
ON SPACE MAXIMAL CURVES

PAULO CÉSAR OLIVEIRA AND FERNANDO TORRES

Abstract. Any maximal curve X is equipped with an intrinsic embedding π : X → P
r

which reveal outstanding properties of the curve. By dealing with the contact divisors of

the curve π(X ) and tangent lines, in this paper we investigate the first positive element

that the Weierstrass semigroup at rational points can have whenever r = 3 and π(X ) is

contained in a cubic surface.

1. Introduction

Throughout this paper, F stands for the finite field Fq2 of order q
2. A projective, geomet-

rically irreducible, non-singular algebraic curve X defined over F of genus g = g(X ) is

said to be F-maximal if the number of its F-rational points attains the Hasse-Weil upper

bound; that is,

#X (F) = q2 + 1 + 2q · g .

Apart from being interesting mathematical objects by their own, these curves have been

extensively studied as they are of great interest in Coding Theory, Cryptography and

related areas; see for example the books [24], [14], [16].

Let X be an F-maximal curve of genus g. Then the numerator of the Zeta function of X is

the polynomial L(t) = (1+qt)2g and hence h(t) = t2gL(t−1) = (t+q)2g is the characteristic

polynomial of certain endomorphism Φ̃ on the Jacobian J of X . This map is uniquely

determined by the F-Frobenius morphism Φ : X → X in such a way that ι ◦ Φ = Φ̃ ◦ ι,

where ι : X → J is the natural embedding given by P 7→ [P − P0] with P0 ∈ X (F). It

turns out that Φ̃ is semisimple and so the following linear equivalence (sometimes called

the fundamental equivalence) on X arises (see [14, Thm. 10.1, Thm. 9.79]):

(1.1) (q + 1)P0 ∼ qP + Φ(P ) , P ∈ X .

This suggests the study of the (complete) linear series DX := |(q+1)P0| (sometimes called

the Frobenius linear series of X ) whose definition clearly does not depend on the choice of

the F-rational point P0. As a matter of fact, several arithmetical and geometrical proper-

ties of maximal curves are revealed through this linear series (loc. cit.). In particular, DX
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is very ample [8, Prop. 1.9], [18, Thm. 2.5] which means that the morphism associated

to DX

(1.2) πDX
: X → Pr

is an embedding, where r = r(X ) ≥ 2 is the projective dimension of DX (sometimes called

the Frobenius dimension of X ), and Pr is the projective r-space over the algebraic closure

of F.

It is well-known that the Hermitian curve H defined by vq+1 = uq+1 + 1 is F-maximal of

genus g(H) = g0 := q(q− 1)/2; see [24, Ex. 6.3.6]. Indeed, among F-maximal curves, the

curve H admits the following characterization.

Proposition 1.1. ([23], [27], [9]) If X is F-maximal, the following sentences are equiva-

lent:

(1) X is F-isomorphic to the Hermitian curve H;

(2) g(X ) = g0;

(3) g(X ) > (q − 1)2/4;

(4) r(X ) = 2;

(5) There exists P ∈ X (F) such that the first positive element of H(P ), the Weier-

strass semigroup at P , equals q.

From (1.2) any F-maximal curve X is F-isomorphic to a non-degenerate curve of degree

q + 1 in Pr, r = r(X ). Thus the classical Castelnuovo’s genus bound can be used to

explain partially Proposition 1.1 as it gives the first general constrain between g(X ) and

the pair (q, r) (see [14, Cor. 10.25]):

(1.3) g(X ) ≤ F (q, r) :=

{

[(q − (r − 1)/2)2 − 1/4]/2(r − 1) , if r is even ,

[(q − (r − 1)/2)2]/2(r − 1) , if r is odd .

Notice that the function F (q, r) satisfies F (q, r) ≤ F (q, s) for r ≥ s; in particular, g(X ) ≤

F (q, 3) = (q−1)2/4 provided that r(X ) ≥ 3. Then, with g1 := ⌊(q−1)2/4⌋, by Proposition

1.1 the spectrum for the genera of F-maximal curves, namely the set

M(q2) := {g ∈ N0 : there is an F-maximal curve of genus g} ,

satisfies

(1.4) M(q2) ⊆ [0, g1] ∪ {g0} .

We recall that g0 is the well-known Ihara’s bound on the genus of F-maximal curves

[17]. One of the main problems in Curve Theory Over Finite Fields is the computation of

M(q2); in general one cannot expect to give a full answer to this matter but improvements

on (1.4) can be expected as far as improvements on Castelnuovo’s genus bound of curves

in Pr are known.
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In view of Proposition 1.1 it is natural to investigate space F-maximal curves with respect

to DX ; that is, those with r(X ) = 3. Here a natural way of bounding g(X ), which

generalizes Castelnuovo’s method, is by looking at the degree d ≥ 2 of surfaces S ⊆ P3

such that π(X ) ⊆ S where π = πX is as in (1.2); cf. [13], [21]. We have the following

Halphen-Ballico result (see [3]) which deals with the case of quadrics. Let g1 be as in

(1.4) and set g2 := ⌊(q2 − q + 4)/6⌋; then

(1.5) π(X ) is contained in a quadric in P3 provided that g2 < g(X ) ≤ g1 .

Now the F-maximal property of X implies certain constrains on the first positive element

m1(P ) of the Weierstrass semigroup H(P ) at some P ∈ X (F), and (1.4) admits the

folloing improvement [18]:

(1.6) M(q2) ⊆ [0, g2] ∪ {g1} ∪ {g0} .

An analogue of Proposition 1.1 emerges, namely

Proposition 1.2. ([8], [1], [19], [18]) Let X be an F-maximal curve. The following

sentences are equivalent:

(1) X is isomorphic to a quotient of H by certain involution;

(2) g(X ) = g1;

(3) π(X ) is contained in a quadric;

(4) There exists P ∈ X (F) such that the first positive element of H(P ), the Weier-

strass semigroup at P , equals ⌊(q + 1)/2⌋.

The starting points of our result are in fact Propositions 1.1, 1.2 above. Under condition

(2.1) below, the main result in this paper is Corollary 2.6, where a hypothesis on a cubic

surface is considered; in this way a weak version of the aforementioned propositions is

obtained. We always assume q > 7; cf. [2].

We do point out that our approach follows closely the works by Cossidente-Korchmáros-

Torres [5, Sect. 3], [4, Sect. 5], Korchmáros-Torres [18], Fanali-Giulietti [7] and Arakelian-

Tafazolian-Torres [2].

Conventions. Ps stands for the projective s-space over the algebraic closure of the base

field. For a point P in a curve, H(P ) denotes the Weierstrass semigroup at P ; m1(P ) is

the first positive element of H(P ).

2. Maximal curves and cubic surfaces

Let X be an F-maximal curve, P0 ∈ X (F) and D = DX = |(q + 1)P0| the liner series

introduced in Section 1; i.e., it is the set of effective divisors on X which are linearly

equivalent to the divisor (q+1)P0. We always assume g(X ) > 0; taking into consideration

(1.6) and Propositions 1.1, 1.2 above, we also assume:

(2.1) r(X ) = 3 and g(X ) ≤ g2 = ⌊(q2 − q + 4)2/6⌋ .
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Remark 2.1. Let X be an F-maximal curve. From (1.3) and Proposition 1.1, a sufficient

condition to have r(X ) = 3 is that (q − 1)(q − 2)/6 < g(X ) ≤ g1 = ⌊(q − 1)2/4⌋.

Let π = πD : X → P3 be the morphism associated to D.

Definition 2.2. For P ∈ X , a non-negative integer j is called an (D, P )-order if there is

D ∈ D such that the coefficient vP (D) of P in D equals j.

Now let P ∈ X (F). Relation (1.1) implies the following behaviour for elements of H(P ):

m0(P ) = 0 < m1(P ) < m2(P ) < m3(P ) = q + 1 .

Thus for each i = 0, 1, 2, 3 there are rational functions on X , hi : X → P1 such that

div(hi) = Di −mi(P )P , P 6∈ Supp(Di) with div(h3) = (q+1)P − (q+1)P0, P 6= P0. For

P = P0 we put h3 = 1. Then

div(hih3) + (q + 1)P0 = Di + (q + 1−mi(P ))P ∈ D

and the (D, P )-orders do satisfy (cf. [8, Prop. 1.5(iii)])

(2.2) ji(P ) = q + 1−m3−i(P ) , i = 0, 1, 2, 3 ;

therefore at P ∈ X (F), j3(P ) = q + 1 and the first positive element m1(P ) of H(P ) and

j2(P ) are related to each other by the equation

(2.3) m1(P ) = q + 1− j2(P ) .

Remark 2.3. For the linear system D above and any P ∈ X , the (D, P ) orders can be

ordered as a sequence j0(P ) < j1(P ) < j2(P ) < j3(P ) ≤ q + 1 with j0(P ) = 0 as D is

base-point-free. Relation (1.1) shows that 1 and q are (D, P )-orders for P 6∈ X (F). Thus

for such points j1(P ) = 1 and j3(P ) = q (as g(X ) > 0).

Now j3(P ) is the intersection multiplicity of the curve π(X ) ⊆ P3 and the osculating

hyperplane at π(P ) (cf. [25]); in addition, (1.1) also shows that π(Φ(P )) belongs to this

hyperplane and we have the following key observation due to Stöhr and Voloch [25, Cor.

2.6]: Let ν2 := q and P ∈ X (F). Then j3(P ) − j1(P ) ≥ ν2; in particular, for P ∈ X (F),

j1(P ) = 1, and so m2(P ) = q by (2.2).

Lemma 2.4. Let X be an F-maximal curve satisfying (2.1) and let P ∈ X (F).

(1) If q > 3, then j2(P ) 6∈ {(q + 3)/2, (2q + 3)/3, (2q + 2)/3, q − 1, q};

(2) j2(P ) 6∈ {(q + 1)/2, (q + 2)/2}.

(3) If q is even and j2(P ) = q/2, then g(X ) ≤ q2/8.

Proof. We have m1(P ) = q + 1− j2(P ); see (2.3).

(1) Since 2m1(P ) ≥ m2(P ) and m2 = q by Remark 2.3, then j2(P ) ≤ (q + 2)/2. If any of

the values in (1) were allowed, then q ≤ 3.
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(2) Suppose j2 = (q + 1)/2 (resp. j2 = (q + 2)/2). Then m1(P ) = (q + 1)/2 (resp.

m1(P ) = q/2) and hence g(X ) = ⌊(q − 1)2/4⌋ by [18, Thm. 1].

(3) If j2(P ) = q/2, m1(P ) = (q + 2)/2 by Remark 2.3; then g(X ) ≤ g(H) where H is

the semigroup generated by (q + 2)/2, q, q + 1 and g(H) = #(N0 \ S) is the genus of H.

This number can be computed by the method of Rosales and Garćıa-Sánchez in [22]; i.e.,

g(H) = q2/8 and the result follows. �

Theorem 2.5. Let X be an F-maximal curve satisfying (2.1). Suppose that π(X ) is

contained in a cubic surface S.

(1) For P ∈ X (F), j2(P ) ∈ {2, 3, q/2, (q + 1)/3, (q + 2)/3, (q + 3)/3};

(2) If q is even and g(X ) > q2/8, then j2(P ) 6= q/2.

Proof. Let j0 = 0 < j1 = 1 < j2 < j3 = q + 1 be the (D, P )-orders with j2 = j2(P )

and v = vP the valuation at P . Then π can be defined by (f0 : f1 : f2 : f3) such that

v(fi) = ji; in particular, π(P ) = (1 : 0 : 0 : 0) and throughout we assume f0 = 1. Let the

cubic surface S be defined by

F (X0, X1, X2, X3) = a000X
3
0 + a001X

2
0X1 + a002X

2
0X2 + a003X

2
0X3 + a111X

3
1

+ a110X
2
1X0 + a112X

2
1X2 + a113X

2
1X3 + a222X

3
2 + a220X

2
2X0

+ a221X
2
2X1 + a223X

2
2X3 + a333X

3
3 + a330X

2
3X0 + a331X

2
3X1

+ a332X
2
3X2 + a012X0X1X2 + a013X0X1X3 + a023X0X2X3

+ a123X1X2X3 .

Then F (1, f1, f2, f3) = 0 and a000 = 0. Now the valuation at P of the functions

f1, f2, f3, f
3
1 , f

2
1 , f

2
1 f2, f

2
1 f3, f

3
2 , f

2
2 , f

2
2 f1, f

2
2 f3, f

3
3 ,

f 2
3 , f

2
3 f1, f

2
3 f2, f1f2, f1f3, f2f3, f1f2f3

are respectively

1, j2, j3, 3, 2, 2 + j2, 2 + j3, 3j2, 2j2, 1 + 2j2, 2j2 + j3, 3j3,

2j3, 1 + 2j3, j2 + 2j3, 1 + j2, 1 + j3, j2 + j3, 1 + j2 + j3 .

Then the valuation property of v implies a001 = 0. Let j2 > 3 so that a111 = a110 = 0

(recall that q > 7). We have j2 + 2 < j3, otherwise j2 ∈ {q, q − 1} which is not possible

by Lemma 2.4. Thus

j2 < j2+1 < j2+2 < j3 < j3+1 < j3+2 < j3+j2 < j3+j2+1 < 2j3 < 2j3+1 < 2j3+j2 < 3j3 .

Since 2j2 < 2j2 + 1 < 3j2 < 2j2 + j3, the valuation property of v implies the following

cases:

(1) Either 2j2 ∈ {j3, j3 + 1, j3 + 2}, or

(2) 2j2 + 1 = j3, or

(3) 3j2 ∈ {j3, j3 + 1, j3 + 2, 2j3, 2j3 + 1}.
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By Lemma 2.4 2j2 6= j3, j3 +1, j3 +2, 3j2 6= 2j3, 3j2 6= 2j3 +1, and 2j2 +1 6= j3 whenever

g > q2/8.

Therefore j2 ∈ {2, 3, (q + 1)/3, (q + 2)/3, (q + 1)/3} and the proof follows. �

Now we can state the main result in this paper.

Corollary 2.6. Let X be an F-maximal curve as in Theorem 2.5. Then the multiplicity

m1(P ) of the Weierstrass semigroup H(P ) at P ∈ X (F) do satisfy

m1(P ) ∈ {(q + 2)/2, (2q + 2)/3, (2q + 1)/3, 2q/3, q − 2, q − 1} .

In addition, if q is even and g(X ) > q2/8, then m1(P ) 6= (q + 2)/2.

Proof. It follows from (2.3) and the theorem above. �

Remark 2.7. Notation as in Remark 2.3. For the linear series D, a basic result is that for

almost P ∈ X , the sequence j0(P < j1(P ) < j2(P ) < j3(P ) is constant (so called order

sequence of D) cf. [25, p. 5]). In Remark 2.3 we noticed that j0(P ) = 0, j1(P ) = 1,

j3(P ) = q for P 6∈ X (F) and thus the order sequence of D is of type 0 < 1 < ǫ2 < q.

By the proof of [2, Prop. 3.1], ǫ2 = 2 provided that

g(X ) >

{

(q2 + 1)(q − 4)/2(4q − 1) , whenever q 6≡ 0 (mod 3) ,

g > (q2 + 1)(q − 3)/2(3q − 1) , otherwise .

This forces g(X ) ≥ (q2 − 2q + 3)/6 (∗) (see [5, Remark 3.3], [2, Prop. 3.1]).

Now for P ∈ X (F) the Weierstrass semigroup H(P ) contains the semigroup generated by

m, q, q + 1, where m = m1(P ) = q + 1 − j2(P ) (cf. 2.3); hence g(X ) ≤ g(H) (the genus

of H). Then by using heavy arithmetical computations from [10, Sect. 2] and by taking

into consideration restriction (∗) above, Corollary 2.6 was already proved in [5, Cor. 3.5]

whithout the hypothesis regarding the cubic surface.

Remark 2.8. Let X be an F-maximal curve such that (2.1) holds; in particular, we identify

X with a non-degenerate projective curve in P3 and we can apply the aforementioned

Castelnuovo and Halphen-Ballico results as they are true in positive characteristic [3].

We look forward a result of type: There exists a polynomial (of one indeterminate)

A(x) ∈ Q[x] such that

(2.4) g(X ) > A(q + 1) implies π(X ) ⊆ S ,

where S is a surface of degree d ≤ 3 (Then we shall assume d = 3 by Propositions 1.1,

1.2.)

Remark 2.9. In the literature, for a non-degenerate projective space curve C of degree q+1

over the complex numbers, there are available results of type (2.4) which in fact appear

as particular cases of a vast theory that generalize the aforementioned Castelnuovo and

Halphen results; see Eisenbud-Harris book [13, Thm. 3.22, p. 117].
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Let q be large, says q ≥ 107. If

g(C) > B(q + 1) :=



























q(q + 2)

8
, if q ≡ 0, 2 (mod 4) ,

q2 + 2q − 3

8
, if q ≡ 1 (mod 4) ,

q2 + 2q + 9

8
, otherwise ,

then there exists a surface S of degree 2 or 3 such that C ⊆ S.

Question 2.10. Is Remark 2.9 true in positive characteristic?

3. Examples

In this section we illustrate Corollary 2.6. Notation as above; in particular, H is the

Hermitian curve over F = Fq2 defined by vq+1 = uq+1 + 1. Let π : H → P2 be a non-

trivial morphism over F and X the non-singular model of the plane curve π(H); then π

can be lifted to a morphism H → X , which we still denote by π. In this case, the curve

X is also F-maximal (see e.g. [20]).

Example 3.1. (cf. [7, Sect. 5]) Let q ≡ 2 (mod 3) and π : H → P2 be the morphism

given by π = (x : y : 1) := (u3 : uv : 1). Then the plane curve π(H) is defined by

yq+1 = x(q+1)/3(x(q+1)/3 + 1) ,

and by applying the Riemann-Hurwitz formula to the function x : X → P1, where X

is the non-singular model of π(H), we find that X is F-maximal of genus g(X ) = g2 =

(q2 − q + 4)/6 (cf. [11], [4, Prop. 2.1]). We notice that r(X ) = 3 by Remark 2.1 above.

Next we shall compute the Weierstrass semigroup H(P ) at certain points of X ; we start

by computing some principal divisors on X via tools from [24].

(a) There are (q + 1)/3 points in x−1(∞), say Pi, i = 1, . . . , (q + 1)/3.

Set D∞ := P1 + . . .+ P(q+1)/3.

(b) There are (q + 1)/3 points in x−1(0), say Qi, i = 1, . . . , (q + 1)/3.

Set D0 := Q1 + . . .+Q(q+1)/3. Then div(x) = 3D0 − 3D∞.

(c) Let a ∈ F such that a(q+1)/3 = −1 (∗). There is just point Ra over x−1(a) and

div(x− a) = (q + 1)Ra − 3D∞. Set D :=
∑

i/i(q+1)/3=−1 Ri.

Then div(x(q+1)/3 + 1) = (q + 1)D − (q + 1)D∞.

From (a), (b), (c), div(y) = D0 +D − 2D∞, and for a ∈ F as in (∗) above

div((x− a)−1) = 3D∞ − (q + 1)Ra , div(y(x− a)−1) = D0 +D′ +D∞ − qRa and

div(y3x−1(x− a)−1) = 3D′ − (q − 2)Ra ,

where D′ = D−Ra. It follows that H(Ra) ⊇ H := 〈q− 2, q, q + 1〉 so that g(X ) ≤ g(H).

We have that the sequence q − 2, q + 1, q is telescopic and so g(H) = (q2 − q + 4)/6 (see

e.g. [15, Prop. 5.35]). Therefore
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Claim. H(Ra) = H and m1(Ra) = q − 2 (this also shows that r(X ) = 3).

Moreover by Remark 2.7 the order sequence of X is 0 < 1 < 2 < q and thus there is also

a point P ∈ X (F) with m1(P ) = q − 1 (see [5, Lemma 3.7]).

Remark 3.2. We can construct explicit and outstanding AG one-point codes based on the

curve in Example 3.1 by taking into consideration the telescopic property of H(Ra); cf.

[15, Sect. 5], [26, Sect. 5].

Example 3.3. Let q ≡ 2 (mod 3). Here we point out properties of an arbitrary F-

maximal curve X of genus g(X ) = g2 = (q2 − q + 4)/6. We have r(X ) = 3 by Remark

2.1, and that 0 < 1 < 2 < q is the order sequence of D = DX by Remark 2.7. Then by [5,

Lemma 3.7] there is P̄ ∈ X (F) with m1(P̄ ) = q − 1, or j2(P̄ ) = 2 by (2.3).

Claim. There is P ∈ X (F) such that j2(P ) > 2.

Indeed, otherwise [18, Lemma 7] would imply g = (q2 − 2q + 3)/6, a contradiction.

Let π : X → P3 be the morphism associated to D. We are led to the following questions.

(A) Is π(X ) contained in a cubic surface? (This would be true if the answer to Question

2.10 is affirmative)

(B) Let X be an F-maximal curve. Then g(X ) = g2 if and only if π(X ) is contained

in a cubic surface and there is P̄ ∈ X (F) with j2(P̄ ) > 2?

Question (B) above is related to the following result which is a consequence of the proof

of [18, Thm. 1] and [Lemma 7]KT.

Remark 3.4. With g1 as in (1.4), for an F-maximal curve X we have that g(X ) = g1 if

and only if π(X ) is contained in a quadric and there is P̄ ∈ X (F) with j2(P̄ ) > 2.

Example 3.5. Let q ≡ 2 (mod 3). We investigate F-maximal curves of genus g(X ) =

g3 = g2 − 1 = (q2 − q − 2)/6 which were constructed in [5]. To start with, r(X ) = 3 by

Remark 2.1 and the order seqeunce of D is 0 < 1 < 2 < q by Remark 2.7. In particular,

there is P ∈ X (F) such that m1(P ) = q − 1 by [5, Lemma 3.7].

We further assume the following properties:

(a) π(X ) is contained in a cubic surface;

(b) π : H → X is Galois of degree three.

(The aforementioned curves in [5] satisfy these properties)

Claim. There is P̄ ∈ X (F) with m1(P̄ ) = (2q + 2)/3.

Proof of the Claim. By the Riemann-Hurwitz relation there is P̄ ∈ X (F) which is totally

ramified for π. Let Q = π−1(P̄ ) ∈ H. The first six positive elements of the Weierstrass

semigroup at Q are q, q + 1, 2q, 2q + 1, 2q + 2, 3q. Now let m = m1(P̄ ) < q < q + 1 be

the first three positive elements of H(P̄ ). Then 3m ∈ {q, q + 1, 2q, 2q + 1, 2q + 2} and so
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m ∈ {(q + 1)/3, (2q + 2)/3. We eliminate the case m = (q + 1)/3 by Corollary 2.6 and

the Claim follows.

Example 3.6. Let q 6≡ 2 (mod 3) and X be an F-maximal curve of genus g(X ) = g2 =

(q2 − q)/6; hence r(X ) = 3 by Remark 2.1 and the order sequence of D is 0 < 1 < 2 < q

by Remark 2.7. by Remark 2.7. In particular, there is P ∈ X (F) such that m1(P ) = q−1

by [5, Lemma 3.7]. We notice that examples of such curves do exist: see e.g. [11], [4,

Prop. 2.1].

Let us assume properties (a) and (b) in Example 3.5 (indeed, the aforementioned examples

satisfy these hypotheses).

Claim. If q ≡ 1 (mod 3) (resp. q ≡ 0 (mod 3)), then there exists P̄ ∈ X (F) with

m1(P̄ ) = (2q + 1)/3 (resp. m1(P̄ ) = 2q/3).

Arguing as in Example 3.5 there is P̄ ∈ X (F) such that 3m ∈ {q, q+1, 2q, 2q+1, 2q+2}

with m = m1(P̄ ).

If q ≡ 1 (mod 3), m = (2q + 1)/3.

If q ≡ 0 (mod 3), eitherm = q/3 orm = 2q/3. The former case is eliminated by Corollary

2.6.

Example 3.7. Here we present an F-maximal curve X with r(X ) = 3 such that π(X )

cannot be contained in a cubic surface, where π is the morphism associated to D. Indeed,

we consider the so-called GK-curve [12] whose Weierstrass semigroups at rational points

were computed in [7]. This curve is defined over F = Fq2 with q = ℓ3. For ℓ > 2 this is

the first example of an F-maximal curve that cannot be dominated by H (loc. cit.)

On this curve there is P̄ ∈ X (F) such that m1(P̄ ) = ℓ3−ℓ2+ℓ [12, Sect. 4], and therefore,

according to Corollary 2.6, π(X ) cannot be contained in a cubic. We notice that the genus

of X is g(X ) = 1
2
(ℓ5−2ℓ3+ℓ2)/2 and so it does not satisfies Remark 2.9. Further examples

can be found in [26].

We end this paper with the following:

Question 3.8. Let X be an F-maximal curve with r(X ) = 3. Suppose that π(X ) ⊆ S,

where S is a surface of degree d ≥ 2. Let P ∈ X (F) and suppose g(X ) large enough.

Then m1(P ) = (q + 1)− q+i
d

or m1(P ) = q− j for some i = 1, . . . , d, j = 2, . . . , d. Are all

these cases possible?
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[4] A. Cossidente, G. Korchmáros and F. Torres, Curves of large genus covered by the hermitian curve,

Comm. in Algebra, 28 (2000), 4707–4728.

[5] A. Cossidente, G. Korchmáros and F. Torres, On curves covered by the hermitian curve, J. Algebra,

216 (1999), 56–76.

[6] P.C Oliveira, “Sobre Curvas Maximais em Superf́ıcies Cúbicas”, Tese doutorado, IMECC-

UNICAMP, 2015.

[7] S. Fanali and M. Giulietti, On some open problems on maximal curves, Des. Codes Cryptogr., 56

(2010), 131–139.

[8] R. Fuhrmann, A. Garcia and F. Torres, On maximal curves, J. of Number Theory, 67 (1997), 29-51.

[9] R. Fuhrmann and F. Torres, The Genus of Curves over Finite Fields with Many Rational Points,

Manuscripta Math. 89 (1996), 103-106.

[10] R. Fuhrmann, “Algebraische Funktionenkörper über endlichen Körpern mit maximaler Anzahl ra-

tionaler Stellen, Ph.D. thesis, Essen, 1995.

[11] A. Garcia, H. Stichtenoth and C.P. Xing, On subfields of the Hermitian function field, Compositio

Math. 120 (2000), 137–170.
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