ON SPACE MAXIMAL CURVES

PAULO CÉSAR OLIVEIRA AND FERNANDO TORRES

Abstract

Any maximal curve \mathcal{X} is equipped with an intrinsic embedding $\pi: \mathcal{X} \rightarrow \mathbf{P}^{r}$ which reveal outstanding properties of the curve. By dealing with the contact divisors of the curve $\pi(\mathcal{X})$ and tangent lines, in this paper we investigate the first positive element that the Weierstrass semigroup at rational points can have whenever $r=3$ and $\pi(\mathcal{X})$ is contained in a cubic surface.

1. Introduction

Throughout this paper, \mathbf{F} stands for the finite field $\mathbb{F}_{q^{2}}$ of order q^{2}. A projective, geometrically irreducible, non-singular algebraic curve \mathcal{X} defined over \mathbf{F} of genus $g=g(\mathcal{X})$ is said to be \mathbf{F}-maximal if the number of its \mathbf{F}-rational points attains the Hasse-Weil upper bound; that is,

$$
\# \mathcal{X}(\mathbf{F})=q^{2}+1+2 q \cdot g
$$

Apart from being interesting mathematical objects by their own, these curves have been extensively studied as they are of great interest in Coding Theory, Cryptography and related areas; see for example the books [24], [14], [16].

Let \mathcal{X} be an \mathbf{F}-maximal curve of genus g. Then the numerator of the Zeta function of \mathcal{X} is the polynomial $L(t)=(1+q t)^{2 g}$ and hence $h(t)=t^{2 g} L\left(t^{-1}\right)=(t+q)^{2 g}$ is the characteristic polynomial of certain endomorphism $\tilde{\Phi}$ on the Jacobian \mathcal{J} of \mathcal{X}. This map is uniquely determined by the \mathbf{F}-Frobenius morphism $\Phi: \mathcal{X} \rightarrow \mathcal{X}$ in such a way that $\iota \circ \Phi=\tilde{\Phi} \circ \iota$, where $\iota: \mathcal{X} \rightarrow \mathcal{J}$ is the natural embedding given by $P \mapsto\left[P-P_{0}\right]$ with $P_{0} \in \mathcal{X}(\mathbf{F})$. It turns out that $\tilde{\Phi}$ is semisimple and so the following linear equivalence (sometimes called the fundamental equivalence) on \mathcal{X} arises (see [14, Thm. 10.1, Thm. 9.79]):

$$
\begin{equation*}
(q+1) P_{0} \sim q P+\Phi(P), \quad P \in \mathcal{X} \tag{1.1}
\end{equation*}
$$

This suggests the study of the (complete) linear series $\mathcal{D}_{\mathcal{X}}:=\left|(q+1) P_{0}\right|$ (sometimes called the Frobenius linear series of \mathcal{X}) whose definition clearly does not depend on the choice of the \mathbf{F}-rational point P_{0}. As a matter of fact, several arithmetical and geometrical properties of maximal curves are revealed through this linear series (loc. cit.). In particular, $\mathcal{D}_{\mathcal{X}}$

Key words: finite field, Stöhr-Voloch theory, Hasse-Weil bound, maximal curve.
August 7, 2018.
is very ample [8, Prop. 1.9], [18, Thm. 2.5] which means that the morphism associated to $\mathcal{D}_{\mathcal{X}}$

$$
\begin{equation*}
\pi_{\mathcal{D}_{\mathcal{X}}}: \mathcal{X} \rightarrow \mathbf{P}^{r} \tag{1.2}
\end{equation*}
$$

is an embedding, where $r=r(\mathcal{X}) \geq 2$ is the projective dimension of $\mathcal{D}_{\mathcal{X}}$ (sometimes called the Frobenius dimension of \mathcal{X}), and \mathbf{P}^{r} is the projective r-space over the algebraic closure of \mathbf{F}.

It is well-known that the Hermitian curve \mathcal{H} defined by $v^{q+1}=u^{q+1}+1$ is \mathbf{F}-maximal of genus $g(\mathcal{H})=g_{0}:=q(q-1) / 2$; see [24, Ex. 6.3.6]. Indeed, among F-maximal curves, the curve \mathcal{H} admits the following characterization.

Proposition 1.1. ([23], [27], [9]) If \mathcal{X} is \mathbf{F}-maximal, the following sentences are equivalent:
(1) \mathcal{X} is \mathbf{F}-isomorphic to the Hermitian curve \mathcal{H};
(2) $g(\mathcal{X})=g_{0}$;
(3) $g(\mathcal{X})>(q-1)^{2} / 4$;
(4) $r(\mathcal{X})=2$;
(5) There exists $P \in \mathcal{X}(\mathbf{F})$ such that the first positive element of $H(P)$, the Weierstrass semigroup at P, equals q.

From (1.2) any \mathbf{F}-maximal curve \mathcal{X} is \mathbf{F}-isomorphic to a non-degenerate curve of degree $q+1$ in $\mathbf{P}^{r}, r=r(\mathcal{X})$. Thus the classical Castelnuovo's genus bound can be used to explain partially Proposition 1.1 as it gives the first general constrain between $g(\mathcal{X})$ and the pair (q, r) (see [14, Cor. 10.25]):

$$
g(\mathcal{X}) \leq F(q, r):= \begin{cases}{\left[(q-(r-1) / 2)^{2}-1 / 4\right] / 2(r-1),} & \text { if } r \text { is even } \tag{1.3}\\ {\left[(q-(r-1) / 2)^{2}\right] / 2(r-1),} & \text { if } r \text { is odd }\end{cases}
$$

Notice that the function $F(q, r)$ satisfies $F(q, r) \leq F(q, s)$ for $r \geq s$; in particular, $g(\mathcal{X}) \leq$ $F(q, 3)=(q-1)^{2} / 4$ provided that $r(\mathcal{X}) \geq 3$. Then, with $g_{1}:=\left\lfloor(q-1)^{2} / 4\right\rfloor$, by Proposition 1.1 the spectrum for the genera of \mathbf{F}-maximal curves, namely the set

$$
\mathbf{M}\left(q^{2}\right):=\left\{g \in \mathbb{N}_{0}: \text { there is an } \mathbf{F} \text {-maximal curve of genus } g\right\}
$$

satisfies

$$
\begin{equation*}
\mathbf{M}\left(q^{2}\right) \subseteq\left[0, g_{1}\right] \cup\left\{g_{0}\right\} \tag{1.4}
\end{equation*}
$$

We recall that g_{0} is the well-known Ihara's bound on the genus of \mathbf{F}-maximal curves [17]. One of the main problems in Curve Theory Over Finite Fields is the computation of $\mathbf{M}\left(q^{2}\right)$; in general one cannot expect to give a full answer to this matter but improvements on (1.4) can be expected as far as improvements on Castelnuovo's genus bound of curves in \mathbf{P}^{r} are known.

In view of Proposition 1.1 it is natural to investigate space \mathbf{F}-maximal curves with respect to $\mathcal{D}_{\mathcal{X}}$; that is, those with $r(\mathcal{X})=3$. Here a natural way of bounding $g(\mathcal{X})$, which generalizes Castelnuovo's method, is by looking at the degree $d \geq 2$ of surfaces $S \subseteq \mathbf{P}^{3}$ such that $\pi(\mathcal{X}) \subseteq S$ where $\pi=\pi_{\mathcal{X}}$ is as in (1.2); cf. [13], [21]. We have the following Halphen-Ballico result (see [3]) which deals with the case of quadrics. Let g_{1} be as in (1.4) and set $g_{2}:=\left\lfloor\left(q^{2}-q+4\right) / 6\right\rfloor$; then

$$
\begin{equation*}
\pi(\mathcal{X}) \text { is contained in a quadric in } \mathbf{P}^{3} \text { provided that } g_{2}<g(\mathcal{X}) \leq g_{1} \tag{1.5}
\end{equation*}
$$

Now the \mathbf{F}-maximal property of \mathcal{X} implies certain constrains on the first positive element $m_{1}(P)$ of the Weierstrass semigroup $H(P)$ at some $P \in \mathcal{X}(\mathbf{F})$, and (1.4) admits the folloing improvement [18]:

$$
\begin{equation*}
\mathbf{M}\left(q^{2}\right) \subseteq\left[0, g_{2}\right] \cup\left\{g_{1}\right\} \cup\left\{g_{0}\right\} \tag{1.6}
\end{equation*}
$$

An analogue of Proposition 1.1 emerges, namely
Proposition 1.2. ([8], [1], [19], [18]) Let \mathcal{X} be an \mathbf{F}-maximal curve. The following sentences are equivalent:
(1) \mathcal{X} is isomorphic to a quotient of \mathcal{H} by certain involution;
(2) $g(\mathcal{X})=g_{1}$;
(3) $\pi(\mathcal{X})$ is contained in a quadric;
(4) There exists $P \in \mathcal{X}(\mathbf{F})$ such that the first positive element of $H(P)$, the Weierstrass semigroup at P, equals $\lfloor(q+1) / 2\rfloor$.

The starting points of our result are in fact Propositions 1.1, 1.2 above. Under condition (2.1) below, the main result in this paper is Corollary 2.6, where a hypothesis on a cubic surface is considered; in this way a weak version of the aforementioned propositions is obtained. We always assume $q>7$; cf. [2].
We do point out that our approach follows closely the works by Cossidente-KorchmárosTorres [5, Sect. 3], [4, Sect. 5], Korchmáros-Torres [18], Fanali-Giulietti [7] and Arakelian-Tafazolian-Torres [2].
Conventions. \mathbf{P}^{s} stands for the projective s-space over the algebraic closure of the base field. For a point P in a curve, $H(P)$ denotes the Weierstrass semigroup at $P ; m_{1}(P)$ is the first positive element of $H(P)$.

2. Maximal curves and cubic surfaces

Let \mathcal{X} be an \mathbf{F}-maximal curve, $P_{0} \in \mathcal{X}(\mathbf{F})$ and $\mathcal{D}=\mathcal{D}_{\mathcal{X}}=\left|(q+1) P_{0}\right|$ the liner series introduced in Section 1; i.e., it is the set of effective divisors on \mathcal{X} which are linearly equivalent to the divisor $(q+1) P_{0}$. We always assume $g(\mathcal{X})>0$; taking into consideration (1.6) and Propositions 1.1, 1.2 above, we also assume:

$$
\begin{equation*}
r(\mathcal{X})=3 \quad \text { and } \quad g(\mathcal{X}) \leq g_{2}=\left\lfloor\left(q^{2}-q+4\right)^{2} / 6\right\rfloor . \tag{2.1}
\end{equation*}
$$

Remark 2.1. Let \mathcal{X} be an F-maximal curve. From (1.3) and Proposition 1.1, a sufficient condition to have $r(\mathcal{X})=3$ is that $(q-1)(q-2) / 6<g(\mathcal{X}) \leq g_{1}=\left\lfloor(q-1)^{2} / 4\right\rfloor$.

Let $\pi=\pi_{\mathcal{D}}: \mathcal{X} \rightarrow \mathbf{P}^{3}$ be the morphism associated to \mathcal{D}.
Definition 2.2. For $P \in \mathcal{X}$, a non-negative integer j is called an (\mathcal{D}, P)-order if there is $D \in \mathcal{D}$ such that the coefficient $v_{P}(D)$ of P in D equals j.

Now let $P \in \mathcal{X}(\mathbf{F})$. Relation (1.1) implies the following behaviour for elements of $H(P)$:

$$
m_{0}(P)=0<m_{1}(P)<m_{2}(P)<m_{3}(P)=q+1
$$

Thus for each $i=0,1,2,3$ there are rational functions on $\mathcal{X}, h_{i}: \mathcal{X} \rightarrow \mathbf{P}^{1}$ such that $\operatorname{div}\left(h_{i}\right)=D_{i}-m_{i}(P) P, P \notin \operatorname{Supp}\left(D_{i}\right)$ with $\operatorname{div}\left(h_{3}\right)=(q+1) P-(q+1) P_{0}, P \neq P_{0}$. For $P=P_{0}$ we put $h_{3}=1$. Then

$$
\operatorname{div}\left(h_{i} h_{3}\right)+(q+1) P_{0}=D_{i}+\left(q+1-m_{i}(P)\right) P \in \mathcal{D}
$$

and the (\mathcal{D}, P)-orders do satisfy (cf. [8, Prop. 1.5(iii)])

$$
\begin{equation*}
j_{i}(P)=q+1-m_{3-i}(P), \quad i=0,1,2,3 ; \tag{2.2}
\end{equation*}
$$

therefore at $P \in \mathcal{X}(\mathbf{F}), j_{3}(P)=q+1$ and the first positive element $m_{1}(P)$ of $H(P)$ and $j_{2}(P)$ are related to each other by the equation

$$
\begin{equation*}
m_{1}(P)=q+1-j_{2}(P) \tag{2.3}
\end{equation*}
$$

Remark 2.3. For the linear system \mathcal{D} above and any $P \in \mathcal{X}$, the (\mathcal{D}, P) orders can be ordered as a sequence $j_{0}(P)<j_{1}(P)<j_{2}(P)<j_{3}(P) \leq q+1$ with $j_{0}(P)=0$ as \mathcal{D} is base-point-free. Relation (1.1) shows that 1 and q are (\mathcal{D}, P)-orders for $P \notin \mathcal{X}(\mathbf{F})$. Thus for such points $j_{1}(P)=1$ and $j_{3}(P)=q($ as $g(\mathcal{X})>0)$.
Now $j_{3}(P)$ is the intersection multiplicity of the curve $\pi(\mathcal{X}) \subseteq \mathbf{P}^{3}$ and the osculating hyperplane at $\pi(P)$ (cf. [25]); in addition, (1.1) also shows that $\pi(\boldsymbol{\Phi}(P))$ belongs to this hyperplane and we have the following key observation due to Stöhr and Voloch [25, Cor. 2.6]: Let $\nu_{2}:=q$ and $P \in \mathcal{X}(\mathbf{F})$. Then $j_{3}(P)-j_{1}(P) \geq \nu_{2}$; in particular, for $P \in \mathcal{X}(\mathbf{F})$, $j_{1}(P)=1$, and so $m_{2}(P)=q$ by (2.2).

Lemma 2.4. Let \mathcal{X} be an \mathbf{F}-maximal curve satisfying (2.1) and let $P \in \mathcal{X}(\mathbf{F})$.
(1) If $q>3$, then $j_{2}(P) \notin\{(q+3) / 2,(2 q+3) / 3,(2 q+2) / 3, q-1, q\}$;
(2) $j_{2}(P) \notin\{(q+1) / 2,(q+2) / 2\}$.
(3) If q is even and $j_{2}(P)=q / 2$, then $g(\mathcal{X}) \leq q^{2} / 8$.

Proof. We have $m_{1}(P)=q+1-j_{2}(P)$; see (2.3).
(1) Since $2 m_{1}(P) \geq m_{2}(P)$ and $m_{2}=q$ by Remark 2.3, then $j_{2}(P) \leq(q+2) / 2$. If any of the values in (1) were allowed, then $q \leq 3$.
(2) Suppose $j_{2}=(q+1) / 2$ (resp. $\left.j_{2}=(q+2) / 2\right)$. Then $m_{1}(P)=(q+1) / 2$ (resp. $\left.m_{1}(P)=q / 2\right)$ and hence $g(\mathcal{X})=\left\lfloor(q-1)^{2} / 4\right\rfloor$ by [18, Thm. 1].
(3) If $j_{2}(P)=q / 2, m_{1}(P)=(q+2) / 2$ by Remark 2.3 ; then $g(\mathcal{X}) \leq g(H)$ where H is the semigroup generated by $(q+2) / 2, q, q+1$ and $g(H)=\#\left(\mathbb{N}_{0} \backslash S\right)$ is the genus of H. This number can be computed by the method of Rosales and García-Sánchez in [22]; i.e., $g(H)=q^{2} / 8$ and the result follows.

Theorem 2.5. Let \mathcal{X} be an \mathbf{F}-maximal curve satisfying (2.1). Suppose that $\pi(\mathcal{X})$ is contained in a cubic surface S.
(1) For $P \in \mathcal{X}(\mathbf{F}), j_{2}(P) \in\{2,3, q / 2,(q+1) / 3,(q+2) / 3,(q+3) / 3\}$;
(2) If q is even and $g(\mathcal{X})>q^{2} / 8$, then $j_{2}(P) \neq q / 2$.

Proof. Let $j_{0}=0<j_{1}=1<j_{2}<j_{3}=q+1$ be the (\mathcal{D}, P)-orders with $j_{2}=j_{2}(P)$ and $v=v_{P}$ the valuation at P. Then π can be defined by $\left(f_{0}: f_{1}: f_{2}: f_{3}\right)$ such that $v\left(f_{i}\right)=j_{i}$; in particular, $\pi(P)=(1: 0: 0: 0)$ and throughout we assume $f_{0}=1$. Let the cubic surface S be defined by

$$
\begin{aligned}
F\left(X_{0}, X_{1}, X_{2}, X_{3}\right) & =a_{000} X_{0}^{3}+a_{001} X_{0}^{2} X_{1}+a_{002} X_{0}^{2} X_{2}+a_{003} X_{0}^{2} X_{3}+a_{111} X_{1}^{3} \\
& +a_{110} X_{1}^{2} X_{0}+a_{112} X_{1}^{2} X_{2}+a_{113} X_{1}^{2} X_{3}+a_{222} X_{2}^{3}+a_{220} X_{2}^{2} X_{0} \\
& +a_{221} X_{2}^{2} X_{1}+a_{223} X_{2}^{2} X_{3}+a_{333} X_{3}^{3}+a_{330} X_{3}^{2} X_{0}+a_{331} X_{3}^{2} X_{1} \\
& +a_{332} X_{3}^{2} X_{2}+a_{012} X_{0} X_{1} X_{2}+a_{013} X_{0} X_{1} X_{3}+a_{023} X_{0} X_{2} X_{3} \\
& +a_{123} X_{1} X_{2} X_{3} .
\end{aligned}
$$

Then $F\left(1, f_{1}, f_{2}, f_{3}\right)=0$ and $a_{000}=0$. Now the valuation at P of the functions

$$
\begin{array}{r}
f_{1}, f_{2}, f_{3}, f_{1}^{3}, f_{1}^{2}, f_{1}^{2} f_{2}, f_{1}^{2} f_{3}, f_{2}^{3}, f_{2}^{2}, f_{2}^{2} f_{1}, f_{2}^{2} f_{3}, f_{3}^{3}, \\
f_{3}^{2}, f_{3}^{2} f_{1}, f_{3}^{2} f_{2}, f_{1} f_{2}, f_{1} f_{3}, f_{2} f_{3}, f_{1} f_{2} f_{3}
\end{array}
$$

are respectively

$$
\begin{gathered}
1, j_{2}, j_{3}, 3,2,2+j_{2}, 2+j_{3}, 3 j_{2}, 2 j_{2}, 1+2 j_{2}, 2 j_{2}+j_{3}, 3 j_{3} \\
2 j_{3}, 1+2 j_{3}, j_{2}+2 j_{3}, 1+j_{2}, 1+j_{3}, j_{2}+j_{3}, 1+j_{2}+j_{3} .
\end{gathered}
$$

Then the valuation property of v implies $a_{001}=0$. Let $j_{2}>3$ so that $a_{111}=a_{110}=0$ (recall that $q>7$). We have $j_{2}+2<j_{3}$, otherwise $j_{2} \in\{q, q-1\}$ which is not possible by Lemma 2.4. Thus
$j_{2}<j_{2}+1<j_{2}+2<j_{3}<j_{3}+1<j_{3}+2<j_{3}+j_{2}<j_{3}+j_{2}+1<2 j_{3}<2 j_{3}+1<2 j_{3}+j_{2}<3 j_{3}$.
Since $2 j_{2}<2 j_{2}+1<3 j_{2}<2 j_{2}+j_{3}$, the valuation property of v implies the following cases:
(1) Either $2 j_{2} \in\left\{j_{3}, j_{3}+1, j_{3}+2\right\}$, or
(2) $2 j_{2}+1=j_{3}$, or
(3) $3 j_{2} \in\left\{j_{3}, j_{3}+1, j_{3}+2,2 j_{3}, 2 j_{3}+1\right\}$.

By Lemma $2.42 j_{2} \neq j_{3}, j_{3}+1, j_{3}+2,3 j_{2} \neq 2 j_{3}, 3 j_{2} \neq 2 j_{3}+1$, and $2 j_{2}+1 \neq j_{3}$ whenever $g>q^{2} / 8$.
Therefore $j_{2} \in\{2,3,(q+1) / 3,(q+2) / 3,(q+1) / 3\}$ and the proof follows.
Now we can state the main result in this paper.
Corollary 2.6. Let \mathcal{X} be an \mathbf{F}-maximal curve as in Theorem 2.5. Then the multiplicity $m_{1}(P)$ of the Weierstrass semigroup $H(P)$ at $P \in \mathcal{X}(\mathbf{F})$ do satisfy

$$
m_{1}(P) \in\{(q+2) / 2,(2 q+2) / 3,(2 q+1) / 3,2 q / 3, q-2, q-1\}
$$

In addition, if q is even and $g(\mathcal{X})>q^{2} / 8$, then $m_{1}(P) \neq(q+2) / 2$.
Proof. It follows from (2.3) and the theorem above.
Remark 2.7. Notation as in Remark 2.3. For the linear series \mathcal{D}, a basic result is that for almost $P \in \mathcal{X}$, the sequence $j_{0}\left(P<j_{1}(P)<j_{2}(P)<j_{3}(P)\right.$ is constant (so called order sequence of \mathcal{D}) cf. [25, p. 5]). In Remark 2.3 we noticed that $j_{0}(P)=0, j_{1}(P)=1$, $j_{3}(P)=q$ for $P \notin \mathcal{X}(\mathbf{F})$ and thus the order sequence of \mathcal{D} is of type $0<1<\epsilon_{2}<q$.
By the proof of [2, Prop. 3.1], $\epsilon_{2}=2$ provided that

$$
g(\mathcal{X})> \begin{cases}\left(q^{2}+1\right)(q-4) / 2(4 q-1), & \text { whenever } q \not \equiv 0(\bmod 3) \\ g>\left(q^{2}+1\right)(q-3) / 2(3 q-1), & \text { otherwise }\end{cases}
$$

This forces $g(\mathcal{X}) \geq\left(q^{2}-2 q+3\right) / 6(*)$ (see [5, Remark 3.3], [2, Prop. 3.1]).
Now for $P \in \mathcal{X}(\mathbf{F})$ the Weierstrass semigroup $H(P)$ contains the semigroup generated by $m, q, q+1$, where $m=m_{1}(P)=q+1-j_{2}(P)($ cf. 2.3); hence $g(\mathcal{X}) \leq g(H)$ (the genus of H). Then by using heavy arithmetical computations from [10, Sect. 2] and by taking into consideration restriction $(*)$ above, Corollary 2.6 was already proved in [5, Cor. 3.5] whithout the hypothesis regarding the cubic surface.

Remark 2.8. Let \mathcal{X} be an \mathbf{F}-maximal curve such that (2.1) holds; in particular, we identify \mathcal{X} with a non-degenerate projective curve in \mathbf{P}^{3} and we can apply the aforementioned Castelnuovo and Halphen-Ballico results as they are true in positive characteristic [3]. We look forward a result of type: There exists a polynomial (of one indeterminate) $A(x) \in \mathbb{Q}[x]$ such that

$$
\begin{equation*}
g(\mathcal{X})>A(q+1) \quad \text { implies } \quad \pi(\mathcal{X}) \subseteq S \tag{2.4}
\end{equation*}
$$

where S is a surface of degree $d \leq 3$ (Then we shall assume $d=3$ by Propositions 1.1, 1.2.)

Remark 2.9. In the literature, for a non-degenerate projective space curve \mathcal{C} of degree $q+1$ over the complex numbers, there are available results of type (2.4) which in fact appear as particular cases of a vast theory that generalize the aforementioned Castelnuovo and Halphen results; see Eisenbud-Harris book [13, Thm. 3.22, p. 117].

Let q be large, says $q \geq 107$. If

$$
g(\mathcal{C})>B(q+1):=\left\{\begin{array}{rll}
\frac{q(q+2)}{8}, & \text { if } & q \equiv 0,2(\bmod 4), \\
\frac{q^{2}+2 q-3}{8}, & \text { if } & q \equiv 1 \quad(\bmod 4) \\
\frac{q^{2}+2 q+9}{8}, & \text { otherwise }, &
\end{array}\right.
$$

then there exists a surface S of degree 2 or 3 such that $\mathcal{C} \subseteq S$.
Question 2.10. Is Remark 2.9 true in positive characteristic?

3. Examples

In this section we illustrate Corollary 2.6. Notation as above; in particular, \mathcal{H} is the Hermitian curve over $\mathbf{F}=\mathbf{F}_{q^{2}}$ defined by $v^{q+1}=u^{q+1}+1$. Let $\pi: \mathcal{H} \rightarrow \mathbf{P}^{2}$ be a nontrivial morphism over \mathbf{F} and \mathcal{X} the non-singular model of the plane curve $\pi(\mathcal{H})$; then π can be lifted to a morphism $\mathcal{H} \rightarrow \mathcal{X}$, which we still denote by π. In this case, the curve \mathcal{X} is also \mathbf{F}-maximal (see e.g. [20]).
Example 3.1. (cf. [7, Sect. 5]) Let $q \equiv 2(\bmod 3)$ and $\pi: \mathcal{H} \rightarrow \mathbf{P}^{2}$ be the morphism given by $\pi=(x: y: 1):=\left(u^{3}: u v: 1\right)$. Then the plane curve $\pi(\mathcal{H})$ is defined by

$$
y^{q+1}=x^{(q+1) / 3}\left(x^{(q+1) / 3}+1\right),
$$

and by applying the Riemann-Hurwitz formula to the function $x: \mathcal{X} \rightarrow \mathbf{P}^{1}$, where \mathcal{X} is the non-singular model of $\pi(\mathcal{H})$, we find that \mathcal{X} is \mathbf{F}-maximal of genus $g(\mathcal{X})=g_{2}=$ $\left(q^{2}-q+4\right) / 6$ (cf. [11], [4, Prop. 2.1]). We notice that $r(\mathcal{X})=3$ by Remark 2.1 above.
Next we shall compute the Weierstrass semigroup $H(P)$ at certain points of \mathcal{X}; we start by computing some principal divisors on \mathcal{X} via tools from [24].
(a) There are $(q+1) / 3$ points in $x^{-1}(\infty)$, say $P_{i}, i=1, \ldots,(q+1) / 3$.

Set $D_{\infty}:=P_{1}+\ldots+P_{(q+1) / 3}$.
(b) There are $(q+1) / 3$ points in $x^{-1}(0)$, say $Q_{i}, i=1, \ldots,(q+1) / 3$.

Set $D_{0}:=Q_{1}+\ldots+Q_{(q+1) / 3}$. Then $\operatorname{div}(x)=3 D_{0}-3 D_{\infty}$.
(c) Let $a \in \mathbf{F}$ such that $a^{(q+1) / 3}=-1(*)$. There is just point R_{a} over $x^{-1}(a)$ and $\operatorname{div}(x-a)=(q+1) R_{a}-3 D_{\infty}$. Set $D:=\sum_{i / i^{(q+1) / 3=-1}} R_{i}$.
Then $\operatorname{div}\left(x^{(q+1) / 3}+1\right)=(q+1) D-(q+1) D_{\infty}$.
From (a), (b), (c), $\operatorname{div}(y)=D_{0}+D-2 D_{\infty}$, and for $a \in \mathbf{F}$ as in $(*)$ above

$$
\operatorname{div}\left((x-a)^{-1}\right)=3 D_{\infty}-(q+1) R_{a}, \quad \operatorname{div}\left(y(x-a)^{-1}\right)=D_{0}+D^{\prime}+D_{\infty}-q R_{a} \quad \text { and }
$$

$$
\operatorname{div}\left(y^{3} x^{-1}(x-a)^{-1}\right)=3 D^{\prime}-(q-2) R_{a}
$$

where $D^{\prime}=D-R_{a}$. It follows that $H\left(R_{a}\right) \supseteq H:=\langle q-2, q, q+1\rangle$ so that $g(\mathcal{X}) \leq g(H)$. We have that the sequence $q-2, q+1, q$ is telescopic and so $g(H)=\left(q^{2}-q+4\right) / 6$ (see e.g. [15, Prop. 5.35]). Therefore

Claim. $H\left(R_{a}\right)=H$ and $m_{1}\left(R_{a}\right)=q-2$ (this also shows that $r(\mathcal{X})=3$).
Moreover by Remark 2.7 the order sequence of \mathcal{X} is $0<1<2<q$ and thus there is also a point $P \in \mathcal{X}(\mathbf{F})$ with $m_{1}(P)=q-1$ (see [5, Lemma 3.7]).

Remark 3.2. We can construct explicit and outstanding AG one-point codes based on the curve in Example 3.1 by taking into consideration the telescopic property of $H\left(R_{a}\right)$; cf. [15, Sect. 5], [26, Sect. 5].
Example 3.3. Let $q \equiv 2(\bmod 3)$. Here we point out properties of an arbitrary \mathbf{F} maximal curve \mathcal{X} of genus $g(\mathcal{X})=g_{2}=\left(q^{2}-q+4\right) / 6$. We have $r(\mathcal{X})=3$ by Remark 2.1, and that $0<1<2<q$ is the order sequence of $\mathcal{D}=\mathcal{D}_{\mathcal{X}}$ by Remark 2.7. Then by [5, Lemma 3.7] there is $\bar{P} \in \mathcal{X}(\mathbf{F})$ with $m_{1}(\bar{P})=q-1$, or $j_{2}(\bar{P})=2$ by (2.3).
Claim. There is $P \in \mathcal{X}(\mathbf{F})$ such that $j_{2}(P)>2$.
Indeed, otherwise [18, Lemma 7] would imply $g=\left(q^{2}-2 q+3\right) / 6$, a contradiction.
Let $\pi: \mathcal{X} \rightarrow \mathbf{P}^{3}$ be the morphism associated to \mathcal{D}. We are led to the following questions.
(A) Is $\pi(\mathcal{X})$ contained in a cubic surface? (This would be true if the answer to Question 2.10 is affirmative)
(B) Let \mathcal{X} be an \mathbf{F}-maximal curve. Then $g(\mathcal{X})=g_{2}$ if and only if $\pi(\mathcal{X})$ is contained in a cubic surface and there is $\bar{P} \in \mathcal{X}(\mathbf{F})$ with $j_{2}(\bar{P})>2$?

Question (B) above is related to the following result which is a consequence of the proof of [18, Thm. 1] and [Lemma 7]KT.

Remark 3.4. With g_{1} as in (1.4), for an \mathbf{F}-maximal curve \mathcal{X} we have that $g(\mathcal{X})=g_{1}$ if and only if $\pi(\mathcal{X})$ is contained in a quadric and there is $\bar{P} \in \mathcal{X}(\mathbf{F})$ with $j_{2}(\bar{P})>2$.

Example 3.5. Let $q \equiv 2(\bmod 3)$. We investigate \mathbf{F}-maximal curves of genus $g(\mathcal{X})=$ $g_{3}=g_{2}-1=\left(q^{2}-q-2\right) / 6$ which were constructed in [5]. To start with, $r(\mathcal{X})=3$ by Remark 2.1 and the order seqeunce of \mathcal{D} is $0<1<2<q$ by Remark 2.7. In particular, there is $P \in \mathcal{X}(\mathbf{F})$ such that $m_{1}(P)=q-1$ by [5, Lemma 3.7].

We further assume the following properties:
(a) $\pi(\mathcal{X})$ is contained in a cubic surface;
(b) $\pi: \mathcal{H} \rightarrow \mathcal{X}$ is Galois of degree three.
(The aforementioned curves in [5] satisfy these properties)
Claim. There is $\bar{P} \in \mathcal{X}(\mathbf{F})$ with $m_{1}(\bar{P})=(2 q+2) / 3$.
Proof of the Claim. By the Riemann-Hurwitz relation there is $\bar{P} \in \mathcal{X}(\mathbf{F})$ which is totally ramified for π. Let $Q=\pi^{-1}(\bar{P}) \in \mathcal{H}$. The first six positive elements of the Weierstrass semigroup at Q are $q, q+1,2 q, 2 q+1,2 q+2,3 q$. Now let $m=m_{1}(\bar{P})<q<q+1$ be the first three positive elements of $H(\bar{P})$. Then $3 m \in\{q, q+1,2 q, 2 q+1,2 q+2\}$ and so
$m \in\{(q+1) / 3,(2 q+2) / 3$. We eliminate the case $m=(q+1) / 3$ by Corollary 2.6 and the Claim follows.

Example 3.6. Let $q \not \equiv 2(\bmod 3)$ and \mathcal{X} be an \mathbf{F}-maximal curve of genus $g(\mathcal{X})=g_{2}=$ $\left(q^{2}-q\right) / 6$; hence $r(\mathcal{X})=3$ by Remark 2.1 and the order sequence of \mathcal{D} is $0<1<2<q$ by Remark 2.7. by Remark 2.7. In particular, there is $P \in \mathcal{X}(\mathbf{F})$ such that $m_{1}(P)=q-1$ by [5, Lemma 3.7]. We notice that examples of such curves do exist: see e.g. [11], [4, Prop. 2.1].

Let us assume properties (a) and (b) in Example 3.5 (indeed, the aforementioned examples satisfy these hypotheses).
Claim. If $q \equiv 1(\bmod 3)($ resp. $q \equiv 0(\bmod 3))$, then there exists $\bar{P} \in \mathcal{X}(\mathbf{F})$ with $m_{1}(\bar{P})=(2 q+1) / 3\left(\right.$ resp. $\left.m_{1}(\bar{P})=2 q / 3\right)$.
Arguing as in Example 3.5 there is $\bar{P} \in \mathcal{X}(\mathbf{F})$ such that $3 m \in\{q, q+1,2 q, 2 q+1,2 q+2\}$ with $m=m_{1}(\bar{P})$.

If $q \equiv 1(\bmod 3), m=(2 q+1) / 3$.
If $q \equiv 0(\bmod 3)$, either $m=q / 3$ or $m=2 q / 3$. The former case is eliminated by Corollary 2.6.

Example 3.7. Here we present an \mathbf{F}-maximal curve \mathcal{X} with $r(\mathcal{X})=3$ such that $\pi(\mathcal{X})$ cannot be contained in a cubic surface, where π is the morphism associated to \mathcal{D}. Indeed, we consider the so-called GK-curve [12] whose Weierstrass semigroups at rational points were computed in [7]. This curve is defined over $\mathbf{F}=\mathbb{F}_{q^{2}}$ with $q=\ell^{3}$. For $\ell>2$ this is the first example of an \mathbf{F}-maximal curve that cannot be dominated by \mathcal{H} (loc. cit.)

On this curve there is $\bar{P} \in \mathcal{X}(\mathbf{F})$ such that $m_{1}(\bar{P})=\ell^{3}-\ell^{2}+\ell[12$, Sect. 4], and therefore, according to Corollary 2.6, $\pi(\mathcal{X})$ cannot be contained in a cubic. We notice that the genus of \mathcal{X} is $g(\mathcal{X})=\frac{1}{2}\left(\ell^{5}-2 \ell^{3}+\ell^{2}\right) / 2$ and so it does not satisfies Remark 2.9. Further examples can be found in [26].

We end this paper with the following:
Question 3.8. Let \mathcal{X} be an \mathbf{F}-maximal curve with $r(\mathcal{X})=3$. Suppose that $\pi(\mathcal{X}) \subseteq S$, where S is a surface of degree $d \geq 2$. Let $P \in \mathcal{X}(\mathbf{F})$ and suppose $g(\mathcal{X})$ large enough. Then $m_{1}(P)=(q+1)-\frac{q+i}{d}$ or $m_{1}(P)=q-j$ for some $i=1, \ldots, d, j=2, \ldots, d$. Are all these cases possible?

Acknowledgment. This paper is based on the Ph.D. dissertation [6] done at IMECCUNICAMP. The second author was partially supported by CNPq (Grant 310623/2017-0).

References

[1] M. Abdón and F. Torres, Maximal curves in characteristic two, Manuscripta Math. 99 (1999), 39-53.
[2] N. Arakelian, S. Tafazolian and F. Torres, On the spectrum for the genera of maximal curves over small fields, Adv. Math. Commum. 12 (2018), 143-149.
[3] E. Ballico, Space curves not contained in low degree surfaces in positive characteristic, Noti di Matematica 20 (2000/2001), 27-33.
[4] A. Cossidente, G. Korchmáros and F. Torres, Curves of large genus covered by the hermitian curve, Comm. in Algebra, 28 (2000), 4707-4728.
[5] A. Cossidente, G. Korchmáros and F. Torres, On curves covered by the hermitian curve, J. Algebra, 216 (1999), 56-76.
[6] P.C Oliveira, "Sobre Curvas Maximais em Superfícies Cúbicas", Tese doutorado, IMECCUNICAMP, 2015.
[7] S. Fanali and M. Giulietti, On some open problems on maximal curves, Des. Codes Cryptogr., 56 (2010), 131-139.
[8] R. Fuhrmann, A. Garcia and F. Torres, On maximal curves, J. of Number Theory, 67 (1997), 29-51.
[9] R. Fuhrmann and F. Torres, The Genus of Curves over Finite Fields with Many Rational Points, Manuscripta Math. 89 (1996), 103-106.
[10] R. Fuhrmann, "Algebraische Funktionenkörper über endlichen Körpern mit maximaler Anzahl rationaler Stellen, Ph.D. thesis, Essen, 1995.
[11] A. Garcia, H. Stichtenoth and C.P. Xing, On subfields of the Hermitian function field, Compositio Math. 120 (2000), 137-170.
[12] M. Giulietti and G. Korchmáros, A new family of maximal curves over a finite field, Math. Ann. 343 (2009), 229-245.
[13] J. Harris, "Curves in Projective Space" (With the colaboration of D. Eisenbud), Les Presses de L'Université de Montréal, 1982, Montréal, Quebec, 1982.
[14] J.W.P. Hirschfeld, G. Korchmáros and F. Torres, "Algebraic Curves over Finite Fields", Princenton University Press, USA, 2008.
[15] T. Høholdt, J.H. van Lint and R. Pellikaan, Algebraic geometry codes in V.S. Pless, W.C. Huffam, R.A. Brualdi (Eds.), Handbook of Codng Theory , vol 1, Elsewier, Amsterdam, 1998, 871-961.
[16] N.E. Hurt, "Many Rational Points, Coding Theory and Algebraic Geometry", Kluwer Academic Publishers, The Netherlands, 2003.
[17] Y. Ihara, Some remarks on the number of rational points of algebraic curves over finite fields, J. Fac. Sci. Tokyo, Sec. Ia, 28 (1981), 721-724.
[18] G. Korchmáros and F. Torres, On the genus of a maximal curve, Math. Ann. 323 (2002), 589-608.
[19] G. Korchmáros and F. Torres, Embedding of a maximal curve in a Hermitian variety, Compositio Mathematica 128 (2001), 95-113.
[20] G. Lachaud, Sommes d'Eisenstein et nombre de points de certaines courbes algébriques sur les corps finis, C.R. Acad. Sci. Paris 305, Série I (1987), 729-732.
[21] J. Rathmann, The uniform position principle for curves in characteristic p, Math. Ann. 276 (1987), 565-579.
[22] J.C. Rosales and P.A. García-Sanchez, Numerical semigroups with embedding dimension three, Arch. Math. 83 (2004), 488-496.
[23] H.G. Rück and H. Stichtenoth, A characterization of Hermitian function fields over finite fields, J. Reine Angew. Math. 457 (1994), 185-188.
[24] H. Stichtenoth, "Algebraic Function Fields and Codes", Springer-Verlag, New York, Second Edition, 2009.
[25] K.O. Stöhr and J.F. Voloch, Weierstrass points and curves over finite fields, Proc. London Math. Soc. 52 (1986), 1-19.
[26] S. Tafazolian, A. Teherán-Herrera and F. Torres, Further examples of maximal curves which cannot be covered by the Hermitian curve, J. Pure Appl. Algebra 220 (2016), 1122-1132.
[27] C.P. Xing and H. Stichtenoth, The genus of maximal functions fields, Manuscripta Math. 86 (1995), 217-224.

DEMPA/Universidade Regional do Cariri, Av. Leão Sampaio 107, 63040-000, Juazeiro do Norte, CE, Brazil

Email address: paulocesar.oliveira@urca.br
imecc-unicamp, R. Sérgio Buarque de Holanda 651, Cidade Universitária "Zeferino VAZ", 13083-859, Campinas, SP, Brazil

Email address: ftorres@ime.unicamp.br

