_3 s^{-r/(2d-1)}}(\Lambda(2) U_p, L^q) \ll e^{-\gamma' N'} N'(2d-r-1)(1/p-1/2) \left\{ \begin{array}{ll} \frac{q^{1/2}}{\ln s^{1/2}}, & 2 \leq q < \infty, \\
\frac{q^{1/2}}{(\ln s)^{1/2}}, & q = \infty, \end{array} \right. \tag{53}$$

Let $T_N = s + C_3 s^{-r/(2d-1)}$. By (41) we have $-\gamma' N' \leq -R s^{r/(2d-1)} + C_10 s^{(r-1)/(2d-1)}$ and hence $C_10 s^{(r-1)/(2d-1)} < C_{11}$. Thus

$$-\gamma' N' + R T_N^{r/(2d-1)} \leq -R s^{r/(2d-1)} + R T_N^{r/(2d-1)} + C_{11}$$

$$= -R \phi_N^{r/(2d-1)} + R \phi_N^{r/(2d-1)} \left(1 + C_9 \phi_N^{-r/(2d-1)} \right)^{r/(2d-1)} + C_{11}$$

$$= R \phi_N^{r/(2d-1)} \left(-1 + \left(1 + C_9 \phi_N^{-r/(2d-1)} \right)^{r/(2d-1)} \right) + C_{11}.$$

Taking N sufficiently large, we have $|C_9 \phi_N^{-r/(2d-1)}| < 1$ and hence we obtain

$$\left(1 + C_9 \phi_N^{-r/(2d-1)} \right)^{r/(2d-1)}$$

$$= 1 + \sum_{k=1}^\infty \left(\frac{r/(2d-1)}{k} \right) \left(\frac{r/(2d-1)}{2d-1} - k + 1 \right) \left(C_9 \phi_N^{-r/(2d-1)} \right)^k$$

$$= 1 + \frac{C_9 r}{2d-1} \phi_N^{-r/(2d-1)} S_N,$$

where $0 \leq S_N \leq C_r$ and therefore $-\gamma' N' + R T_N^{r/(2d-1)} \leq C_{12}$. Let $l \in \mathbb{N}$, $[r_N] \leq l \leq \lceil r_{N+1} \rceil$. We have $1 < e^{-\gamma' N'}/e^{-\gamma' (N+1)'} \leq e^{r'}$, so, using (53), we obtain

$$d_{l}(\Lambda(2) U_p, L^q) \leq d_{[r_N]}(\Lambda(2) U_p, L^q) \leq e^{-\gamma' N'} N^{(2d-r-1)(1/p-1/2)} \left\{ \begin{array}{ll} 1, & 2 \leq q < \infty, \\
\frac{q^{1/2}}{(\ln \phi_N)^{1/2}}, & q = \infty, \end{array} \right. \leq e^{-\gamma' (N+1)'} \left(N^{2d-1} \right)^{(2d-r-1)(1/p-1/2)/(2d-1)} \left\{ \begin{array}{ll} 1, & 2 \leq q < \infty, \\
\frac{q^{1/2}}{(\ln \phi_N)^{1/2}}, & q = \infty, \end{array} \right.$$
Since $\lambda(N + k) \leq e^{-k}\lambda(N)$, for $1 \leq p \leq 2 \leq q \leq \infty$ we obtain

$$d_{\phi}(\Lambda^{(2)}U_p, L^q) \ll \lambda(N) \sum_{k=1}^{\infty} e^{-(k-1)\frac{1}{p} - \frac{1}{q}} \ll \lambda(N) \sum_{k=1}^{\infty} e^{-k\theta_{N_k, N_{k+1}}^{1/p - 1/q}}$$

$$\ll \lambda(N) \sum_{k=1}^{\infty} e^{-k(\dim H^{N+k})^{1/p - 1/q}}$$

$$\ll \lambda(N) \sum_{k=1}^{\infty} e^{-k\left((N + k)^{2d-2}\right)^{1/p - 1/q}}$$

$$\ll \lambda(N) \sum_{k=1}^{\infty} e^{-k(Nk)^{2d-2}(1/p - 1/q)}$$

$$\ll \lambda(N) N^{(2d-2)(1/p - 1/q)} = e^{-\gamma N^r} N^{(2d-2)(1/p - 1/q)}.$$

Now for $2 \leq p, q \leq \infty$, we obtain

$$d_{\phi}(\Lambda^{(2)}U_p, L^q) \leq d_{\phi}(\Lambda^{(2)}U_2, L^q) \ll e^{-\gamma N^r} N^{(2d-2)(1/2 - 1/q)},$$

and this proves (46). \qed

References