ON SPACE MAXIMAL CURVES

PAULO CÉSAR OLIVEIRA AND FERNANDO TORRES

ABSTRACT. Any maximal curve \mathcal{X} is equipped with an intrinsic embedding $\pi : \mathcal{X} \to \mathbf{P}^r$ which reveal outstanding properties of the curve. By dealing with the contact divisors of the curve $\pi(\mathcal{X})$ and tangent lines, in this paper we investigate the first positive element that the Weierstrass semigroup at rational points can have whenever r = 3 and $\pi(\mathcal{X})$ is contained in a cubic surface.

1. INTRODUCTION

Throughout this paper, \mathbf{F} stands for the finite field \mathbb{F}_{q^2} of order q^2 . A projective, geometrically irreducible, non-singular algebraic curve \mathcal{X} defined over \mathbf{F} of genus $g = g(\mathcal{X})$ is said to be \mathbf{F} -maximal if the number of its \mathbf{F} -rational points attains the Hasse-Weil upper bound; that is,

$$#\mathcal{X}(\mathbf{F}) = q^2 + 1 + 2q \cdot g$$
.

Apart from being interesting mathematical objects by their own, these curves have been extensively studied as they are of great interest in Coding Theory, Cryptography and related areas; see for example the books [24], [14], [16].

Let \mathcal{X} be an **F**-maximal curve of genus g. Then the numerator of the Zeta function of \mathcal{X} is the polynomial $L(t) = (1+qt)^{2g}$ and hence $h(t) = t^{2g}L(t^{-1}) = (t+q)^{2g}$ is the characteristic polynomial of certain endomorphism $\tilde{\Phi}$ on the Jacobian \mathcal{J} of \mathcal{X} . This map is uniquely determined by the **F**-Frobenius morphism $\Phi : \mathcal{X} \to \mathcal{X}$ in such a way that $\iota \circ \Phi = \tilde{\Phi} \circ \iota$, where $\iota : \mathcal{X} \to \mathcal{J}$ is the natural embedding given by $P \mapsto [P - P_0]$ with $P_0 \in \mathcal{X}(\mathbf{F})$. It turns out that $\tilde{\Phi}$ is semisimple and so the following linear equivalence (sometimes called the *fundamental equivalence*) on \mathcal{X} arises (see [14, Thm. 10.1, Thm. 9.79]):

(1.1)
$$(q+1)P_0 \sim qP + \Phi(P), \quad P \in \mathcal{X}.$$

This suggests the study of the (complete) linear series $\mathcal{D}_{\mathcal{X}} := |(q+1)P_0|$ (sometimes called the *Frobenius linear series* of \mathcal{X}) whose definition clearly does not depend on the choice of the **F**-rational point P_0 . As a matter of fact, several arithmetical and geometrical properties of maximal curves are revealed through this linear series (loc. cit.). In particular, $\mathcal{D}_{\mathcal{X}}$

Key words: finite field, Stöhr-Voloch theory, Hasse-Weil bound, maximal curve. August 7, 2018.

is very ample [8, Prop. 1.9], [18, Thm. 2.5] which means that the morphism associated to $\mathcal{D}_{\mathcal{X}}$

(1.2)
$$\pi_{\mathcal{D}_{\mathcal{X}}}: \mathcal{X} \to \mathbf{P}^r$$

is an embedding, where $r = r(\mathcal{X}) \geq 2$ is the projective dimension of $\mathcal{D}_{\mathcal{X}}$ (sometimes called the *Frobenius dimension* of \mathcal{X}), and \mathbf{P}^r is the projective *r*-space over the algebraic closure of **F**.

It is well-known that the Hermitian curve \mathcal{H} defined by $v^{q+1} = u^{q+1} + 1$ is **F**-maximal of genus $g(\mathcal{H}) = g_0 := q(q-1)/2$; see [24, Ex. 6.3.6]. Indeed, among **F**-maximal curves, the curve \mathcal{H} admits the following characterization.

Proposition 1.1. ([23], [27], [9]) If \mathcal{X} is **F**-maximal, the following sentences are equivalent:

- (1) \mathcal{X} is **F**-isomorphic to the Hermitian curve \mathcal{H} ;
- (2) $g(\mathcal{X}) = g_0;$
- (3) $g(\mathcal{X}) > (q-1)^2/4;$
- (4) $r(\mathcal{X}) = 2;$
- (5) There exists $P \in \mathcal{X}(\mathbf{F})$ such that the first positive element of H(P), the Weierstrass semigroup at P, equals q.

From (1.2) any **F**-maximal curve \mathcal{X} is **F**-isomorphic to a non-degenerate curve of degree q + 1 in \mathbf{P}^r , $r = r(\mathcal{X})$. Thus the classical Castelnuovo's genus bound can be used to explain partially Proposition 1.1 as it gives the first general constrain between $g(\mathcal{X})$ and the pair (q, r) (see [14, Cor. 10.25]):

(1.3)
$$g(\mathcal{X}) \leq F(q,r) := \begin{cases} [(q-(r-1)/2)^2 - 1/4]/2(r-1), & \text{if } r \text{ is even}, \\ [(q-(r-1)/2)^2]/2(r-1), & \text{if } r \text{ is odd}. \end{cases}$$

Notice that the function F(q, r) satisfies $F(q, r) \leq F(q, s)$ for $r \geq s$; in particular, $g(\mathcal{X}) \leq F(q, 3) = (q-1)^2/4$ provided that $r(\mathcal{X}) \geq 3$. Then, with $g_1 := \lfloor (q-1)^2/4 \rfloor$, by Proposition 1.1 the spectrum for the genera of **F**-maximal curves, namely the set

 $\mathbf{M}(q^2) := \{g \in \mathbb{N}_0 : \text{there is an } \mathbf{F}\text{-maximal curve of genus } g\},\$

satisfies

(1.4)
$$\mathbf{M}(q^2) \subseteq [0, g_1] \cup \{g_0\}.$$

We recall that g_0 is the well-known Ihara's bound on the genus of **F**-maximal curves [17]. One of the main problems in Curve Theory Over Finite Fields is the computation of $\mathbf{M}(q^2)$; in general one cannot expect to give a full answer to this matter but improvements on (1.4) can be expected as far as improvements on Castelnuovo's genus bound of curves in \mathbf{P}^r are known.

 $\mathbf{2}$

In view of Proposition 1.1 it is natural to investigate space \mathbf{F} -maximal curves with respect to $\mathcal{D}_{\mathcal{X}}$; that is, those with $r(\mathcal{X}) = 3$. Here a natural way of bounding $g(\mathcal{X})$, which generalizes Castelnuovo's method, is by looking at the degree $d \geq 2$ of surfaces $S \subseteq \mathbf{P}^3$ such that $\pi(\mathcal{X}) \subseteq S$ where $\pi = \pi_{\mathcal{X}}$ is as in (1.2); cf. [13], [21]. We have the following Halphen-Ballico result (see [3]) which deals with the case of quadrics. Let g_1 be as in (1.4) and set $g_2 := \lfloor (q^2 - q + 4)/6 \rfloor$; then

(1.5) $\pi(\mathcal{X})$ is contained in a quadric in \mathbf{P}^3 provided that $g_2 < g(\mathcal{X}) \leq g_1$.

Now the **F**-maximal property of \mathcal{X} implies certain constrains on the first positive element $m_1(P)$ of the Weierstrass semigroup H(P) at some $P \in \mathcal{X}(\mathbf{F})$, and (1.4) admits the folloing improvement [18]:

(1.6)
$$\mathbf{M}(q^2) \subseteq [0, g_2] \cup \{g_1\} \cup \{g_0\}$$

An analogue of Proposition 1.1 emerges, namely

Proposition 1.2. ([8], [1], [19], [18]) Let \mathcal{X} be an **F**-maximal curve. The following sentences are equivalent:

- (1) \mathcal{X} is isomorphic to a quotient of \mathcal{H} by certain involution;
- (2) $g(\mathcal{X}) = g_1;$
- (3) $\pi(\mathcal{X})$ is contained in a quadric;
- (4) There exists $P \in \mathcal{X}(\mathbf{F})$ such that the first positive element of H(P), the Weierstrass semigroup at P, equals $\lfloor (q+1)/2 \rfloor$.

The starting points of our result are in fact Propositions 1.1, 1.2 above. Under condition (2.1) below, the main result in this paper is Corollary 2.6, where a hypothesis on a cubic surface is considered; in this way a weak version of the aforementioned propositions is obtained. We always assume q > 7; cf. [2].

We do point out that our approach follows closely the works by Cossidente-Korchmáros-Torres [5, Sect. 3], [4, Sect. 5], Korchmáros-Torres [18], Fanali-Giulietti [7] and Arakelian-Tafazolian-Torres [2].

Conventions. \mathbf{P}^s stands for the projective *s*-space over the algebraic closure of the base field. For a point *P* in a curve, H(P) denotes the Weierstrass semigroup at *P*; $m_1(P)$ is the first positive element of H(P).

2. Maximal curves and cubic surfaces

Let \mathcal{X} be an **F**-maximal curve, $P_0 \in \mathcal{X}(\mathbf{F})$ and $\mathcal{D} = \mathcal{D}_{\mathcal{X}} = |(q+1)P_0|$ the liner series introduced in Section 1; i.e., it is the set of effective divisors on \mathcal{X} which are linearly equivalent to the divisor $(q+1)P_0$. We always assume $g(\mathcal{X}) > 0$; taking into consideration

(1.6) and Propositions 1.1, 1.2 above, we also assume:

(2.1)
$$r(\mathcal{X}) = 3$$
 and $g(\mathcal{X}) \le g_2 = \lfloor (q^2 - q + 4)^2/6 \rfloor$.

Remark 2.1. Let \mathcal{X} be an **F**-maximal curve. From (1.3) and Proposition 1.1, a sufficient condition to have $r(\mathcal{X}) = 3$ is that $(q-1)(q-2)/6 < g(\mathcal{X}) \leq g_1 = \lfloor (q-1)^2/4 \rfloor$.

Let $\pi = \pi_{\mathcal{D}} : \mathcal{X} \to \mathbf{P}^3$ be the morphism associated to \mathcal{D} .

Definition 2.2. For $P \in \mathcal{X}$, a non-negative integer j is called an (\mathcal{D}, P) -order if there is $D \in \mathcal{D}$ such that the coefficient $v_P(D)$ of P in D equals j.

Now let $P \in \mathcal{X}(\mathbf{F})$. Relation (1.1) implies the following behaviour for elements of H(P):

$$m_0(P) = 0 < m_1(P) < m_2(P) < m_3(P) = q + 1$$

Thus for each i = 0, 1, 2, 3 there are rational functions on \mathcal{X} , $h_i : \mathcal{X} \to \mathbf{P}^1$ such that div $(h_i) = D_i - m_i(P)P$, $P \notin \text{Supp}(D_i)$ with div $(h_3) = (q+1)P - (q+1)P_0$, $P \neq P_0$. For $P = P_0$ we put $h_3 = 1$. Then

$$\operatorname{div}(h_i h_3) + (q+1)P_0 = D_i + (q+1-m_i(P))P \in \mathcal{D}$$

and the (\mathcal{D}, P) -orders do satisfy (cf. [8, Prop. 1.5(iii)])

(2.2)
$$j_i(P) = q + 1 - m_{3-i}(P), \quad i = 0, 1, 2, 3;$$

therefore at $P \in \mathcal{X}(\mathbf{F})$, $j_3(P) = q + 1$ and the first positive element $m_1(P)$ of H(P) and $j_2(P)$ are related to each other by the equation

(2.3)
$$m_1(P) = q + 1 - j_2(P)$$
.

Remark 2.3. For the linear system \mathcal{D} above and any $P \in \mathcal{X}$, the (\mathcal{D}, P) orders can be ordered as a sequence $j_0(P) < j_1(P) < j_2(P) < j_3(P) \le q+1$ with $j_0(P) = 0$ as \mathcal{D} is base-point-free. Relation (1.1) shows that 1 and q are (\mathcal{D}, P) -orders for $P \notin \mathcal{X}(\mathbf{F})$. Thus for such points $j_1(P) = 1$ and $j_3(P) = q$ (as $g(\mathcal{X}) > 0$).

Now $j_3(P)$ is the intersection multiplicity of the curve $\pi(\mathcal{X}) \subseteq \mathbf{P}^3$ and the osculating hyperplane at $\pi(P)$ (cf. [25]); in addition, (1.1) also shows that $\pi(\Phi(P))$ belongs to this hyperplane and we have the following key observation due to Stöhr and Voloch [25, Cor. 2.6]: Let $\nu_2 := q$ and $P \in \mathcal{X}(\mathbf{F})$. Then $j_3(P) - j_1(P) \ge \nu_2$; in particular, for $P \in \mathcal{X}(\mathbf{F})$, $j_1(P) = 1$, and so $m_2(P) = q$ by (2.2).

Lemma 2.4. Let \mathcal{X} be an **F**-maximal curve satisfying (2.1) and let $P \in \mathcal{X}(\mathbf{F})$.

- (1) If q > 3, then $j_2(P) \notin \{(q+3)/2, (2q+3)/3, (2q+2)/3, q-1, q\};$
- (2) $j_2(P) \notin \{(q+1)/2, (q+2)/2\}.$
- (3) If q is even and $j_2(P) = q/2$, then $g(\mathcal{X}) \leq q^2/8$.

Proof. We have $m_1(P) = q + 1 - j_2(P)$; see (2.3).

(1) Since $2m_1(P) \ge m_2(P)$ and $m_2 = q$ by Remark 2.3, then $j_2(P) \le (q+2)/2$. If any of the values in (1) were allowed, then $q \le 3$.

(2) Suppose $j_2 = (q+1)/2$ (resp. $j_2 = (q+2)/2$). Then $m_1(P) = (q+1)/2$ (resp. $m_1(P) = q/2$) and hence $g(\mathcal{X}) = \lfloor (q-1)^2/4 \rfloor$ by [18, Thm. 1].

(3) If $j_2(P) = q/2$, $m_1(P) = (q+2)/2$ by Remark 2.3; then $g(\mathcal{X}) \leq g(H)$ where H is the semigroup generated by (q+2)/2, q, q+1 and $g(H) = \#(\mathbb{N}_0 \setminus S)$ is the genus of H. This number can be computed by the method of Rosales and García-Sánchez in [22]; i.e., $g(H) = q^2/8$ and the result follows.

Theorem 2.5. Let \mathcal{X} be an **F**-maximal curve satisfying (2.1). Suppose that $\pi(\mathcal{X})$ is contained in a cubic surface S.

(1) For $P \in \mathcal{X}(\mathbf{F})$, $j_2(P) \in \{2, 3, q/2, (q+1)/3, (q+2)/3, (q+3)/3\}$; (2) If q is even and $g(\mathcal{X}) > q^2/8$, then $j_2(P) \neq q/2$.

Proof. Let $j_0 = 0 < j_1 = 1 < j_2 < j_3 = q + 1$ be the (\mathcal{D}, P) -orders with $j_2 = j_2(P)$ and $v = v_P$ the valuation at P. Then π can be defined by $(f_0 : f_1 : f_2 : f_3)$ such that $v(f_i) = j_i$; in particular, $\pi(P) = (1 : 0 : 0 : 0)$ and throughout we assume $f_0 = 1$. Let the cubic surface S be defined by

$$\begin{aligned} F(X_0, X_1, X_2, X_3) &= a_{000} X_0^3 + a_{001} X_0^2 X_1 + a_{002} X_0^2 X_2 + a_{003} X_0^2 X_3 + a_{111} X_1^3 \\ &+ a_{110} X_1^2 X_0 + a_{112} X_1^2 X_2 + a_{113} X_1^2 X_3 + a_{222} X_2^3 + a_{220} X_2^2 X_0 \\ &+ a_{221} X_2^2 X_1 + a_{223} X_2^2 X_3 + a_{333} X_3^3 + a_{330} X_3^2 X_0 + a_{331} X_3^2 X_1 \\ &+ a_{332} X_3^2 X_2 + a_{012} X_0 X_1 X_2 + a_{013} X_0 X_1 X_3 + a_{023} X_0 X_2 X_3 \\ &+ a_{123} X_1 X_2 X_3 \,. \end{aligned}$$

Then $F(1, f_1, f_2, f_3) = 0$ and $a_{000} = 0$. Now the valuation at P of the functions

$$\begin{aligned} f_1, f_2, f_3, f_1^3, f_1^2, f_1^2 f_2, f_1^2 f_3, f_2^3, f_2^2, f_2^2 f_1, f_2^2 f_3, f_3^3, \\ f_3^2, f_3^2 f_1, f_3^2 f_2, f_1 f_2, f_1 f_3, f_2 f_3, f_1 f_2 f_3 \end{aligned}$$

are respectively

$$1, j_2, j_3, 3, 2, 2 + j_2, 2 + j_3, 3j_2, 2j_2, 1 + 2j_2, 2j_2 + j_3, 3j_3, 2j_3, 1 + 2j_3, j_2 + 2j_3, 1 + j_2, 1 + j_3, j_2 + j_3, 1 + j_2 + j_3.$$

Then the valuation property of v implies $a_{001} = 0$. Let $j_2 > 3$ so that $a_{111} = a_{110} = 0$ (recall that q > 7). We have $j_2 + 2 < j_3$, otherwise $j_2 \in \{q, q - 1\}$ which is not possible by Lemma 2.4. Thus

$$j_2 < j_2 + 1 < j_2 + 2 < j_3 < j_3 + 1 < j_3 + 2 < j_3 + j_2 < j_3 + j_2 + 1 < 2j_3 < 2j_3 + 1 < 2j_3 + j_2 < 3j_3 + j_2 < 2j_3 + j_2 < j_3 < j_3 + j_2 < j_3 > j_3 >$$

Since $2j_2 < 2j_2 + 1 < 3j_2 < 2j_2 + j_3$, the valuation property of v implies the following cases:

- (1) Either $2j_2 \in \{j_3, j_3 + 1, j_3 + 2\}$, or
- (2) $2j_2 + 1 = j_3$, or
- (3) $3j_2 \in \{j_3, j_3 + 1, j_3 + 2, 2j_3, 2j_3 + 1\}.$

By Lemma 2.4 $2j_2 \neq j_3, j_3 + 1, j_3 + 2, 3j_2 \neq 2j_3, 3j_2 \neq 2j_3 + 1$, and $2j_2 + 1 \neq j_3$ whenever $g > q^2/8$.

Therefore $j_2 \in \{2, 3, (q+1)/3, (q+2)/3, (q+1)/3\}$ and the proof follows.

Now we can state the main result in this paper.

Corollary 2.6. Let \mathcal{X} be an \mathbf{F} -maximal curve as in Theorem 2.5. Then the multiplicity $m_1(P)$ of the Weierstrass semigroup H(P) at $P \in \mathcal{X}(\mathbf{F})$ do satisfy

$$m_1(P) \in \{(q+2)/2, (2q+2)/3, (2q+1)/3, 2q/3, q-2, q-1\}.$$

In addition, if q is even and $g(\mathcal{X}) > q^2/8$, then $m_1(P) \neq (q+2)/2$.

Proof. It follows from (2.3) and the theorem above.

Remark 2.7. Notation as in Remark 2.3. For the linear series \mathcal{D} , a basic result is that for almost $P \in \mathcal{X}$, the sequence $j_0(P < j_1(P) < j_2(P) < j_3(P)$ is constant (so called *order* sequence of \mathcal{D}) cf. [25, p. 5]). In Remark 2.3 we noticed that $j_0(P) = 0$, $j_1(P) = 1$, $j_3(P) = q$ for $P \notin \mathcal{X}(\mathbf{F})$ and thus the order sequence of \mathcal{D} is of type $0 < 1 < \epsilon_2 < q$.

By the proof of [2, Prop. 3.1], $\epsilon_2 = 2$ provided that

$$g(\mathcal{X}) > \begin{cases} (q^2+1)(q-4)/2(4q-1), & \text{whenever } q \not\equiv 0 \pmod{3}, \\ g > (q^2+1)(q-3)/2(3q-1), & \text{otherwise}. \end{cases}$$

This forces $g(\mathcal{X}) \ge (q^2 - 2q + 3)/6$ (*) (see [5, Remark 3.3], [2, Prop. 3.1]).

Now for $P \in \mathcal{X}(\mathbf{F})$ the Weierstrass semigroup H(P) contains the semigroup generated by m, q, q+1, where $m = m_1(P) = q + 1 - j_2(P)$ (cf. 2.3); hence $g(\mathcal{X}) \leq g(H)$ (the genus of H). Then by using heavy arithmetical computations from [10, Sect. 2] and by taking into consideration restriction (*) above, Corollary 2.6 was already proved in [5, Cor. 3.5] whithout the hypothesis regarding the cubic surface.

Remark 2.8. Let \mathcal{X} be an **F**-maximal curve such that (2.1) holds; in particular, we identify \mathcal{X} with a non-degenerate projective curve in \mathbf{P}^3 and we can apply the aforementioned Castelnuovo and Halphen-Ballico results as they are true in positive characteristic [3]. We look forward a result of type: There exists a polynomial (of one indeterminate) $A(x) \in \mathbb{Q}[x]$ such that

(2.4)
$$g(\mathcal{X}) > A(q+1) \text{ implies } \pi(\mathcal{X}) \subseteq S,$$

where S is a surface of degree $d \leq 3$ (Then we shall assume d = 3 by Propositions 1.1, 1.2.)

Remark 2.9. In the literature, for a non-degenerate projective space curve C of degree q+1 over the complex numbers, there are available results of type (2.4) which in fact appear as particular cases of a vast theory that generalize the aforementioned Castelnuovo and Halphen results; see Eisenbud-Harris book [13, Thm. 3.22, p. 117].

6

Let q be large, says $q \ge 107$. If

$$g(\mathcal{C}) > B(q+1) := \begin{cases} \frac{q(q+2)}{8}, & \text{if} \qquad q \equiv 0, 2 \pmod{4}, \\ \frac{q^2 + 2q - 3}{8}, & \text{if} \qquad q \equiv 1 \pmod{4}, \\ \frac{q^2 + 2q + 9}{8}, & \text{otherwise} \end{cases}$$

then there exists a surface S of degree 2 or 3 such that $\mathcal{C} \subseteq S$.

Question 2.10. Is Remark 2.9 true in positive characteristic?

3. Examples

In this section we illustrate Corollary 2.6. Notation as above; in particular, \mathcal{H} is the Hermitian curve over $\mathbf{F} = \mathbf{F}_{q^2}$ defined by $v^{q+1} = u^{q+1} + 1$. Let $\pi : \mathcal{H} \to \mathbf{P}^2$ be a non-trivial morphism over \mathbf{F} and \mathcal{X} the non-singular model of the plane curve $\pi(\mathcal{H})$; then π can be lifted to a morphism $\mathcal{H} \to \mathcal{X}$, which we still denote by π . In this case, the curve \mathcal{X} is also \mathbf{F} -maximal (see e.g. [20]).

Example 3.1. (cf. [7, Sect. 5]) Let $q \equiv 2 \pmod{3}$ and $\pi : \mathcal{H} \to \mathbf{P}^2$ be the morphism given by $\pi = (x : y : 1) := (u^3 : uv : 1)$. Then the plane curve $\pi(\mathcal{H})$ is defined by $u^{q+1} = x^{(q+1)/3}(x^{(q+1)/3} + 1)$

and by applying the Riemann-Hurwitz formula to the function $x : \mathcal{X} \to \mathbf{P}^1$, where \mathcal{X} is the non-singular model of $\pi(\mathcal{H})$, we find that \mathcal{X} is **F**-maximal of genus $g(\mathcal{X}) = g_2 = (q^2 - q + 4)/6$ (cf. [11], [4, Prop. 2.1]). We notice that $r(\mathcal{X}) = 3$ by Remark 2.1 above.

Next we shall compute the Weierstrass semigroup H(P) at certain points of \mathcal{X} ; we start by computing some principal divisors on \mathcal{X} via tools from [24].

- (a) There are (q+1)/3 points in $x^{-1}(\infty)$, say P_i , i = 1, ..., (q+1)/3. Set $D_{\infty} := P_1 + ... + P_{(q+1)/3}$.
- (b) There are (q+1)/3 points in $x^{-1}(0)$, say Q_i , i = 1, ..., (q+1)/3. Set $D_0 := Q_1 + ... + Q_{(q+1)/3}$. Then $\operatorname{div}(x) = 3D_0 - 3D_\infty$.
- (c) Let $a \in \mathbf{F}$ such that $a^{(q+1)/3} = -1$ (*). There is just point R_a over $x^{-1}(a)$ and $\operatorname{div}(x-a) = (q+1)R_a 3D_{\infty}$. Set $D := \sum_{i/i(q+1)/3} R_i$. Then $\operatorname{div}(x^{(q+1)/3} + 1) = (q+1)D - (q+1)D_{\infty}$.

From (a), (b), (c), $\operatorname{div}(y) = D_0 + D - 2D_{\infty}$, and for $a \in \mathbf{F}$ as in (*) above $\operatorname{div}((x-a)^{-1}) = 3D_{\infty} - (q+1)R_a$, $\operatorname{div}(y(x-a)^{-1}) = D_0 + D' + D_{\infty} - qR_a$ and $\operatorname{div}(y^3x^{-1}(x-a)^{-1}) = 3D' - (q-2)R_a$,

where $D' = D - R_a$. It follows that $H(R_a) \supseteq H := \langle q - 2, q, q + 1 \rangle$ so that $g(\mathcal{X}) \leq g(H)$. We have that the sequence q - 2, q + 1, q is telescopic and so $g(H) = (q^2 - q + 4)/6$ (see e.g. [15, Prop. 5.35]). Therefore **Claim.** $H(R_a) = H$ and $m_1(R_a) = q - 2$ (this also shows that $r(\mathcal{X}) = 3$).

Moreover by Remark 2.7 the order sequence of \mathcal{X} is 0 < 1 < 2 < q and thus there is also a point $P \in \mathcal{X}(\mathbf{F})$ with $m_1(P) = q - 1$ (see [5, Lemma 3.7]).

Remark 3.2. We can construct explicit and outstanding AG one-point codes based on the curve in Example 3.1 by taking into consideration the telescopic property of $H(R_a)$; cf. [15, Sect. 5], [26, Sect. 5].

Example 3.3. Let $q \equiv 2 \pmod{3}$. Here we point out properties of an arbitrary **F**maximal curve \mathcal{X} of genus $g(\mathcal{X}) = g_2 = (q^2 - q + 4)/6$. We have $r(\mathcal{X}) = 3$ by Remark 2.1, and that 0 < 1 < 2 < q is the order sequence of $\mathcal{D} = \mathcal{D}_{\mathcal{X}}$ by Remark 2.7. Then by [5, Lemma 3.7] there is $\bar{P} \in \mathcal{X}(\mathbf{F})$ with $m_1(\bar{P}) = q - 1$, or $j_2(\bar{P}) = 2$ by (2.3).

Claim. There is $P \in \mathcal{X}(\mathbf{F})$ such that $j_2(P) > 2$.

Indeed, otherwise [18, Lemma 7] would imply $g = (q^2 - 2q + 3)/6$, a contradiction.

Let $\pi : \mathcal{X} \to \mathbf{P}^3$ be the morphism associated to \mathcal{D} . We are led to the following questions.

- (A) Is $\pi(\mathcal{X})$ contained in a cubic surface? (This would be true if the answer to Question 2.10 is affirmative)
- (B) Let \mathcal{X} be an **F**-maximal curve. Then $g(\mathcal{X}) = g_2$ if and only if $\pi(\mathcal{X})$ is contained in a cubic surface and there is $\bar{P} \in \mathcal{X}(\mathbf{F})$ with $j_2(\bar{P}) > 2$?

Question (B) above is related to the following result which is a consequence of the proof of [18, Thm. 1] and [Lemma 7]KT.

Remark 3.4. With g_1 as in (1.4), for an **F**-maximal curve \mathcal{X} we have that $g(\mathcal{X}) = g_1$ if and only if $\pi(\mathcal{X})$ is contained in a quadric and there is $\bar{P} \in \mathcal{X}(\mathbf{F})$ with $j_2(\bar{P}) > 2$.

Example 3.5. Let $q \equiv 2 \pmod{3}$. We investigate **F**-maximal curves of genus $g(\mathcal{X}) = g_3 = g_2 - 1 = (q^2 - q - 2)/6$ which were constructed in [5]. To start with, $r(\mathcal{X}) = 3$ by Remark 2.1 and the order sequence of \mathcal{D} is 0 < 1 < 2 < q by Remark 2.7. In particular, there is $P \in \mathcal{X}(\mathbf{F})$ such that $m_1(P) = q - 1$ by [5, Lemma 3.7].

We further assume the following properties:

- (a) $\pi(\mathcal{X})$ is contained in a cubic surface;
- (b) $\pi : \mathcal{H} \to \mathcal{X}$ is Galois of degree three.

(The aforementioned curves in [5] satisfy these properties)

Claim. There is $\overline{P} \in \mathcal{X}(\mathbf{F})$ with $m_1(\overline{P}) = (2q+2)/3$.

Proof of the Claim. By the Riemann-Hurwitz relation there is $\bar{P} \in \mathcal{X}(\mathbf{F})$ which is totally ramified for π . Let $Q = \pi^{-1}(\bar{P}) \in \mathcal{H}$. The first six positive elements of the Weierstrass semigroup at Q are q, q + 1, 2q, 2q + 1, 2q + 2, 3q. Now let $m = m_1(\bar{P}) < q < q + 1$ be the first three positive elements of $H(\bar{P})$. Then $3m \in \{q, q + 1, 2q, 2q + 1, 2q + 2\}$ and so $m \in \{(q+1)/3, (2q+2)/3\}$. We eliminate the case m = (q+1)/3 by Corollary 2.6 and the Claim follows.

Example 3.6. Let $q \not\equiv 2 \pmod{3}$ and \mathcal{X} be an **F**-maximal curve of genus $g(\mathcal{X}) = g_2 = (q^2 - q)/6$; hence $r(\mathcal{X}) = 3$ by Remark 2.1 and the order sequence of \mathcal{D} is 0 < 1 < 2 < q by Remark 2.7. by Remark 2.7. In particular, there is $P \in \mathcal{X}(\mathbf{F})$ such that $m_1(P) = q - 1$ by [5, Lemma 3.7]. We notice that examples of such curves do exist: see e.g. [11], [4, Prop. 2.1].

Let us assume properties (a) and (b) in Example 3.5 (indeed, the aforementioned examples satisfy these hypotheses).

Claim. If $q \equiv 1 \pmod{3}$ (resp. $q \equiv 0 \pmod{3}$), then there exists $\overline{P} \in \mathcal{X}(\mathbf{F})$ with $m_1(\overline{P}) = (2q+1)/3$ (resp. $m_1(\overline{P}) = 2q/3$).

Arguing as in Example 3.5 there is $\overline{P} \in \mathcal{X}(\mathbf{F})$ such that $3m \in \{q, q+1, 2q, 2q+1, 2q+2\}$ with $m = m_1(\overline{P})$.

If $q \equiv 1 \pmod{3}$, m = (2q+1)/3.

If $q \equiv 0 \pmod{3}$, either m = q/3 or m = 2q/3. The former case is eliminated by Corollary 2.6.

Example 3.7. Here we present an **F**-maximal curve \mathcal{X} with $r(\mathcal{X}) = 3$ such that $\pi(\mathcal{X})$ cannot be contained in a cubic surface, where π is the morphism associated to \mathcal{D} . Indeed, we consider the so-called GK-curve [12] whose Weierstrass semigroups at rational points were computed in [7]. This curve is defined over $\mathbf{F} = \mathbb{F}_{q^2}$ with $q = \ell^3$. For $\ell > 2$ this is the first example of an **F**-maximal curve that cannot be dominated by \mathcal{H} (loc. cit.)

On this curve there is $\bar{P} \in \mathcal{X}(\mathbf{F})$ such that $m_1(\bar{P}) = \ell^3 - \ell^2 + \ell$ [12, Sect. 4], and therefore, according to Corollary 2.6, $\pi(\mathcal{X})$ cannot be contained in a cubic. We notice that the genus of \mathcal{X} is $g(\mathcal{X}) = \frac{1}{2}(\ell^5 - 2\ell^3 + \ell^2)/2$ and so it does not satisfies Remark 2.9. Further examples can be found in [26].

We end this paper with the following:

Question 3.8. Let \mathcal{X} be an **F**-maximal curve with $r(\mathcal{X}) = 3$. Suppose that $\pi(\mathcal{X}) \subseteq S$, where S is a surface of degree $d \geq 2$. Let $P \in \mathcal{X}(\mathbf{F})$ and suppose $g(\mathcal{X})$ large enough. Then $m_1(P) = (q+1) - \frac{q+i}{d}$ or $m_1(P) = q-j$ for some $i = 1, \ldots, d, j = 2, \ldots, d$. Are all these cases possible?

Acknowledgment. This paper is based on the Ph.D. dissertation [6] done at IMECC-UNICAMP. The second author was partially supported by CNPq (Grant 310623/2017-0).

References

^[1] M. Abdón and F. Torres, Maximal curves in characteristic two, Manuscripta Math. 99 (1999), 39–53.

- [2] N. Arakelian, S. Tafazolian and F. Torres, On the spectrum for the genera of maximal curves over small fields, Adv. Math. Commum. 12 (2018), 143–149.
- [3] E. Ballico, Space curves not contained in low degree surfaces in positive characteristic, Noti di Matematica 20 (2000/2001), 27–33.
- [4] A. Cossidente, G. Korchmáros and F. Torres, Curves of large genus covered by the hermitian curve, Comm. in Algebra, 28 (2000), 4707–4728.
- [5] A. Cossidente, G. Korchmáros and F. Torres, On curves covered by the hermitian curve, J. Algebra, 216 (1999), 56–76.
- [6] P.C Oliveira, "Sobre Curvas Maximais em Superfícies Cúbicas", Tese doutorado, IMECC-UNICAMP, 2015.
- [7] S. Fanali and M. Giulietti, On some open problems on maximal curves, Des. Codes Cryptogr., 56 (2010), 131–139.
- [8] R. Fuhrmann, A. Garcia and F. Torres, On maximal curves, J. of Number Theory, 67 (1997), 29-51.
- R. Fuhrmann and F. Torres, The Genus of Curves over Finite Fields with Many Rational Points, Manuscripta Math. 89 (1996), 103-106.
- [10] R. Fuhrmann, "Algebraische Funktionenkörper über endlichen Körpern mit maximaler Anzahl rationaler Stellen, Ph.D. thesis, Essen, 1995.
- [11] A. Garcia, H. Stichtenoth and C.P. Xing, On subfields of the Hermitian function field, Compositio Math. 120 (2000), 137–170.
- [12] M. Giulietti and G. Korchmáros, A new family of maximal curves over a finite field, Math. Ann. 343 (2009), 229–245.
- [13] J. Harris, "Curves in Projective Space" (With the colaboration of D. Eisenbud), Les Presses de L'Université de Montréal, 1982, Montréal, Quebec, 1982.
- [14] J.W.P. Hirschfeld, G. Korchmáros and F. Torres, "Algebraic Curves over Finite Fields", Princenton University Press, USA, 2008.
- [15] T. Høholdt, J.H. van Lint and R. Pellikaan, Algebraic geometry codes in V.S. Pless, W.C. Huffam, R.A. Brualdi (Eds.), Handbook of Codng Theory, vol 1, Elsewier, Amsterdam, 1998, 871–961.
- [16] N.E. Hurt, "Many Rational Points, Coding Theory and Algebraic Geometry", Kluwer Academic Publishers, The Netherlands, 2003.
- [17] Y. Ihara, Some remarks on the number of rational points of algebraic curves over finite fields, J. Fac. Sci. Tokyo, Sec. Ia, 28 (1981), 721–724.
- [18] G. Korchmáros and F. Torres, On the genus of a maximal curve, Math. Ann. **323** (2002), 589–608.
- [19] G. Korchmáros and F. Torres, Embedding of a maximal curve in a Hermitian variety, Compositio Mathematica 128 (2001), 95–113.
- [20] G. Lachaud, Sommes d'Eisenstein et nombre de points de certaines courbes algébriques sur les corps finis, C.R. Acad. Sci. Paris 305, Série I (1987), 729–732.
- [21] J. Rathmann, The uniform position principle for curves in characteristic p, Math. Ann. 276 (1987), 565–579.
- [22] J.C. Rosales and P.A. García-Sanchez, Numerical semigroups with embedding dimension three, Arch. Math.83 (2004), 488–496.
- [23] H.G. Rück and H. Stichtenoth, A characterization of Hermitian function fields over finite fields, J. Reine Angew. Math. 457 (1994), 185–188.
- [24] H. Stichtenoth, "Algebraic Function Fields and Codes", Springer-Verlag, New York, Second Edition, 2009.
- [25] K.O. Stöhr and J.F. Voloch, Weierstrass points and curves over finite fields, Proc. London Math. Soc. 52 (1986), 1-19.

- [26] S. Tafazolian, A. Teherán-Herrera and F. Torres, Further examples of maximal curves which cannot be covered by the Hermitian curve, J. Pure Appl. Algebra 220 (2016), 1122–1132.
- [27] C.P. Xing and H. Stichtenoth, The genus of maximal functions fields, Manuscripta Math. 86 (1995), 217–224.

DEMPA/Universidade Regional do Cariri, Av. Leão Sampaio 107, 63040-000, Juazeiro do Norte, CE, Brazil

Email address: paulocesar.oliveira@urca.br

IMECC-UNICAMP, R. SÉRGIO BUARQUE DE HOLANDA 651, CIDADE UNIVERSITÁRIA "ZEFERINO VAZ", 13083-859, CAMPINAS, SP, BRAZIL

Email address: ftorres@ime.unicamp.br