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Abstract

In this paper, we introduce a new regression model for positive and skewed data, a
log Birnbaum-Saunders model based on the centred skew-normal distribution, and we
present a several inference tools for this model. Initially, we developed a new version of
skew-sinh-normal distribution and we describe some of its properties. For the proposed
regression model, we carry out, through of the expectation conditional maximization
(ECM) algorithm, the parameter estimation, model fit assessment, model comparison
and residual analysis. Finally, our model accommodates more suitably the asymmetry
of the data, compared with the usual log Birnbaum-Saunders model, which is illustrated
through real data analysis.

keywords: Birnbaum-Saunders distribution; Skew normal distribution; Skew sinh-normal
distribution; Frequentist inference; ECM algorithm.

1 Introduction

Regression models based on the Birnbaum-Saunders (BS) and the correspondent log-
Birnbaum-Saunders (log-BS) distributions, which are related to the family of sinh-normal
distributions, see Rieck (1989), have been receiving considerable attention in the past few
years. These regression models are built using a BS or a log-BS distribution which, in their
turn, are based on a random variable different from the standard normal. Examples of
these distributions are: skew-eliptical BS (Vilca and Leiva, 2006), Student-t BS (Barros et
al., 2009), scale-mixture of normals BS (Balakrishnan et al., 2009) and skew scale-mixture
Birnbaum-Saunders (Balakrishnan et al., 2017). In terms of log-BS regression models, we
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can cite: Student-t BS model (Barros et al., 2008), skew-normal BS model (Santana et al.,
2011) and scale-mixture of normals BS model Vilca et al. (2015).

In this paper, we develop a set of tools of statistical analysis for the log Birnbaum-
Saunders regression model based on the skew-normal (SN) distribution under the centred
parameterization (CP), see Azzalini (2013), named log-SNBS regression model. In the work
Chaves et al. (2018a), the authors provided empirical evidences that their centred skew-
normal BS (SNBS) distribution has advantages, in terms of inference, over the skew-normal
BS distribution proposed by Vilca et al. (2011), similarly to the advantages of the SN (centred
parameterization) compared with the usual SN (direct parameterization), see Pewsey (2000)
and Azevedo et al. (2011). In this paper, we will show that these advantages are inherited
by the respective log-SNBS regression model.

The aforementioned inference tools comprise of: parameter estimation, residual analysis
and statistics for model comparison. Expectation conditional maximization (ECM) algorithm
was used to develop these tools. Also, the impact of some factors of interest (sample size,
asymmetry level of the log-SNBS distribution and the value of the shape parameter) on
the estimates, are measured through this study. In addition, the performance of two usual
statistics of model comparison is studied concerning the selection between our model and the
log-BS regression model proposed by Rieck and Nedelman (1991), using simulated data.

The paper is outlined as follows. In Section 2, we present the log-SNBS distribution and
we developed some of its properties. In Section 3, we introduce the log-SNBS regression
model and discuss the ECM algorithm for the maximum-likelihood (ML) estimation of the
model parameters. In Sections 4, 5 and 6, we carry out the residual analysis, the statistics
for model comparison and simulation studies, respectively. In Section 7, a real data analysis
is discussed and finally, in Section 8, the concluding remarks are given.

2 The log-SNBS distribution

2.1 The centred skew-normal BS distribution

A random variable (r.v.) T follows the centred skew-normal BS (SNBS) distribution, de-
note by T ∼ SNBS(α, η, γ), α, η ∈ R, γ ∈ (−.99527, .99527), where α is the shape parameter,
η is the location parameter and γ is the asymmetry parameter, if its density is given by

fT (t) = 2φ [at;µ,σ(α, η)] Φ {λ at;µ,σ(α, η)}At;σ(α, η), t > 0,

where φ(·) and Φ(·) denote the density and distribution functions of the standard normal dis-
tribution, respectively. Moreover, at;µ,σ(α, η) = µz + σz at(α, η) and At;σ(α, η) = σz At(α, η),

with at(α, η) = (
√
t/η−

√
η/t) /α and At(α, η) = d

dt
at(α, η) = t−3/2(t+η)

2αη1/2
. Also, µz = rδ, σz =√

1− µ2
z, r =

√
2/π, δ = λ/

√
1 + λ2, λ = γ1/3s/

√
r2 + s2γ2/3(r2 − 1) and s = [2/(4−π)]1/3.

The model parameters are (α, η, γ)> and it will be called centred parameters, while the model
parameters based the usual SN distribution Azzalini (1985), (α, η, λ)>, are called as direct
parameters. Note that for γ = 0, we have the usual BS distribution.
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The construction of this r.v. and its behavior according the values of its parameters are
presented in Chaves et al. (2018a). In short, we have symmetry around η, for γ = 0 and
small values of α. The positive asymmetry is observed as α increases, η decreases and/or
γ takes positive values, whereas negative asymmetry is observed as α decreases, η increases
and/or γ assumes negative values. Also, the smaller the value of parameter α and η are, the
smaller the variability. The higher the value of parameter η is, more shifted to the right is
the distribution. Another interesting feature of this distribution is that it can model properly
positive random variables with a negatively skewed behavior. In the data set presented by
Lawless (2011), for example, the response variable (the failure times of high-speed turbine
engine bearings made out of five different compounds) is positive and presents a negatively
skewed behavior for some of the five compounds. The same can be observed for the data
set present by Meintanis (2007), wich is related to football matches of the UEFA Champions
League (more details will be presented in Section 7).

2.2 The centred skew-sinh-normal distribution

A r.v. Y is said to have a centred skew-sinh-normal distribution (SSN), denoted by
Y ∼ SSN(α, ρ, σ, γ), where α, ρ and σ are the shape, location and scale parameters and γ is
the Pearson’s skewness coefficient, respectively, if its probability density function is given by:

fY (y) =
4σz
ασ

φ

[
µz +

2σz
α

sinh

(
y − ρ
σ

)]
Φ

{
λ

[
µz +

2σz
α

sinh

(
y − ρ
σ

)]}
, y ∈ R, (1)

where all quantities are as defined before. Figure 1 present the density of the SSN distribution
for different values of α and γ. As mentioned, ρ and σ are the location and scale parameters,
respectively, so that we fix the values of these parameters on the plots. We can notice that α
and γ affects the kurtosis and symmetry of the SSN distribution, respectively. Positive and
negative asymmetry are observed when γ assumes positive and negative values, respectively.
Note that for γ = 0, we have the sinh-normal (SHN) distribution developed by Rieck and
Nedelman (1991).

2.3 The proposed distribution

Here, we develop a generalization of the usual log-BS distribution of Rieck and Nedelman
(1991) and Leiva et al. (2010) based on the centred parameterization of the SN distribution.

A logarithmic version of the SNBS model, called the log-SNBS distribution, can be ob-
tained considering the r.v. Y = log(T ), where T ∼ SNBS(α, η, γ), whose pdf is given by

fY (y) = φ (ξ2y;µ,σ) Φ {λξ2y;µ,σ} ξ1y;σ, y ∈ R, (2)

where ξ2y;µ,σ = µz + σz ξ2y and ξ1y;σ = σzξ1y, with ξ2y = ξ2(y;α, ρ) = 2
α

sinh(y−ρ
2

), ξ1y =
ξ1(y;α, ρ) = 2

α
cosh

(
y−ρ

2

)
and ρ = log(η). Moreover, µz, σz and λ are as defined before.

We denote this distribution by Y ∼ SSN(α, ρ, σ = 2, γ). We use this notation, including
a specific value for the parameter σ, since the log-SNBS distribution is a particular case of
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Figure 1: Density of the SSN distribution for different values of α (a) and different values of
γ (b).

the SSN distribution when σ = 2 in (1). This former distribution can be also defined directly
in terms of the SN r.v., similarly to the log-BS distribution, see Rieck and Nedelman (1991).
That is, the distribution (2) may be stochastically represented as

Y = ρ+ 2 arcsinh
(
αZ/2

)
, (3)

where, in our case, Z ∼ SN(0, 1, γ), with SN(0, 1, γ) standing for a SN distribution with zero
mean, variance one and asymmetry parameter γ.

Figure 2 present the density of the SNBS distribution for different values of γ and α. In
short, in terms of the three parameters, the distribution is symmetric around ρ, for γ = 0 (in
this case we have the log-BS distribution) and for small values of α. Positive asymmetry is
observed as α increases, ρ decreases and/or γ assumes positive values. On the other hand,
negative asymmetry is observed as α decreases, ρ increases and/or γ assumes negative values.

The following theorem is very useful to implement the ECM algorithm for ML estimation
of the SNBS regression models.

Theorem 1. Let Y ∼ SSN(α, ρ, σ = 2, γ) as in (3) with Z having the representation given

by Z =
1

σz

[
δ|X0|+

√
1− δ2X1 − µz

]
, where Xi ∼ N(0, 1); i = 0, 1 are independent and

H = |X0| ∼ HN(0, 1), where HN(0, 1) stands for a standard half normal distribution. Then,

i) The conditional density of Y , given H = h, can be expressed by

fY |H(y) =
1

2
φ [νh + ξ2(y;αδ, ρ)] ξ1(y;αδ, ρ),

where αδ = α
√

1−δ2
σz

and νh = µz+δh√
1−δ2 .
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Figure 2: Density of the log-SNBS distribution for different values of γ, with ρ = 0, (a)−(b)
α = .2 and (c)−(d) α = .8.

ii) fH|Y (h) =

φ

{
h

∣∣∣∣δ σz (ξ2y +
µz
σz

)
; 1− δ2

}
Φ

{
λ

[
σz

(
ξ2y +

µz
σz

)]} 1(h > 0),

where φ(·|µ, σ2) denotes the density of normal with mean µ and variance σ2.

Moreover

E(H|Y = y) = ηy +WΦ

(ηy
τ

)
τ and E(H2|Y = y) = η2

y + τ 2 +WΦ

(ηy
τ

)
(ηyτ) ,

where ηy = δ σz

(
ξ2y +

µz
σz

)
, τ =

√
1− δ2 e WΦ

(ηy
τ

)
=

φ

(ηy
τ

)

Φ

(ηy
τ

) .

The density in Theorem 1 corresponds to the four-parameter sinh-normal (SHN) distri-
bution proposed by Leiva et al. (2010). The proof of the theorem is in Appendix A .

3 SNBS regression models and ECM algorithm

In this section, we introduce the SNBS regression model. Also, we use a modification of
the expectation maximization (EM) algorithm called the ECM algorithm proposed by Meng
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and Rubin (1993), which we implement for the maximum likelihood estimation (MLE) of
the proposed model. In Appendix A, we present some results that are useful to obtain the
maximum likelihood estimators.

The log-SNBS regression model is defined as follows. Suppose we have a sample of size n,

say Y1, . . . , Yn, where Yi
ind∼ SSN(α,x>i β, σ = 2, γ), for i = 1, . . . , n. Associated with the i-th

individual, we assume a know p×1 vector of covariates xi, which we use to specify the linear
predictor x>i β, where β is the p × 1 vector of regression coefficients. Thus, the response Yi
can be represented as

Yi = x>i β + εi, εi ∼ SSN(α, 0, σ = 2, γ), i = 1, . . . , n. (4)

Note that, when γ = 0, the log-BS regression model developed by Rieck and Nedelman (1991)
is obtained.

For the log-SNBS regression model and θ = (α,β>, γ)>, its log-likelihood based on ob-
served data y = (y1, . . . , yn)> is `(θ|y) =

∑n
i=1 `i(θ|yi), where

`i(θ|yi) = log [φ (ξ2i;µ,σ)] + log [Φ (λξ2i;µ,σ)] + log (ξ1i;σ) , (5)

with ξ2i;µ,σ = µz + σzξ2i, ξ1i;σ = σzξ1i, such that ξ1i = ξ1

(
yi;α,x

>
i β
)

= 2
α

cosh
(yi−x>i β

2

)
,

ξ2i = ξ2(yi;α,x
>
i β) = 2

α
sinh

(yi−x>i β
2

)
. Instead consider the direct maximization of (5), we

will obtain the ML estimates through the ECM algorithm, since it allows for a more tractable
optimization process. In this case, we need to work with the so-called augmented likelihood
function. Also, instead estimating θ = (α,β>, γ)>, we will estimate θ = (α,β>, δ)>, where
δ = λ√

1+λ2
. This will be done since the related expressions for the implementation of the

ECM algorithm are more tractable, both analytically and computationally.
From the Theorem 1, we have the following hierarchical representation

Yi|(Hi = hi)
ind∼ SHN(αδ,x

>
i β, σ = 2, νhi),

Hi
ind∼ HN(0, 1), i = 1, . . . , n,

where αδ = α
√

1−δ2
σz

and νhi = µz−δhi√
1−δ2 . Then, defining yc = (y,h>)>, where h = (h1, .., hn)>,

the augmented likelihood is given by

`(θ|yc) =
n∑
i=1

log fY |H(yi) +
n∑
i=1

log fH(hi)

= n
[
log(

√
2/π)− log(2)

]
+

n∑
i=1

log
{
φ
[
νhi + ξ2(yi;αδ,x

>
i β)

]}
+

n∑
i=1

log
[
ξ1(yi;αδ,x

>
i β)

]
− 1

2

n∑
i=1

h2
i .

For the current value θ, the E-step of the ECM algorithm requires the evaluation of Q(θ|θ̂) =

E
[
`(θ|yc)|y, θ̂

]
, where the expectation is taken with respect to the conditional distribu-

tion H|(Y = y) and evaluated at θ̂. For the estimate of θ at r-th iteration, say θ̂
(r)

=
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(α̂(r), β̂
(r)
, δ(r))>, consider ĥ

(r)
i = E[Hi|yi,θ = θ̂

(r)
] and ĥ

2(r)
i = E[H2

i |yi,θ = θ̂
(r)

] that are
obtained by using the conditional expectation given in Theorem 1, and are given by

ĥi = η̂yi +WΦ

(
η̂yi
τ̂

)
τ̂ , and

ĥ2
i = η̂2

yi
+ τ̂ 2 +WΦ

(
η̂yi
τ̂

)
(η̂yi τ̂) , (6)

where, η̂yi = δ̂
√

1− r2δ̂2

(
ξ2(yi; α̂,x

>
i β̂) +

rδ̂

1− r2δ̂2

)
, τ̂ =

√
1− δ̂2 andWΦ(z) = φ(z)/Φ(z),

z ∈ R.
After some algebra, it follows that the conditional expectation of the augmented log-

likelihood function has the form

Q
(
θ|θ(r)

)
= E

[
`(θ|yc)|y, θ̂

(r)
]

= c− δ2(r)

2(1− δ2(r))

n∑
i=1

(
r2 − 2 r ĥ

(r)
i + ĥ

2(r)
i

)
− δ(r)√

1− δ2(r)

n∑
i=1

[(
r − ĥ(r)

i

)
ξ2

(
yi;α

(r)
δ ,x>i β

(r)
)]
− 1

2

n∑
i=1

{
ξ2

(
yi;α

(r)
δ ,x>i β

(r)
)}2

+
n∑
i=1

log
[
ξ1

(
yi;α

(r)
δ ,x>i β

(r)
)]
− 1

2

n∑
i=1

ĥ
2(r)
i .

Hence, the ECM algorithm corresponds to iterate the following steps:

E-step: Given θ = θ̂
(r)

, compute ĥi and ĥ2
i , for i = 1, . . . , n using results in (6);

CM-step 1: Fix β̂
(r)

and δ̂(r) and update α̂(r) through the positive root of the following quadratic
equation

α̂2 + b̂(r)α̂+ ĉ(r) = 0,

where

b̂(r) =
2δ̂(r)

√
1− r2δ̂2(r)

n(1− δ̂2(r))

 n∑
i=1

sinh

yi − x>i β̂
(r)

2

 ĥ
(r)
i − r

n∑
i=1

sinh

yi − x>i β̂
(r)

2

 ,
ĉ(r) = −

4
(

1− r2δ̂2(r)
)

n(1− δ̂2(r))

n∑
i=1

sinh

yi − x>i β̂
(r)

2


2

.

That is, α̂(r+1) = −b̂(r+1)+
√
b̂2(r+1)−4ĉ(r+1)

2 .

CM-step 2: Fix α̂(r+1) and update β̂
(r)

and δ̂(r) using

β̂
(r+1)

= argmax

β̂

Q
(
α̂(r+1), β̂, δ̂(r)

)
and δ̂(r+1) = argmax

δ
Q
(
α̂(r+1), β̂

(r+1)
, δ
)
.
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The updating of β̂
(r+1)

and δ̂(r+1) need to be done through some numerical optimization method.
In this work we use the function optim, available at software R (R Core Team, 2008), considering
the L-BFGS-B optimization algorithm (Byrd et al., 1995).

We start the ECM algorithm with initial values α̂(0), β̂
(0)

and δ̂(0). The values β̂
(0)

can be
obtained through ordinary least squares estimates of log-SNBS regression model. The value α̂(0)

can be obtained from α̂(0) =

{
(4/n)

∑n
i=1

[
sinh

(
yi − x>i β̂

(r)
/2
)]2
}1/2

, see Lemonte and Cordeiro

(2010) to details. After getting α̂(0) and β̂
(0)

, get zi =
(
2/α̂(0)

)
sinh

(
yi − x>i β̂

(r)
/2
)

; i = 1, . . . , n,

observations that have SN distribution. Thus, δ̂(0) can be obtained by maximizing (numerically)
the log-likelihood function of SN distribution with respect to δ, which is given by

`(θ) =
n∑
i=1

[
log(2) + log(σz) + log [φ (µz + σzyi)] + log Φ [λ(µz + σzyi)]

]
.

According to Vilca et al. (2011), for ensuring that the true ML estimates are obtained, it is recom-
mended to run the ECM algorithm using a range of different starting values and checking whether
all of them result in similar estimates. The steps of the ECM algorithm are repeated until a suitable

convergence is attained, for example, using
∥∥∥θ(r) − θ(r−1)

∥∥∥ < ε, ε > 0.

The observed information matrix is obtained as I(θ) = −῭. Here, ῭ = [῭θ1θ2 ], θ1,θ2 = α,β, γ,
is the Hessian matrix, where ῭

θ1θ2 = ῭
θ2θ1 = ∂2`(θ)/∂θ1∂θ

>
2 =

∑n
i=1 ∂

2`i(θ)/∂θ1∂θ
>
2 . The second

derivatives of `i(θ) are provided in Appendix B. The approximate standard errors (SE) of θ̂ can
be estimated by using the square roots of the diagonal elements of I−1(θ), replacing θ by the ML
estimates θ̂.

3.1 Some advantages of the proposed model

i) It is well known that there is some difficulty in estimating the parameters of the usual SN
distribution by the maximum likelihood approach when the asymmetry parameter is close to
zero. The log-SNBS regression model, based on the skew-normal of Azzalini (1985) seems to
inherit such problems in the estimation. On the other hand, the log-SNBS regression which
makes use of the CP of the SN distribution (Chaves et al., 2018a), circumvents problems
inherited of the log-BS regression obtained by using SN distribution of Azzalini (1985) .

ii) When the asymmetry parameter is equal to zero, the expected Fisher information is singular,
even if all parameters are identifiable. This fact affects the asymptotic properties of the
maximum likelihood estimators (MLEs). To get a direct perception of the problem, we have
run a little simulation experiment generating 5, 000 samples of size n = 200 each from log-
SNBS based on the skew-normal of Azzalini (1985) and for each sample the MLEs (α̂, β̂, λ̂)>

have been computed. In this case, we fix α = .8, β = (1, 2)> and λ = 1. Figure 3 displays the
corresponding empirical distribution of α̂ and of (α̂, β̂0)>, in the form of an histogram (left
panel) and a scatter plot (right panel), respectively. Moreover, it was generated 5, 000 samples
of size n = 200 each from log-SNBS based on the CP and for each sample the MLEs (α̂, β̂, γ̂)>

have been computed. In this case, we fix α = .8, β = (1, 2)> and γ = .137. The values of λ
and γ were the same ones used by Arellano and Azzalini (2008). The empirical distribution of
the estimates α̂ of parameter α is as shown in the left panel of Figure 4, while that of (α̂, β̂0)>
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is in the right panel of the same figure. Clearly these empirical distributions are much closer
to normality than those in Figure 3. In fact, it can be shown that the singularity of the
expected Fisher information matrix when the skewness parameter is null does not occur any
longer.
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Figure 3: Estimated distributions of the MLEs when samples of size n = 200 are drawn from
log-SNBS based on the skew-normal of Azzalini (1985); the left panel displays the histogram
of α̂, the right panel displays the scatter plot of (α̂, β̂0)>.

α̂

D
en

si
ty

0.50 0.55 0.60 0.65 0.70 0.75

0
2

4
6

8
10

12

1.1 1.2 1.3 1.4 1.5 1.6 1.7

0.
55

0.
60

0.
65

0.
70

0.
75

α̂

β̂ 0
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4 Residual analysis

The residual analysis is an important tool for model fit assessment. It is possible, through the
residual analysis, checking the presence of outliers, as well as the departing from model assumptions.
Following the methodology proposed by Dunn and Smyth (1996), we consider the quantile residual.

Let Yi|θ ∼ SSN(α,x>i β, σ = 2, γ) be a r.v. with a cumulative distribution function (cdf) given
by FYi(yi) = Φγ(ξ2i), where Φγ(·) is the cdf of the SN(0, 1, γ), see Azzalini (2013).

Therefore we can define the quantile residual as

Rq,i = Φ−1
{

Φγ̂

[
ξ2

(
yi; α̂,x

>
i β̂
)]}

, (7)

where (̂·) is the respective ML estimator. Therefore, with α̂, γ̂ and β̂ being consistent estimators
of α, γ and β, respectively, we have that Rq,i converges in distribution to the standard normal
distribution.

5 Statistics for Model comparison

There exist a variety of methodologies to compare several competing models for a given data
set and to select the one that best fits the data. We consider model choice criteria which can
be easily computed using the available ECM algorithm output, namely: the Akaike’s information
criterion (AIC) proposed by Akaike (1974) and Bayesian information criterion (BIC) proposed by
Schwarz (1978). The AIC is based on the likelihood penalized by the number of model parameters.
The BIC, in addition to the number of parameters, weights the sample size. These are defined as
AIC = −2`(θ|y)+2k and BIC = −2`(θ|y)+k log(n), where `(θ|y) it’s the likelihood of the model
defined in (5), k is the total number of model parameters and n is the number of observations.
Lower AIC or BIC values indicate better fitting models.

6 Simulation studies

In this section we present three simulation studies: parameter recovery of the ECM algorithm
(PRC), the behavior of the proposed residuals (R) and the performance of the statistics of model
comparison (SMC). Several relevant scenarios were considered, which correspond to the combination
of the levels of some factors of interest. The factors (with the respective levels within parenthesis)
are: sample size (n) (10, 50, 200), that is, small, medium and large sample sizes, value of the
parameter α (.5,1.5), that is, low and moderate variability, and value of the parameter γ (-.67,-
.45,0,.45,.67), that is high and medium negative skewness, symmetry and high and medium positive
skewness. For the PRC and SMC studies, all scenarios and R = 100 replicas (simulated responses
from the model) were considered. For the other study, only one replica and only scenario was used.
Specifically for the PRC study, we present only the results for three values of γ(−.67, 0, .45) and
one value of α(.5), since for the others scenarios the patterns were similar and can be found in the
supplementary material. More specific details concerning each study are presented in the following
subsections.

The general model used was

Yi = x>i β + εi, εi ∼ SSN(α, 0, σ = 2, γ), i = 1, . . . , n.

where β = (1, 2)>.
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6.1 Parameter recovery

As previously mentioned, we present only those related to the scenario where α = .5, γ(−.67, 0, .45),
varying the value of the sample size. The sample sizes were chosen in order to verify the proprieties
of the ML estimators, as consistency, and their behavior, in terms of accuracy.

We calculated the usual statistics to measure the accuracy of the estimates: bias, variance
(Var), root mean squared error (RMSE) and absolute value of relative bias (AVRB). Let θ be the

parameter of interest, θ̂r be some estimate related to the replica r and θ̂ = (1/R)
∑R

r=1 θ̂r. The

adopted statistics are: BIAS = θ̂−θ, Var = (1/R)
∑R

r=1(θ̂r− θ̂)2, RMSE =

√
(1/R)

∑R
r=1(θ − θ̂r)2,

AVRB = |θ̂−θ|/|θ|. We considered (< .001) to represent positive values (statistics and/or estimates)
and (> −.001) to denote negative values, when they are close to zero.

Tables 1, 2 and 3 present some results. We can notice that the estimates obtained for α, β0

and β1 tend to the correspondent true values in all scenarios. On the other hand, under the sample
sizes equal to n = 10 and n = 50, γ is overestimated, sometimes underestimated. Under the biggest
sample size (n = 200), this parameter is always overestimated.

Table 1: Results of simulation study (PRC) - γ = −.67.

Parameter n Mean Variance Bias REQM AVRB

10 .447 .002 -.053 .068 .105
α 50 .504 <.001 .004 .021 .008

200 .515 <.001 .015 .025 .030
10 .966 .080 -.034 .285 .034

β0 50 .998 .013 -.002 .114 .002
200 .996 .003 -.004 .054 .004
10 2.038 .328 .038 .574 .019

β1 50 2.013 .053 .013 .230 .006
200 2.019 .011 .019 .104 .009
10 -.575 .377 .095 .622 .142

γ 50 -.718 .080 -.048 .287 .072
200 -.778 .017 -.108 .169 .161

6.2 Behavior of the residuals

For this study we considered the scenario where α = .5, γ = .67 and n = 200. Here we simulated
only one set of observations for four different models: log-SNBS, log-BS, log-BS-t (Cancho et al.,
2010) and log-StBS (Balakrishnan et al., 2017). The first one is the model given by (4) while the
second corresponds to its particular case when γ = 0. The third and the fourth models correspond
to the model (4) using in (3) instead of a centred SN distribution, an Student-t and a skew Student-t
distribution, with ν = 4 degrees of freedom and asymmetry parameter γ = .67, respectively. For
each simulated data set we fit a log-SNBS regression model and calculate the residuals presented
in (7). Four plots were built for each situation, including an simulated 95% confidence envelope for
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Table 2: Results of simulation study (PRC) - γ = 0.

Parameter n Mean Variance Bias REQM AVRB

10 .445 .001 -.055 .064 .110
α 50 .488 <.001 -.012 .016 .024

200 .498 <.001 -.002 .004 .005
10 1.017 .082 .017 .286 .017

β0 50 .998 .018 -.002 .136 .002
200 1.001 .004 .001 .061 .001
10 1.983 .315 -.017 .562 .008

β1 50 2.002 .072 .002 .268 .001
200 1.996 .015 -.004 .122 .002
10 -.016 .011 -.016 .108 -

γ 50 -.039 .026 -.039 .166 -
200 .006 .012 .006 .109 -

Table 3: Results of simulation study (PRC) - γ = .45.

Parameter n Mean Variance Bias REQM AVRB

10 .439 .003 -.061 .081 .123
α 50 .506 .001 .006 .028 .012

200 .513 <.001 .013 .025 .026
10 1.051 .128 .051 .361 .051

β0 50 .992 .016 -.008 .128 .008
200 1.001 .003 .001 .056 .001
10 1.907 .426 -.093 .659 .047

β1 50 2.001 .067 .001 .258 .001
200 1.992 .012 -.008 .112 .004
10 .432 .461 -.018 .679 .040

γ 50 .525 .156 .075 .401 .166
200 .614 .033 .164 .245 .364

the residuals, and they are presented in Figures (5), (6), (7) and (8). To simulate from the skew
Student-t distribution we used the function rst from the R package sn.

We can notice that, when the log-SNBS regression model (or its particular case, the log-BS
regression model) is the underlying one, the residuals present a symmetric behavior, resembling
a standard normal distribution, with all of them within the simulated 95% confidence envelope
within the interval (-2,2), with no systematic behavior. On the other hand, when the underlying
model is the log-BS-t, we observe some outliers and many observations that tend to outside the
simulated 95% confidence envelope, which, in its turn, presents a behavior compatible with a heavy
tails distributions. Finally, when the underlying model is the log-StBS, we observe some outliers, a
skewed behavior of the residuals, with many observations lying outside the simulated 95% confidence
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envelope, which, in its turn, presents a behavior compatible with a skewed heavy tails distributions.
In conclusion, we can say that the proposed residuals are appropriate to detect when the model does
not fit properly to the data, concerning the generating distribution, identifying how this distribution
differs from the SN (the generating distribution).
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Figure 5: Residual plots for the observations generated from a log-SNBS regression model.

6.3 Statistical of model comparison

In order to verify the performance of the statistics of model comparison, we conducted a simu-
lation study considering four different scenarios. In the first two scenarios, we simulated R = 100
replicas (observations) of the log-SNBS regression model with α = .5, β = (1, 2)>, γ = .67, con-
sidering two samples sizes (n = 50, n = 200) and we fit two competing models, the log-SNBS and
log-BS regression models. The last two scenarios are equivalent to the two first, but the replicas
were simulated from the log-BS regression model.

In the first two scenarios, for n = 50, the criteria AIC and BIC chose the log-SNBS regression
model (the underlying model) in 97% and 95% of the replicas, respectively, whereas, for n = 200,
both statistics chosen the true model in 98% of the scenarios. On the other hand, for the two last
scenarios, under n = 50, the criteria AIC and BIC chose the log-BS model (the underlying model)
in 97% and 99% of the scenarios, respectively, whereas, under n = 200, these percentages were
100% and 100%, respectively. Table 4 presents the averaged criteria for the four scenarios. It can
be seen that the underlying model is chosen, with a high probability, in any situation, even under
a small sample size.
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Figure 6: Residual plots for the observations generated from a log-BS regression model.
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Figure 7: Residual plots for the observations generated from a log-BS-t model.

7 Real data analysis

We considered the data set analyzed by Meintanis (2007), which is related to football matches
of the UEFA Champions League (Union of European Football Associations). It is related to football
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Figure 8: Residual plots for the observations generated from a log-StBS model.

Table 4: Averaged criteria for the simulation study (SMC).

True underlying model: log-SNBS

Model n AIC BIC
log-SNBS 50 69.481 77.129

200 270.105 283.299
log-BS 50 73.389 79.125

200 282.964 292.859

True underlying model: log-BS

Model n AIC BIC
log-SNBS 50 74.930 82.578

200 287.320 300.514
log-BS 50 73.945 79.681

200 284.139 294.034

matches where (i) there was at least one goal scored by the home team, and (ii) there was at least
one goal scored by either team from the penalty spot, lack of kick, or any other direct bid. Let
T1 be the time in minutes that the first goal eas scored by either team and let T2 be the time in
minutes that the first goal of any sort, was scored by the home team. The objective is to predict
the time in minutes for the first goal be scored by the home team based on the time in minutes the
first goal scored by either team. From Figure 9 it can be seen that a linear model can be suitable
to link the natural logarithm of these two variables.
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Figure 9: Scatter plot between the natural logarithm of the T1 and T2.

We assume that the response variable, in its original scale, can be modeled by a SN distribution.
Therefore, its natural logarithm can be modeled by a SSN distribution.

The two proposed model are (the log-SNBS model):

Yi = β0 + β1xi + εi, i εi ∼ SSN(α,x>i β, σ = 2, γ), i = 1, . . . , 37,

where Yi = log(T2i), xi = log(T1i), Tji, j = 1, 2, is the value of the variable j for the team i, εi|θ
i.i.d.∼

SSN(α, 0, σ = 2, γ) and the log-BS model (i.e., considering γ = 0). Figures 10 and 11 present the
residual analysis for the two models. We detect that the log-SNBS model provides a better fit
than the log-BS model for the UEFA Champions League data. Specifically, from the simulated
95% confidence envelope shown in Figure 11(d), we can notice that the observations appear to
form a slight downward-facing. Also, there are observations absolutelying outside the simulated
95% confidence envelope for the log-BS model. However, the simulated 95% confidence envelope
in Figure 10(d) indicates that the log-SNBS model offers an excellent fit to the UEFA Champions
League data, providing that all the observations are inside of the simulated 95% confidence envelope,
without show any systematic behavior.

Table 5 presents the estimates of the parameters, standard error (SE) and the 95% equi-tailed
confidence intervals for the two models. We have indications that the asymmetry parameter is
different from zero, since zero does not belong the confidence interval. Also the larger is the time
to the first goal be scored by either team, the higher is the time to a goal of any sort be scored.
Moreover, it is noted that both criteria selected the log-SNBS model.

8 Concluding Remarks

In this paper, we introduce a new log-SNBS regression model and develop several inference tools
for this model. Parameter estimation, model fit assessment and model comparison were developed
through ECM algorithm. The results from the simulation studies indicated that the ML method
recovered all parameters properly. Also, the tools for model comparison and model fit assessment
indicated that the log-SNBS regression model fitted to the data well and better than the usual
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Figure 10: Residual analysis for the log-SNBS model.

1.5 2.0 2.5 3.0 3.5

−
3

−
1

1
2

3

(a)

Fitted values

Q
ua

nt
ile

 r
es

id
ua

l 

0 5 10 15 20 25 30 35

−
3

−
1

1
2

3

(b)

Index

Q
ua

nt
ile

 r
es

id
ua

l

−
2

0
1

2

(c)

−2 −1 0 1 2

−
3

−
1

1
2

3

(d)

Quantiles of the standard normal distribution

Q
ua

nt
ile

 r
es

id
ua

l

   

Figure 11: Residual analysis for the log-BS model.

log-BS model. As future developments, we suggest the use of other family distributions, as the skew
scale-mixture of normals distributions, to generate new family of BS-type distributions.
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Table 5: Estimates, standard error, 95% confidence intervals for the parameters of the the
log-SNBS and log-BS models and model selection criteria.

Parameter log-SNBS log-BS

Estimate SE CI95% Estimate SE CI95%

α .877 .113 [.841; .914] .900 .105 [.866; .933]
β0 1.468 .863 [1.189; 1.746] 1.060 .724 [.827; 1.293]
β1 .462 .238 [.385; .538] .568 .200 [.503; .632]
γ -.748 .211 [-.816; -.680] - - -

AIC 92.839 97.468
BIC 99.282 102.301
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Appendix

Appendix A: The ECM algorithm

The following result is used in the proof of Theorem 1.
Lemma 1. Let X ∼ N(η, τ2), thus ∀a ∈ R

E(X|X > a) = η +
φ
(a−η

τ

)
1− Φ

(a−η
τ

)τ ; E(X2|X > a) = η2 + τ2 +
φ
(a−η

τ

)
1− Φ

(a−η
τ

)(η + a)τ.

Proof of Theorem 1

i) Since Z ∼ SN(0, 1, γ), using the stochastic representation, we can define Z as

Z =
1

σz

[
δH +

√
1− δ2X1 − µz

]
=

2

α
sinh

(
z − ρ

2

)
.

Therefore, Z|(H = h) =
2

α
sinh

(
z − ρ

2

) ∣∣∣(H = h) ∼ N(µh, σ
2), where µh =

δh− µz
σz

and

σ2
h = 1−δ2

σ2
z

. Then,

W |(H = h) = −µh
σ

+
2

σα
sinh

(
z − ρ

2

) ∣∣∣(H = h) ∼ N(0, 1).

Y = ρ+ 2arcsinh
[α

2
(µh + σhW )

]
.

From the above result, the proof is concluded.

ii) As fH(h) = 2φ(h|0, 1), h > 0 and

φ[νh + ξ2(y;αδ, ρ)] =

√
1− δ2

σz
φ

(
ξ2y

∣∣∣δh− µz
σz

;
1− δ2

σ2
z

)
.

Then, we have

φ

(
ξ2y

∣∣∣δh− µz
σz

;
1− δ2

σ2
z

)
φ(h|0, 1) = φ

(
ξ2y

∣∣∣− µz
σz

;
1

σ2
z

)
φ
[
h
∣∣∣δξ2y;µ,σ; 1− δ2

]
,

where φ(·|µ, σ2) denotes the density of normal with mean µ and variance σ2.
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Therefore, the proof of i) follows directly from fH|Y (h) = fY |H(y)fH(h)/fT (t). For proving ii)−iii),
notice that, for k = 1, 2, we have that

E
[
Hk|Y

]
=
φ
[
h
∣∣∣δ ξ2y;µ,σ; 1− δ2

]
Φ (λ ξ2y;µ,σ)

∫ ∞
0

hk dh.

Then, using some proprieties of the half-normal (HN) distribution from Lemma 1, the proof is
concluded.

Appendix B: The Observed Fisher information matrix
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+WΦ(λξ2i;µ,σ)

[
λ

(
∂2ξ2i;µ,σ

∂γ2

)
+

(
∂ξ2i;µ,σ

∂γ

)(
∂λ

∂γ

)
+ ξ2i;µ,σ

(
∂2λ

∂γ2

)
+

(
∂λ

∂γ

)(
∂ξ2i;µ,σ

∂γ

)]
+W

′
Φ(λξ2i;µ,σ)

[
λ

(
∂ξ2i;µ,σ

∂γ

)
+ ξ2i;µ,σ

(
∂λ

∂γ

)]2

+
1

ξ2
1i;σ

[
ξ1i;σ

(
∂2ξ2i;µ,σ

∂γ2

)
−
(
∂ξ2i;µ,σ

∂γ

)2
]
,

where W
′
Φ(x) = −WΦ(x)[x+WΦ(x)] is the derivative of WΦ(x) with respect to x, see Vilca et al.

(2011), and the other quantities are as before defined.
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