ON THE SPECTRUM FOR THE GENERA OF MAXIMAL CURVES OVER SMALL FIELDS

NAZAR ARAKELIAN, SAEED TAFAZOLIAN, AND FERNANDO TORRES

Abstract. Motivated by previous computations in Garcia, Stichtenoth and Xing (2000) paper [9], we discuss the spectrum $M(q^2)$ for the genera of maximal curves over finite fields of order q^2 with $7 \leq q \leq 16$. In particular, by using a result in Kudo and Harashita (2016) paper [17], the set $M(7^2)$ is completely determined.

1. Introduction

Let X be a (projective, nonsingular, geometrically irreducible, algebraic) curve of genus g defined over a finite field $K = \mathbb{F}_\ell$ of order ℓ. The following inequality is the so-called Hasse-Weil bound on the size N of the set $X(K)$ of K-rational points of X:

$$|N - (\ell + 1)| \leq 2g \cdot \sqrt{\ell}. \quad (1.1)$$

In Coding Theory, Cryptography, or Finite Geometry one is often interested in curves with “many points”, namely those with N as bigger as possible. In this paper, we work out over fields of square order, $\ell = q^2$, and deal with so-called maximal curves over K; that is to say, those curves attained the upper bound in (1.1), namely

$$N = q^2 + 1 + 2g \cdot q. \quad (1.2)$$

The subject matter of this note is in fact concerning the spectrum for the genera of maximal curves over K,

$$M(q^2) := \{g \in \mathbb{N}_0 : \text{there is a maximal curve over } K \text{ of genus } g\}. \quad (1.3)$$

In Section 2 we subsume basic facts on a maximal curve X being the key property the existence of a very ample linear series D on X equipped with a nice property, namely (2.2). In particular, Castelnuovo’s genus bound (2.3) and Halphen’s theorem imply a nontrivial restriction on the genus g of X, stated in (3.1) (see [15]) and thus $g \leq q(q-1)/2$ (Ihara’s bound [14]).

Let r be the dimension of D. Then $r \geq 2$ by (2.2), and the condition $r = 2$ is equivalent to $g = q(q-1)/2$, or equivalent to X being K-isomorphic to the Hermitian curve $y^{q+1} = x^q + x$ [24], [7]. Under certain conditions, we have a similar result for $r = 3$ in Corollary 2.3 and Proposition 3.1. In fact, in Section 3 we bound g via Stöhr-Voloch theory [21]

Key words: finite field, Hasse-Weil bound, Stöhr-Voloch theory, maximal curve.

October 6, 2016.
applied to D being the main results the aforementioned proposition and its Corollary 3.2. Finally, in Section 4 we apply all these results toward the computation of $M(q^2)$ for $q = 7, 8, 9, 11, 13, 16$. In fact, here we improve [9, Sect. 6] and, in particular, we can compute $M(7^2)$ (see Corollary 4.3) by using Corollary 3.2 and a result of Kudo and Harashita [17] which asserts that there is no maximal curve of genus 4 over \mathbb{F}_{49}.

We recall that the approach in this paper is quite different from Danisman and Ozdemir [3], where in particular the set $M(7^2)$ is missing.

Conventions. \mathbb{P}^s is the s-dimensional projective space defined over the algebraic closure of the base field.

2. Basic Facts on Maximal curves

Throughout, let X be a maximal curve over the field $K = \mathbb{F}_{q^2}$ of order q^2 of genus g. Let $\Phi : X \to X$ be the Frobenius morphism relative to K (in particular, the set of fixed points of Φ coincides with $X(K)$). For a fixed point $P_0 \in X(K)$, let $j : X \to J, P \mapsto [P - P_0]$ be the embedding of X into its Jacobian variety J. Then, in a natural way, Φ induces a morphism $\Phi : J \to J$ such that

$$(2.1) \quad j \circ \Phi = \Phi \circ j.$$

Now from (1.2) the enumerator of the Zeta Function of X is given by the polynomial $L(t) = (1 + qt)^{2g}$. It turns out that $h(t) := t^{2g}L(t^{-1})$ is the characteristic polynomial of Φ; i.e., $h(\Phi) = 0$ on J. As a matter of fact, since Φ is semisimple and the representation of endomorphisms of J on the Tate module is faithful, from (2.1) it follows that

$$(2.2) \quad (q + 1)P_0 \sim qP + \Phi(P), \quad P \in X.$$

This suggests to study the Frobenius linear series on X, namely the complete linear series $D := |(q + 1)P_0|$ which is in fact a K-invariant of X by (2.2); see [6], [12, Ch. 10] for further information.

Moreover, D is a very ample linear series in the following sense. Let r be the dimension of D, which we refer as the Frobenius dimension of X, and $\pi : X \to \mathbb{P}^r$ be a morphism related to D; we noticed above that $r \geq 2$ by (2.2). Then π is an embedding [16, Thm. 2.5]. In particular, Castelnuovo’s genus bound applied to $\pi(X)$ gives the following constrain involving the genus g and Castelnuovo numbers $c_0(r, q + 1)$:

$$(2.3) \quad g \leq c_0(r) = c_0(r, q + 1) := \begin{cases} \frac{(2q - (r - 1))^2 - 1}{8(r - 1)} & \text{if } r \text{ is even}, \\ \frac{(2q - (r - 1))^2}{8(r - 1)} & \text{if } r \text{ is odd}. \end{cases}$$

Remark 2.1. A direct computation shows that $c_0(r) \leq c_0(s)$ provided that $r \geq s$.

Since $c_0(r) \leq c_0(2) = q(q - 1)/2$, as $r \geq 2$, then $g \leq q(q - 1)/2$ which is a well-known fact on maximal curves over K due to Ihara [14]. In addition, $c_0(r) \leq c_0(3) = (q - 1)^2/4$ for
$r \geq 3$, so that the genus g of a maximal curve over K does satisfy the following condition (see [7])

\[(2.4) \quad g \leq c_0(3) = (q - 1)^2/4 \quad \text{or} \quad g = c_0(2) = q(q - 1)/2.\]

As a matter of fact, the following sentences are equivalent.

Lemma 2.2. ([19], [7])

1. $g = c_0(2) = q(q - 1)/2$;
2. $(q - 1)^2/4 < g \leq q(q - 1)/2$;
3. $r = 2$;
4. \mathcal{X} is K-isomorphic to the Hermitian curve $\mathcal{H} : y^{q+1} = x^q + x$.

Corollary 2.3. Let \mathcal{X} be a maximal curve over K of genus g and Frobenius dimension r. Suppose that

\[c_0(4) = (q - 1)(q - 2)/6 < g \leq c_0(3) = (q - 1)^2/4.\]

Then $r = 3$.

Proof. If $r \geq 4$, then $g \leq (q - 1)(q - 2)/6$ by (2.3); so $r = 2$ or $r = 3$. Thus $r = 3$ by Lemma 2.2 and hypothesis on g. \qed

Under certain conditions, this result will be improved in Proposition 3.1.

The following important remark is commonly attributed to J.P. Serre.

Remark 2.4. Any curve (nontrivially) K-covered by a maximal curve over K is also maximal over K. In particular, any subcover over K of the Hermitian curve is so; see e.g. [9], [2].

Remark 2.5. We do point out that there are maximal curves over K which cannot be (nontrivially) K-covered by the Hermitian curve \mathcal{H}, see [11], [22], [10].

We also notice that there are maximal curves over K that cannot be Galois covered by the Hermitian curve \mathcal{H}, [8], [4], [22], [10].

We also observe that all the examples occurring in this remark are defined over fields of order $q^2 = \ell^6$ with $\ell > 2$.

3. The set $M(q^2)$

In this section we investigate the spectrum $M(q^2)$ for the genera of maximal curves defined in (1.3). By using Remark 2.4 this set has already been computed for $q \leq 5$ [9, Sect. 6]. As a matter of fact, $M(2^2) = \{0, 1\}$, $M(3^2) = \{0, 1, 3\}$, $M(4^2) = \{0, 1, 2, 6\}$, and $M(5^2) = \{0, 1, 2, 3, 4, 10\}$. Thus from now on we assume $q \geq 7$.

Let $c_0(r)$ be the Castelnuovo’s number in (2.3) and $g \in M(q^2)$. It is known that $g = \lfloor c_0(3) \rfloor$ if and only if \mathcal{X} is the quotient of the Hermitian curve \mathcal{H} by certain involution [6],
[1], [15]. Indeed, \(\mathcal{X} \) is uniquely determined by plane models of type: \(y^{(q+1)/2} = x^q + x \) if \(q \) is odd, and \(y^{q+1} = x^{q/2} + \ldots + x \) otherwise.

Let us consider next an improvement on (2.4). If \(r \geq 4 \), from (2.3), \(g \leq c_0(4) = (q - 1)(q - 2)/6 \). Let \(r = 3 \) and suppose that
\[
c_1(3) = c_1(q^2, 3) := (q^2 - q + 4)/6 < g \leq c_0(3).
\]
Here Halphen’s theorem implies that \(\mathcal{X} \) is contained in a quadric surface and so \(g = c_0(3) \) (see [15]). In particular, (2.4) improves to
\[
(3.1) \quad g \leq c_1(3), \quad \text{or} \quad g = \lfloor c_0(3) \rfloor, \quad \text{or} \quad g = c_0(2).
\]
Next we complement Corollary 2.3 under certain extra conditions.

Proposition 3.1. Let \(\mathcal{X} \) be a maximal curve over \(K \), \(q \not\equiv 0 \pmod{3} \), of genus \(g \) with Frobenius dimension \(r = 3 \) such that \((4q - 1)(2g - 2) > (q + 1)(q^2 - 5q - 2) \). Then
\[
g \geq c_0(4) + (q + 1)/6 = (q^2 - 2q + 3)/6.
\]

Proof. We shall apply Stöhr-Voloch theory [21] to \(D = \{|(q + 1)|P_0| \}. \) Let \(R = \sum_P v_P(R)P \) and \(S = \sum_P v_P(S)P \) denote respectively the ramification and Frobenius divisor of \(D \). Associated to each point \(P \in \mathcal{X} \), there is a sequence of the possible intersection multiplicities of \(\mathcal{X} \) with hyperplanes in \(\mathbb{P}^3 \), namely \(\mathcal{R}(P) = 0 = j_0(P) < 1 = j_1(P) < j_2(P) < j_3(P). \)
From (2.2), \(j_3(P) = q + 1 \) (resp. \(j_3(P) = q \)) if \(P \in \mathcal{X}(K) \) (resp. \(P \not\in \mathcal{X}(K) \)). Moreover, the sequence \(\mathcal{R}(P) \) is the same for all but a finitely number of points (the so-called \(D \)-Weierstrass points of \(\mathcal{X} \)); such a sequence (the orders of \(D \)) will be denoted by \(E : 0 = \epsilon_0 < 1 = \epsilon_1 < \epsilon_2 < \epsilon_3 = q. \) One can show that the numbers \(1 = \nu_1 < q = \nu_2 \) (the \(K \)-Frobenius orders of \(D \)) satisfy the very basic properties (5) and (6) below (cf. [21]):

1. \(j_i(P) \geq \epsilon_i \) for any \(i \) and \(P \in \mathcal{X} \);
2. \(v_P(R) \geq 1 \) for \(P \in \mathcal{X}(K) \);
3. \(\deg(R) = (\epsilon_3 + \epsilon_2 + 1)(2g - 2) + (r + 1)(q + 1) \);
4. \((p \text{-adic criterion}) \) If \(\epsilon \) is an order and \((\eta^t) \not\equiv 0 \pmod{p} \), then \(\eta \) is also an order;
5. \(v_P(S) \geq j_2(P) + (j_3(P) - \nu_2) = j_2(P) + 1 \) for \(P \in \mathcal{X}(K) \);
6. \(\deg(S) = (\nu_1 + \nu_2)(2g - 2) + (q + 2 + r)(q + 1) \).

Claim \(\epsilon_2 = 2. \) Suppose that \(\epsilon_2 \geq 3; \) then \(\epsilon_2 \geq 4 \) by the \(p \)-adic criterion. Then the maximality of \(\mathcal{X} \) gives
\[
\deg(S) = (1 + q)(2g - 2) + (q^2 + 3)(q + 1) \geq 5(q + 1)^2 + 5q(2g - 2)
\]
so that
\[
(q + 1)(q^2 - 5q - 2) \geq (4q - 1)(2g - 2),
\]
a contradiction and the proof of the claim follows.

Finally, we use the ramification divisor \(R \) of \(D \); we have
\[
\deg(R) = (q + 2 + 1)(2g - 2) + 4(q + 1) \geq (q + 1)^2 + q(2g - 2)
\]
and thus \(g \geq (q^2 - 2q + 3)/6 \).

Corollary 3.2. Let \(X \) be a maximal curve over \(K \), of genus \(g \), where \(q \not\equiv 0 \pmod{3} \). Then

\[
g \geq (q^2 - 2q + 3)/6 \quad \text{provided that } g > (q - 1)(q - 2)/6.
\]

Proof. Let \(D \) be the Frobenius linear series of \(X \) and \(r \) the Frobenius dimension. By (2.3) and Lemma 2.2, we can assume \(r = 3 \). Now the hypothesis on \(g \) is equivalent to

\[
(2g - 2) > (q + 1)(q - 4)/3;
\]

thus

\[
(4q - 1)(2q - 2) > (4q - 1)(q + 1)(q - 4)/3 > (q + 1)(q^2 - 5q - 2),
\]

and the result follows from Proposition 3.1. \(\square \)

4. \(M(q^2) \) for \(7 \leq q \leq 16 \)

In this section we shall improve on the following computations which follow from [9, Remark 6.1] and (3.1).

Proposition 4.1.

(1) \(\{0, 1, 2, 3, 5, 7, 9, 21\} \subseteq M(7^2) \subseteq [0, 7] \cup \{9\} \cup \{21\}; \)

(2) \(\{0, 1, 2, 3, 4, 6, 7, 9, 10, 12, 28\} \subseteq M(8^2) \subseteq [0, 10] \cup \{12\} \cup \{28\}; \)

(3) \(\{0, 1, 2, 3, 4, 6, 8, 9, 12, 16, 36\} \subseteq M(9^2) \subseteq [0, 12] \cup \{16\} \cup \{36\}; \)

(4) \(\{0, 1, 2, 3, 4, 5, 7, 9, 10, 11, 13, 15, 18, 19, 25, 55\} \subseteq M(11^2) \subseteq [0, 19] \cup \{25\} \cup \{55\}; \)

(5) \(\{0, 2, 3, 6, 9, 12, 15, 18, 26, 36, 78\} \subseteq M(13^2) \subseteq [0, 26] \cup \{36\} \cup \{78\}; \)

(6) \(\{0, 1, 2, 4, 6, 8, 12, 24, 28, 40, 56, 120\} \subseteq M(16^2) \subseteq [0, 40] \cup \{56\} \cup \{120\}. \)

Proposition 4.2. Let \(M(q^2) \) be the spectrum for the genera of maximal curves over \(K \). Then

(1) \(6 \not\in M(7^2); \)

(2) \(8 \not\in M(8^2); \)

(3) \(16 \not\in M(11^2); \)

(4) \(23, 24 \not\in M(13^2); \)

(5) \(36, 37 \not\in M(16^2). \)

Proof. Let \(q = 7 \). By Corollary 3.2, \(g = 6 \not\in M(7^2). \) The other cases are handle in a similar way. \(\square \)

Corollary 4.3. We have

\[
M(7^2) = \{0, 1, 2, 3, 5, 7, 9, 21\}.
\]

Proof. By the above Propositions, it is enough to show that \(4 \not\in M(7^2). \) Indeed, this is the case as follows from a result in Kudo and Harashita paper [17, Thm. B] concerning superspecial curves. \(\square \)
Remark 4.4. To compute $M(q^2)$ for $q = 8, 9, 11, 13, 16$ we need to answer the following questions:

1. Is $5 \in M(8^2)$?
2. Are $5, 7, 10, 11 \in M(9^2)$?
3. Are $8, 12, 14, 17 \in M(11^2)$?
4. Are $1, 4, 5, 7, 8, 10, 11, 13, 14, 16, 17, 19, 20, 21, 22 \in M(13^2)$?
5. Are $3, 5, 7, 9, 10, 11, 13, 14, \ldots, 22, 23, 25, 26, 27, 29, 30, 31, 32, 33, 34, 35, 38, 39 \in M(16^2)$?

Example 4.5. Here, for the sake of completeness, we provide an example of a maximal curve of genus g for each $g \in M(7^2)$; cf. [18], [23].

1. ($g = 0$) The rational curve;
2. ($g = 1$) $y^2 = x^3 + x$;
3. ($g = 2$) $y^2 = x^5 + x$;
4. ($g = 3$) $y^2 = x^7 + x$;
5. ($g = 5$) $y^8 = x^4 - x^2$;
6. ($g = 7$) $y^{16} = x^9 - x^{10}$;
7. ($g = 9$) $y^4 = x^7 + x$;
8. ($g = 21$) $y^8 = x^7 + x$.

Remark 4.6. The curves in (6), (7), and (8) above are unique up to \mathbb{F}_{19}-isomorphism; see respectively [5], [6], and [19].

Acknowledgment. The first author was partially supported by FAPESP, grant 2013/00564-1. The second author was in part supported by a grant from IPM (No. 93140117). The third author was partially supported by CNPq (Grant 308326/2014-8).

References

[18] www.manypoints.org, “manYPoints-Table of Curves with Many Points”.

CMCC/Universidade Federal do ABC, Avenida dos Estados 5001, 09210-580, Santo André, SP-Brasil

E-mail address: n.arakelian@ufabc.edu.br

School of Mathematics, Institute for Research in Fundamental Science (IPM), P.O. Box 19395-5746, Tehran, Iran, Dept. of Mathematics and Computer Science, Amirkabir University of Technology, 424 Hafez Ave, Tel: +98 (21) 64540 P.O. Box: 15875-4413, Tehran, Iran

E-mail address: saeed@gmail.com

IMECC/UNICAMP, R. Sérgio Buarque de Holanda 651, Cidade Universitária “Zeférrino Vaz”, 13083-859, Campinas, SP, Brazil

E-mail address: ftorres@ime.unicamp.br