ON SPACE MAXIMAL CURVES

PAULO CESAR OLIVEIRA AND FERNANDO TORRES

ABSTRACT. Any maximal curve X is equipped with an intrinsic embedding 7 : X — P"
which reveal outstanding properties of the curve. By dealing with the contact divisors of
the curve w(&X') and tangent lines, in this paper we investigate the first positive element
that the Weierstrass semigroup at rational points can have whenever r = 3 and 7(X) is
contained in a cubic surface.

1. INTRODUCTION

Throughout this paper, F stands for the finite field F,2 of order ¢*. A projective, geomet-
rically irreducible, non-singular algebraic curve X defined over F of genus g = ¢g(X) is
said to be F-maximal if the number of its F-rational points attains the Hasse-Weil upper
bound; that is,

#XF)=¢+1+2q¢-g.

Apart from being interesting mathematical objects by their own, these curves have been
extensively studied as they are of great interest in Coding Theory, Cryptography and
related areas; see for example the books [24], [14], [16].

Let X be an F-maximal curve of genus g. Then the numerator of the Zeta function of X is
the polynomial L(t) = (1+qt)* and hence h(t) = t* L(t~') = (t+q)* is the characteristic
polynomial of certain endomorphism ® on the Jacobian J of X. This map is uniquely
determined by the F-Frobenius morphism ® : X — X in such a way that 1o ® = ® o,
where ¢+ : X — J is the natural embedding given by P — [P — Py| with Py € X(F). It
turns out that ® is semisimple and so the following linear equivalence (sometimes called
the fundamental equivalence) on X arises (see [14, Thm. 10.1, Thm. 9.79]):

(1.1) (q+1)Py~qP+®(P), PcX.

This suggests the study of the (complete) linear series Dy := |(¢+ 1) Fy| (sometimes called
the Frobenius linear series of X') whose definition clearly does not depend on the choice of
the F-rational point Fy. As a matter of fact, several arithmetical and geometrical proper-
ties of maximal curves are revealed through this linear series (loc. cit.). In particular, Dy
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is very ample [8, Prop. 1.9], [18, Thm. 2.5] which means that the morphism associated
to DX

(1.2) Tpy : X — P

is an embedding, where r = r(X’) > 2 is the projective dimension of Dy (sometimes called
the Frobenius dimension of X'), and P" is the projective r-space over the algebraic closure

of F.

It is well-known that the Hermitian curve H defined by v4t! = 49! + 1 is F-maximal of
genus g(H) = go := q(q—1)/2; see [24, Ex. 6.3.6]. Indeed, among F-maximal curves, the
curve H admits the following characterization.

Proposition 1.1. ([23], [27], [9]) If X is F-maximal, the following sentences are equiva-

lent:
(1) X is F-isomorphic to the Hermitian curve H;
(2) 9(X) = go;
(3) 9(X) > (q— 1)?/4;
(4) (&) =
(5) There emsts P € X(F) such that the first positive element of H(P), the Weier-

strass semigroup at P, equals q.

From (1.2) any F-maximal curve & is F-isomorphic to a non-degenerate curve of degree
g+ 1in P", r = r(X). Thus the classical Castelnuovo’s genus bound can be used to
explain partially Proposition 1.1 as it gives the first general constrain between g(X’) and
the pair (q,r) (see [14, Cor. 10.25]):

[(q— (r—1)/2)>=1/4]/2(r — 1), ifris even,

(13) gl¥) < Flgr) = {[(q ~r—1)/2)2/2(r - 1), if 7 is odd.

Notice that the function F(q,r) satisfies F'(q,7) < F(q, s) for r > s; in particular, g(X) <
F(q,3) = (¢g—1)?/4 provided that r(X) > 3. Then, with g, := |(¢—1)?/4], by Proposition
1.1 the spectrum for the genera of F-maximal curves, namely the set

M(q?) := {g € Ny : there is an F-maximal curve of genus g},

satisfies

(1.4) M(q*) € [0, 91] U{go}-

We recall that gy is the well-known Ihara’s bound on the genus of F-maximal curves
[17]. One of the main problems in Curve Theory Over Finite Fields is the computation of
M(q?); in general one cannot expect to give a full answer to this matter but improvements
on (1.4) can be expected as far as improvements on Castelnuovo’s genus bound of curves
in P” are known.
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In view of Proposition 1.1 it is natural to investigate space F-maximal curves with respect
to Dy; that is, those with r(X) = 3. Here a natural way of bounding g(&X’), which
generalizes Castelnuovo’s method, is by looking at the degree d > 2 of surfaces S C P?
such that 7(X) C S where 7 = 7y is as in (1.2); cf. [13], [21]. We have the following
Halphen-Ballico result (see [3]) which deals with the case of quadrics. Let ¢; be as in
(1.4) and set g, := | (¢> — ¢ +4)/6]; then

(1.5) 7(X) is contained in a quadric in P? provided that g, < g(X) < g1 .
Now the F-maximal property of X implies certain constrains on the first positive element

mi(P) of the Weierstrass semigroup H(P) at some P € X(F), and (1.4) admits the
folloing improvement [18]:

(1.6) M(q?) € [0, 92] U{g1} U{g0}-

An analogue of Proposition 1.1 emerges, namely

Proposition 1.2. ([8], [1], [19], [18]) Let X be an F-mazimal curve. The following
sentences are equivalent:

(1) X is isomorphic to a quotient of H by certain involution;

(2) 9(X) = o;

(3) m(X) is contained in a quadric;

(4) There exists P € X(F) such that the first positive element of H(P), the Weier-
strass semigroup at P, equals |(q+ 1)/2].

The starting points of our result are in fact Propositions 1.1, 1.2 above. Under condition
(2.1) below, the main result in this paper is Corollary 2.6, where a hypothesis on a cubic
surface is considered; in this way a weak version of the aforementioned propositions is
obtained. We always assume ¢ > 7; cf. [2].

We do point out that our approach follows closely the works by Cossidente-Korchméros-
Torres [5, Sect. 3], [4, Sect. 5], Korchmaros-Torres [18], Fanali-Giulietti [7] and Arakelian-
Tafazolian-Torres [2].

Conventions. P’ stands for the projective s-space over the algebraic closure of the base
field. For a point P in a curve, H(P) denotes the Weierstrass semigroup at P; m;(P) is
the first positive element of H(P).

2. MAXIMAL CURVES AND CUBIC SURFACES

Let & be an F-maximal curve, Py € X(F) and D = Dy = |(¢ + 1)P,| the liner series
introduced in Section 1; i.e., it is the set of effective divisors on X which are linearly
equivalent to the divisor (¢+1)F,. We always assume g(X) > 0; taking into consideration

(1.6) and Propositions 1.1, 1.2 above, we also assume:

(2.1) r(X)=3 and  g(X)<gy=[(¢* —q+4)%/6].
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Remark 2.1. Let X be an F-maximal curve. From (1.3) and Proposition 1.1, a sufficient
condition to have 7(X) = 3 is that (¢ — 1)(¢ — 2)/6 < g(X) < g1 = [(¢ — 1)*/4].

Let 7 = mp : X — P3 be the morphism associated to D.

Definition 2.2. For P € X, a non-negative integer j is called an (D, P)-order if there is
D € D such that the coefficient vp(D) of P in D equals j.

Now let P € X(F). Relation (1.1) implies the following behaviour for elements of H(P):
mo(P) =0 <my(P) <me(P)<ms(P)=q+1.

Thus for each i = 0,1,2,3 there are rational functions on X, h; : X — P! such that
div(h;) = D; — m;(P)P, P & Supp(D;) with div(h3) = (¢+ 1)P — (¢+ 1)Py, P # F,. For
P = Py we put hg = 1. Then

div(hihs) + (¢+ )Py =D; + (¢ +1—my(P))P € D
and the (D, P)-orders do satisfy (cf. [8, Prop. 1.5(iii)])

therefore at P € X (F), j3(P) = g + 1 and the first positive element m,(P) of H(P) and
Ja(P) are related to each other by the equation

(2.3) mi(P) =q+1—j(P).

Remark 2.3. For the linear system D above and any P € X, the (D, P) orders can be
ordered as a sequence jo(P) < ji1(P) < ja(P) < js(P) < ¢+ 1 with jo(P) =0 as D is
base-point-free. Relation (1.1) shows that 1 and ¢ are (D, P)-orders for P ¢ X (F). Thus
for such points j;(P) =1 and j3(P) = ¢ (as g(X') > 0).

Now j3(P) is the intersection multiplicity of the curve 7(X) C P? and the osculating
hyperplane at w(P) (cf. [25]); in addition, (1.1) also shows that 7(®(P)) belongs to this
hyperplane and we have the following key observation due to Stéhr and Voloch [25, Cor.
2.6]: Let 15 := g and P € X(F). Then j3(P) — j1(P) > v»; in particular, for P € X(F),
J1(P) =1, and so my(P) = ¢ by (2.2).

Lemma 2.4. Let X be an F-mazimal curve satisfying (2.1) and let P € X (F).

(1) If ¢ > 3, then jo(P) & {(q +3)/2,(2¢ +3)/3, (29 + 2)/3,¢ = 1, ¢},
(2) j2(P) & {(a+1)/2,(¢+2)/2}.
(3) If q is even and jo(P) = q/2, then g(X) < ¢*/8.

Proof. We have m;(P) = g+ 1 — j2(P); see (2.3).

(1) Since 2my(P) > mo(P) and my = ¢ by Remark 2.3, then js(P) < (¢+2)/2. If any of
the values in (1) were allowed, then ¢ < 3.
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(2) Suppose j; = (¢ + 1)/2 (resp. j2 = (¢ +2)/2). Then my(P) = (¢ + 1)/2 (resp.
my(P) = q/2) and hence g(X) = [(¢ — 1)?/4] by [18, Thm. 1].

(3) If 52(P) = q/2, mi(P) = (¢ + 2)/2 by Remark 2.3; then ¢g(X) < g(H) where H is
the semigroup generated by (¢ +2)/2,¢q,q+ 1 and g(H) = #(Ng \ 5) is the genus of H.
This number can be computed by the method of Rosales and Garcia-Sénchez in [22]; i.e.,
g(H) = ¢*/8 and the result follows. O

Theorem 2.5. Let X be an F-mazimal curve satisfying (2.1). Suppose that w(X) is
contained in a cubic surface S.

(1) For P e X(F), jo(P) €{2,3,4/2,(¢ +1)/3,(q¢+2)/3,(¢+3)/3};
(2) If q is even and g(X) > ¢*/8, then jo(P) # q/2.

Proof. Let jo = 0 < j; =1 < ja < js = ¢+ 1 be the (D, P)-orders with jo = ja(P)
and v = vp the valuation at P. Then 7 can be defined by (fo : fi : fo : f3) such that
v(fi) = ji; in particular, 7(P) = (1 : 0: 0 : 0) and throughout we assume fy = 1. Let the
cubic surface S be defined by

F(Xo, X1, X5, X3) 000X + aom Xg X1 + a002 X3 Xo + aoos X3 X3 + a1 X3
a110 X7 X0 + a112 X7 X0 + a113X7 X3 + a022 X3 + a200 X3 Xo
21 X3 X1 + a3 X35 X3 + azss X + aszoX3Xo + asn X3 X1
a332 X3 X5 + an2XoX1Xs + a013 X0 X1 X3 + ao23 X0 X2 X3

123 X1 X2X3 .

+ o+ 4+

Then F(1, fi, f2, f3) = 0 and agpo = 0. Now the valuation at P of the functions

fvs fos fas I3 F0s P2 fos P fas £ 135 3 000 F3 fa 3
f3, 1310, f3 o, fufa, fufs, fafss fifafs
are respectively
L, 72, 73:3,2,2 + j2, 2+ J3, 372, 272, 1 + 22, 2j2 + J3, 373,
273, 1+ 23, j2 + 273, 1 + J2, 1 + Js, jo + J3, L + j2 + Js -

Then the valuation property of v implies agg; = 0. Let jo > 3 so that a;11 = a0 = 0
(recall that ¢ > 7). We have j, + 2 < j3, otherwise j, € {q,q — 1} which is not possible
by Lemma 2.4. Thus

Jo < Jotl < Jot2 < j3 < g3+l < j3+2 < jztjo < J3tjotl < 273 < 2j3+1 < 273+j2 < 3J3.

Since 275 < 2js + 1 < 372 < 2j5 + J3, the valuation property of v implies the following
cases:

(1) Either 2j; € {J3,j3 + 1, j5 + 2}, or

(2) 2]2 +1= j3a or
(3) 3]2 € {j37j3 + 17j3 + 2a 2j37 2]3 + 1}
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By Lemma 2.4 2j5 # js, 73+ 1,43+ 2, 3j2 # 273, 3J2 # 2j3 + 1, and 2j5 + 1 # j3 whenever
9>q°/8.
Therefore jo € {2,3,(¢+1)/3,(q+2)/3,(q+ 1)/3} and the proof follows. O

Now we can state the main result in this paper.

Corollary 2.6. Let X be an F-maximal curve as in Theorem 2.5. Then the multiplicity
m1(P) of the Weierstrass semigroup H(P) at P € X(F) do satisfy

mi(P) € {(q¢+2)/2,(2¢+2)/3,(2¢+1)/3,2¢/3,q = 2, — 1},
In addition, if q is even and g(X) > ¢*/8, then my(P) # (q +2)/2.

Proof. 1t follows from (2.3) and the theorem above. O

Remark 2.7. Notation as in Remark 2.3. For the linear series D, a basic result is that for
almost P € X, the sequence jo(P < j1(P) < ja(P) < j3(P) is constant (so called order
sequence of D) cf. [25, p. 5]). In Remark 2.3 we noticed that jo(P) = 0, j1(P) = 1,
Js(P) = q for P ¢ X(F) and thus the order sequence of D is of type 0 < 1 < €3 < g.

By the proof of [2, Prop. 3.1], € = 2 provided that

(> +1)(qg—4)/2(4g — 1), whenever ¢ Z0 (mod 3),
9(%) > { g>(¢*+1)(g—3)/2(3¢ — 1), otherwise.

This forces g(X) > (¢> —2q + 3)/6 (*) (see [5, Remark 3.3], [2, Prop. 3.1]).

Now for P € X (F) the Weierstrass semigroup H(P) contains the semigroup generated by
m,q,q + 1, where m = my(P) = ¢+ 1 — ja(P) (cf. 2.3); hence g(X) < g(H) (the genus
of H). Then by using heavy arithmetical computations from [10, Sect. 2| and by taking
into consideration restriction (%) above, Corollary 2.6 was already proved in [5, Cor. 3.5]
whithout the hypothesis regarding the cubic surface.

Remark 2.8. Let X be an F-maximal curve such that (2.1) holds; in particular, we identify
X with a non-degenerate projective curve in P? and we can apply the aforementioned
Castelnuovo and Halphen-Ballico results as they are true in positive characteristic [3].
We look forward a result of type: There exists a polynomial (of one indeterminate)
A(z) € Q[z] such that

(2.4) g(X)> A(g+1) implies w(X)C S,

where S is a surface of degree d < 3 (Then we shall assume d = 3 by Propositions 1.1,
1.2.)

Remark 2.9. In the literature, for a non-degenerate projective space curve C of degree g+1
over the complex numbers, there are available results of type (2.4) which in fact appear
as particular cases of a vast theory that generalize the aforementioned Castelnuovo and
Halphen results; see Eisenbud-Harris book [13, Thm. 3.22, p. 117].
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Let g be large, says ¢ > 107. If

(
2
q(q; ) i g=0,2 (mod 4),
2492¢—3
g(C) > B(q+1) := HTQ, if g=1 (mod 4),
¢ +29+9 .
—s otherwise ,
\

then there exists a surface S of degree 2 or 3 such that C C S.

Question 2.10. Is Remark 2.9 true in positive characteristic?

3. EXAMPLES

In this section we illustrate Corollary 2.6. Notation as above; in particular, H is the
Hermitian curve over F = F 2 defined by v?™! = w9 + 1. Let 7 : X — P? be a non-
trivial morphism over F and X the non-singular model of the plane curve m(#); then 7
can be lifted to a morphism H — X', which we still denote by 7. In this case, the curve
X is also F-maximal (see e.g. [20]).

Example 3.1. (cf. [7, Sect. 5]) Let ¢ = 2 (mod 3) and 7 : H — P? be the morphism
given by 7 = (z :y: 1) := (v® : wv : 1). Then the plane curve m(H) is defined by

yq+1 — x(q+1)/3(x(q+1)/3 +1),

and by applying the Riemann-Hurwitz formula to the function z : X — P!, where X

is the non-singular model of 7(H), we find that X is F-maximal of genus ¢(X) = ¢g» =
(¢> —q+4)/6 (cf. [11], [4, Prop. 2.1]). We notice that r(X) = 3 by Remark 2.1 above.

Next we shall compute the Weierstrass semigroup H(P) at certain points of X'; we start
by computing some principal divisors on X via tools from [24].

(a) There are (¢ + 1)/3 points in 27! (c0), say P, i=1,...,(q+1)/3.
Set Do := P+ ...+ P(q+1)/3.
(b) There are (¢ + 1)/3 points in z71(0), say Q;, i =1,...,(qg+1)/3.
Set Dy := Q1 + ... 4+ Qg+1)/3- Then div(z) = 3Dy — 3D.
(c) Let a € F such that a(@™/3 = —1 (). There is just point R, over x~'(a) and
div(z —a) = (¢ + 1)Re = 3Doo. Set D := 3, sy Bi
Then div(2@*9/3 4 1) = (¢ +1)D — (¢ + 1) Dw.
From (a), (b), (¢), div(y) = Do+ D — 2D, and for a € F as in (x) above
div((z —a)™') =3Dy — (¢ + 1)R,, div(y(x —a)™') = Dy + D'+ Dy, — qR, and
div(y’z ™z —a)™") = 3D — (¢ — 2)R.,
where D' = D — R,. It follows that H(R,) 2 H := (¢ — 2,q,q+ 1) so that g(X) < g(H).

We have that the sequence ¢ — 2, ¢ + 1, ¢ is telescopic and so g(H) = (¢> — q +4)/6 (see
e.g. [15, Prop. 5.35]). Therefore
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Claim. H(R,) = H and m(R,) = q¢ — 2 (this also shows that r(X) = 3).

Moreover by Remark 2.7 the order sequence of X is 0 < 1 < 2 < ¢ and thus there is also
a point P € X (F) with my(P) = ¢ — 1 (see [5, Lemma 3.7]).

Remark 3.2. We can construct explicit and outstanding AG one-point codes based on the
curve in Example 3.1 by taking into consideration the telescopic property of H(R,); cf.
[15, Sect. 5], [26, Sect. 5].

Example 3.3. Let ¢ = 2 (mod 3). Here we point out properties of an arbitrary F-
maximal curve X of genus g(X) = ga = (¢* — ¢ +4)/6. We have r(X) = 3 by Remark
2.1, and that 0 < 1 < 2 < ¢ is the order sequence of D = Dy by Remark 2.7. Then by [5,
Lemma 3.7] there is P € X (F) with m;(P) = ¢ — 1, or jo(P) = 2 by (2.3).

Claim. There is P € X(F) such that jy(P) > 2.
Indeed, otherwise [18, Lemma 7] would imply g = (¢* — 2q + 3)/6, a contradiction.

Let m : X — P3 be the morphism associated to D. We are led to the following questions.

(A) Is m(&X') contained in a cubic surface? (This would be true if the answer to Question
2.10 is affirmative)

(B) Let X be an F-maximal curve. Then g(X) = g if and only if 7(X") is contained
in a cubic surface and there is P € X(F) with jy(P) > 27

Question (B) above is related to the following result which is a consequence of the proof
of [18, Thm. 1] and [Lemma 7]KT.

Remark 3.4. With g, as in (1.4), for an F-maximal curve X we have that g(X) = ¢ if
and only if 7(X) is contained in a quadric and there is P € X(F) with jo(P) > 2.

Example 3.5. Let ¢ = 2 (mod 3). We investigate F-maximal curves of genus g(X) =
g3 = g2 — 1 = (¢* — ¢ — 2)/6 which were constructed in [5]. To start with, r(X) = 3 by
Remark 2.1 and the order seqeunce of D is 0 < 1 < 2 < ¢ by Remark 2.7. In particular,
there is P € X(F) such that m;(P) = ¢ — 1 by [5, Lemma 3.7].

We further assume the following properties:

(a) m(X) is contained in a cubic surface;
(b) m:H — X is Galois of degree three.

(The aforementioned curves in [5] satisfy these properties)
Claim. There is P € X(F) with m;(P) = (2¢ +2)/3.

Proof of the Claim. By the Riemann-Hurwitz relation there is P € X'(F) which is totally
ramified for 7. Let Q = 7~1(P) € H. The first six positive elements of the Weierstrass

semigroup at @ are ¢,q + 1,2¢,2q + 1,2 + 2,3q. Now let m = m1(P) < g < ¢+ 1 be

the first three positive elements of H(P). Then 3m € {q,q+ 1,2q,2q + 1,2¢q + 2} and so
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m € {(qg+1)/3,(2¢ +2)/3. We eliminate the case m = (¢ + 1)/3 by Corollary 2.6 and
the Claim follows.

Example 3.6. Let ¢ # 2 (mod 3) and X be an F-maximal curve of genus g(X) = go =
(¢*> — q)/6; hence r(X) = 3 by Remark 2.1 and the order sequence of Dis 0 <1 <2 < ¢
by Remark 2.7. by Remark 2.7. In particular, there is P € X'(F) such that m,(P) = ¢—1
by [5, Lemma 3.7]. We notice that examples of such curves do exist: see e.g. [11], [4,
Prop. 2.1].

Let us assume properties (a) and (b) in Example 3.5 (indeed, the aforementioned examples
satisfy these hypotheses).

Claim. If ¢ = 1 (mod 3) (resp. ¢ = 0 (mod 3)), then there exists P € X(F) with

mi(P) = (2q+1)/3 (vesp. mu(P) = 2q/3).
Arguing as in Example 3.5 there is P € X(F) such that 3m € {q,q¢+1,2q,2¢+1,2q+ 2}

with m = my(P).
If¢g=1 (mod 3), m=(2¢+1)/3.

If g =0 (mod 3), either m = ¢/3 or m = 2¢/3. The former case is eliminated by Corollary
2.6.

Example 3.7. Here we present an F-maximal curve X with r(X) = 3 such that 7(X)
cannot be contained in a cubic surface, where 7 is the morphism associated to D. Indeed,
we consider the so-called GK-curve [12] whose Weierstrass semigroups at rational points
were computed in [7]. This curve is defined over F = F,» with ¢ = (3. For ¢ > 2 this is
the first example of an F-maximal curve that cannot be dominated by H (loc. cit.)

On this curve there is P € X(F) such that m;(P) = ¢3—(>+/{ [12, Sect. 4], and therefore,
according to Corollary 2.6, 7(X') cannot be contained in a cubic. We notice that the genus
of X is g(X) = 3(£>—2(3+¢?) /2 and so it does not satisfies Remark 2.9. Further examples
can be found in [26].

We end this paper with the following:

Question 3.8. Let X be an F-maximal curve with r(X) = 3. Suppose that 7(X) C S,
where S is a surface of degree d > 2. Let P € X(F) and suppose g(X) large enough.
Then my(P) = (¢+1) —qTH ormi(P)=q—jforsomei=1,...,d,j=2,...,d. Areall
these cases possible?

Acknowledgment. This paper is based on the Ph.D. dissertation [6] done at IMECC-
UNICAMP. The second author was partially supported by CNPq (Grant 310623/2017-0).
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