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Summary. Mixed models are commonly used to represent longitudinal or repeated measures

data. An additional complication arises when the response is censored, for example, due to

limits of quantification of the assay used. Normal distributions for random effects and residual

errors are usually assumed, but such assumptions make inferences vulnerable to the presence

of outliers. Motivated by a concern of sensitivity to potential outliers or data with tails longer-

than-normal, we aim to develop a likelihood based inference for linear and nonlinear mixed

effects models with censored response (NLMEC/LMEC) based on the multivariate Student-t

distribution, being a flexible alternative to the use of the corresponding normal distribution. We

propose an ECM algorithm for computing the maximum likelihood estimates for NLMEC/LMEC

with standard errors of the fixed effects and likelihood function as a by-product. This algorithm

uses closed-form expressions at the E-step, which relies on formulas for the mean and vari-

ance of a truncated multivariate-t distribution, and can be computed using available software.

The proposed algorithm is implemented in the R package tlmec. An appendix which includes

further mathematical details, the R code, and datasets for examples and simulations are avail-

able as supplements. The newly developed procedures are illustrated with two case studies,

involving the analysis of longitudinal HIV viral load in two recent AIDS studies. In addition, a

simulation study is conducted to assess the performance of the proposed approach and its

comparison with the approach by Vaida and Liu (2009).
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1. Introduction

Linear and nonlinear mixed effects models (LME/NLME) are frequently used to analyze

grouped data because they model flexibly the within-subject correlation often present in

this type of data (Pinheiro and Bates, 2000). Examples of grouped data include longitudinal

data, repeated measures, and multilevel data. However, in many longitudinal studies, such

as studies on environmental pollution and infection diseases, measurement of some variables

may be subjects to a detention limit, i.e., a certain threshold value below or above which the

measurement are not quantifiable. For instance, viral load measures the amount of actively

replicating virus and depending upon the diagnostic assays used, its measurement may be

subjected to some upper and lower detection limits (hence, left or right censored), below

or above which they are not quantifiable. The proportion of censored data in these studies

may not be trivial and considering crude/adhoc methods, namely, substituting threshold

value or some arbitrary point such as midpoint between zero and cutoff for detection (Vaida

and Liu, 2009) might lead to biased estimates of fixed effects and variance components (Wu,

2010). As alternatives to crude imputation methods, Hughes (1999) proposed a likelihood-

based Monte Carlo expectation-maximization (MCEM) algorithm for LME with censored

responses (LMEC). Vaida et al. (2007) proposed a hybrid EM (HEM) algorithm for linear

and nonlinear mixed effects models with censored response (LMEC/NLMEC) using a more

efficient implementation of Hughes algorithm based on an efficient block-sampling scheme.

Vaida and Liu (2009) proposed an exact EM-type algorithm for LMEC/NLMEC which uses

closed-form expressions at the E-step, as opposed to Monte Carlo Simulation, leading to an

improvement in the speed of computation of up to an order of magnitude. More recently,

Matos et al. (2011) provided some additional tools, including influence diagnostics analyses

for LMEC/NLMEC.

In the framework of LMEC/NLMEC, the random effects and the within-subject errors

are routinely assumed to have a normal distribution for mathematical convenience. How-

ever, such normality assumptions may not always be realistic because they are vulnerable to

the presence of atypical observations. To deal with the problem of atypical observations in

LME with complete responses, some proposals have been made in the literature by replacing

the assumption of normality by a more flexible class of distributions. For instance, Pinheiro

et al. (2001) proposed a multivariate-t linear mixed model (t-LME) and demonstrated its

robustness against outliers through an application to orthodontic data and extensive sim-
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ulations. Lin and Lee (2007) developed some additional tools for t-LME from a Bayesian

perspective. Rosa et al. (2003) advocate the use of a subclass of elliptical distributions,

called normal/independent (NI) distributions (Liu, 1996) and adopted a Bayesian frame-

work to carry out posterior analysis for heavy–tailed LME (NI-LME). Further elaborations

in t-LME have been studied by Song et al. (2007) and Wang and Fan (2011). More re-

cently, in the context of heavy–tailed LMEC/NLMEC, Lachos et al. (2011) advocate the

use of the NI class of distributions and adopted a Bayesian framework to carry out posterior

analysis. Even though, some works with elliptical distributions has recently appeared in

the literature, there are no studies on censored LMEC/NLMEC under the Student-t family

from a frequentist perspective. In this paper we propose a robust parametric modeling of

LMEC/NLMEC based on the multivatiate-t distribution so that the t-LMEC/t-NLMEC is

defined and a fully likelihood based approach is considered, including the implementation

of an exact ECM algorithm for maximum likelihood (ML) estimation. As in Vaida and

Liu (2009), we show that the E-step reduces to computing the first two moments of cer-

tain truncated multivariate-t distributions. The general formulas for these moments were

derived by Lin et al. (2011) (eq. 12 and 13). They require the multivariate-t cumulative

density function (cdf), for which we use the mvtnorm() package (Genz et al., 2008) in R

(R Development Core Team, 2009). The likelihood function is easily computed as a by-

product of the E-step and is used for monitoring convergence and for model selection, such

as, the Akaike information criterion (AIC), the Bayesian information criterion (BIC) and

the likelihood ratio test (LR).

The rest of the paper is organized as follows. In Section 2, we establish notation and

outline some main results related with the the multivariate-t and truncated-t distribution.

In Section 3 the t-LMEC and related likelihood based inference is presented. In sections 4

and 5 the extension to more general t-LMEC and to t-NLMEC, respectively, is discussed.

The advantage of the proposed methodology is illustrated through the analysis of two case

studies of modelling HIV viral load in Section 6. Section 7 presents a simulation study to

compare the performance of our proposed methods with other normality based methods.

Section 8 concludes with some discussions and possible directions for future research.

2. The Multivariate t and truncated t-distribution

A random variable Y is said to follow a p-variate t distribution with location vector µ, scale

matrix Σ and degrees of freedom ν, denoted by tp(µ,Σ, ν), if it can be represented by

Y = µ + U−1/2Z, Z ∼ Np(0,Σ), U ∼ Gamma(ν/2, ν/2), (1)
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where Z and U are independent and Gamma(α, β) stands for a gamma distribution with

mean α/β, and density denoted by G(.|α, β). We then obtain the probability density func-

tion (pdf) of Y, given by

tp(y|µ,Σ, ν) =
Γ(p+ν

2 )
Γ( ν

2 )πp/2
ν−p/2|Σ|−1/2

(
1 +

δ

ν

)−(p+ν)/2

,

where Γ(.) is the standard gamma function and δ = (y−µ)>Σ−1(y−µ) is the Mahalanobis

distance. The cdf will be denoted by Tp(.|µ,Σ, ν). If ν > 1, µ is the mean of Y, and if

ν > 2, ν(ν − 2)−1Σ is its covariance matrix. As ν tends to infinity, U converges to one

with probability one, and so Y becomes marginally multivariate normal with mean µ and

covariance matrix Σ. The family of t-distributions thus provides a heavy-tailed alternative

to the normal family with mean µ and covariance matrix that is equal to a scalar multiple

of Σ (if ν > 2). In order to introduce some notation, for a Student-t random vector, we

establish the following Proposition which is important for our subsequent research.

Proposition 1. Let Y ∼ tp(µ,Σ, ν) and Y is partitioned as Y> = (Y>
1 ,Y>

2 )>, with

dim(Y1) = p1, dim(Y2) = p2, p1+p2 = p, and Σ =

(
Σ11 Σ12

Σ21 Σ22

)
and µ = (µ>1 ,µ>2 )>

be the corresponding partitions of Σ and µ. Then

i) Y1 ∼ tp1(µ1,Σ11, ν),

ii) The conditional cdf of Y2|Y1 = y1 is given by

P (Y2 ≤ y2|Y1 = y1) = Tp2

(
y2|µ2.1, Σ̃22.1, ν + p1

)
, (2)

i.e., Y2|Y1 = y1 ∼ tp2

(
µ2.1, Σ̃22.1, ν + p1

)
, where Σ̃22.1 =

(
ν + δ1

ν + p1

)
Σ22.1, δ1 =

(y1−µ1)>Σ−1
11 (y1−µ1), Σ22.1 = Σ22−Σ21Σ−1

11 Σ12, µ2.1 = µ2 +Σ21Σ−1
11 (y1−µ1),

and Tp(.|µ,Σ, ν) denotes the cdf of the p-variate Student-t distribution with parameters

µ, Σ and ν.

Proof. The proof of i) is straightforward from (1). The proof of (ii), follows from

Proposition 4 given in Arellano-Valle and Genton (2010) by setting λ = τ = 0.

Now, let Ttp(µ,Σ, ν;A) represent a p-variate truncated t distribution for tp(µ,Σ, ν)

lying within a right-truncated hyperplane

A = {x = (x1, . . . , xp)>|x1 ≤ a1, . . . , xp ≤ ap}. (3)
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Specifically, we say that the p-dimensional vector X ∼ Ttp(µ,Σ, ν;A), if its density is

given by:

f(x|µ,Σ, ν;A) =
tp(x|µ,Σ, ν)
Tp(a|µ,Σ, ν)

IA(x), (4)

where a = (a1, . . . , ap)> and IA(x) is the indicator function whose value equals one if x ∈ A
and zero elsewhere. The following propositions, are crucial for evaluating some conditional

expectations of the proposed ECM algorithm for censored mixed effects models.

Proposition 2. If X ∼ Ttp(µ,Σ, ν;A), with A as defined in (3), then

E

{(
ν + p

ν + δ

)r

X(k)

}
= cp(ν, r)

Tp(a|µ,Σ∗, ν + 2r)
Tp(a|µ,Σ, ν)

EW{W(k)}, W ∼ Ttp(µ,Σ∗, ν +2r;A),

where cp(ν, r) =
(

ν + p

ν

)r (
Γ((p + ν)/2)Γ((ν + 2r)/2)
Γ(ν/2)Γ((p + ν + 2r)/2)

)
, δ = (X− µ)>Σ−1(X− µ), a =

(a1, . . . , ap)>, Σ∗ =
ν

ν + 2r
Σ, V(0) = 1, V(1) = V, V(2) = VV> and ν + 2r > 0.

Proof. First note that if X ∼ tp(µ,Σ, ν), then we can write

(
ν + p

ν + δ

)r

tp(x|µ,Σ, ν) = cp(ν, r)tp(x|µ,Σ∗, ν + 2r). (5)

It follows that

E

{(
ν + p

ν + δ

)r

X(k)

}
= cp(ν, r)

Tp(a|µ,Σ∗, ν + 2r)
Tp(a|µ,Σ, ν)

E
{
X(k)|X ≤ a

}
,

which concludes the proof.

Proposition 3. Let X ∼ Ttp(µ,Σ, ν;A), with A as defined in (3). Consider the parti-

tion X> = (X>
1 ,X>

2 ) with dim(X1) = p1, dim(X2) = p2, p1+p2 = p, and the corresponding

partition of the parameters µ, Σ, a (ax1 ,ax2) and A (Ax1 ,Ax2). Then under the notation

given in Proposition 1 we have

E

{(
ν + p

ν + δ

)r

X(k)
2 |X1

}
=

dp(p1, ν, r)
(ν + δ1)r

Tp2(a
x2 |µ2.1, Σ̃

∗
22.1, ν + p1 + 2r)

Tp2(ax2 |µ2.1, Σ̃22.1, ν + p1)
EW{W(k)},

where dp(p1, ν, r) = (ν + p)r

(
Γ((p + ν)/2)Γ((p1 + ν + 2r)/2)
Γ((p1 + ν)/2)Γ((p + ν + 2r)/2)

)
, W ∼ Ttp2(µ2.1, Σ̃

∗
22.1, ν +

p1+2r;Ax2), δ = (X−µ)>Σ−1(X−µ), δ1 = (X1−µ1)>Σ−1
11 (X1−µ1), ax2 = (a1, . . . , ap2)>,

Σ̃
∗
22.1 =

(
ν + δ1

ν + 2r + p1

)
Σ22.1 , V(0) = 1, V(1) = V V(2) = VV> and ν + p1 + 2r > 0.
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Proof. First note that if X ∼ tp(µ,Σ, ν), then using the result given in Proposition

1-(ii), we have

(
ν + p

ν + δ

)r

tp2

(
x2|µ2.1, Σ̃22.1, ν + p1

)
=

dp(p1, ν, r)
(ν + δ1)r

tp2(x2|µ2.1, Σ̃
∗
22.1, ν + p1 + 2r) (6)

and the proof concludes by noting that

E

{(
ν + p

ν + δ

)r

X(k)
2 |X1

}
=

dp(p1, ν, r)
(ν + δ1)r

Tp2(a
x2 |µ2.1, Σ̃

∗
22.1, ν + p1 + 2r)

Tp2(ax2 |µ2.1, Σ̃22.1, ν + p1)
E

{
X(k)

2 |X2 ≤ ax2

}
,

where X(k)
2 ∼ tp2

(
µ2.1, Σ̃

∗
22.1, ν + p1 + 2r

)
.

Formulas for E{W} and E{WW>}, where W ∼ Ttp(µ,Σ, ν;A), have been recently

developed in closed form by Lin et al. (2011) (eq. 12 and 13), which depending on the

multivariate-t cdf. The computation uses existing functions for the multivariate-t cumula-

tive distribution, for which the pmvt() of the mvtnorm library (Genz et al., 2008) from R can

be used. A computer code to calculate the first two moments of a truncated multivariate-t

distributions, written in R, is available from the first author upon request.

3. Linear mixed effects with censored response

3.1. Model specification

For robust estimation of the parameters, we proceed as in Pinheiro et al. (2001) by consid-

ering a generalization of the classical N–LME as follows:

yi = Xiβ + Zibi + εi, (7)

with the assumption that

(
bi

εi

)
ind.∼ tni+q

((
0

0

)
,

(
D 0

0 σ2Ini

)
, ν

)
, i = 1, . . . , n, (8)

where the subscript i is the subject index; Ip denotes the p × p identity matrix; yi =

(Yi1, . . . , Yini)
> is a ni × 1 vector of observed continuous responses for sample unit i, Xi is

the ni×p design matrix corresponding to the fixed effects, β is a p×1 vector of population-

averaged regression coefficients called fixed effects, Zi is the ni × q design matrix corre-

sponding to the q × 1 vector of random effects bi, εi is the ni × 1 vector of random errors,

and the dispersion matrix D = D(α) depends on unknown and reduced parameters α.
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From (8), it is clear that marginally

bi
iid∼ tq(0,D, ν) and εi

iid∼ tni
(0, σ2Ini

, ν), i = 1, . . . , n. (9)

Note that bi and εi are uncorrelated, once Cov(bi, εi) = E{biε
>
i } = E{E{biε

>
i |Ui}} = 0.

Classical inference on the parameter vector θ = (β>, σ2, α>, ν)> is based on the marginal

distribution for yi, which are marginally distributed as

yi
ind.∼ tni(Xiβ,Σi, ν), (10)

for i = 1, . . . , n, where Σi = σ2Ini + ZiDZ>i . The estimates from the multivariate t-LME

are more robust against outliers than those based on the standard LME. In a simulation

study, Pinheiro et al. (2001) showed that the t-LME substantially outperforms the normal

or standard LME when outliers are present in the data. The gains in efficiency in estimating

the parameter is particularly high for the variance - covariance parameters. This problem

has been also discussed by Wu (2010) in the context of censored mixed effects models.

Following Vaida and Liu (2009), in this paper we consider the case in which the response

Yij is not fully observed for all i, j. Thus, let the observed data for the i-th subject be

(Qi,Ci), where Qi represents the vector of uncensored reading or censoring level, and Ci

the vector of censoring indicators:

yij ≤ Qij if Cij = 1, and yij = Qij if Cij = 0, (11)

so that, the t-LMEC is defined. For simplicity we will assume that the data are left-

censored. The extensions to arbitrary censoring are immediate. It follows that for responses

with censoring pattern as in (11), we have that marginally yi ∼ Ttni(Xiβ,Σi, ν;Ai), where

Ai = Ai1 × . . . ,×Aini, with Aij as the interval (−∞,∞) if Cij = 0 and the interval

(−∞, Qij ] if Cij = 1. In the next section, we present the likelihood function, which can be

easily computed by using a sequence of simple steps.

3.2. The likelihood function

The first step is to treat separately the observed and censored components of yi. Partition

yi into the observed and censored parts: yi = vec(yo
i ,y

c
i ), that is, Cij = 0 for all elements

in yo
i , and 1 for all elements in yc

i ; write accordingly Qi = vec(Qo
i ,Q

c
i ), where vec(.) denote

the function which stacks vectors or matrices of the same number of columns. Then, from
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Proposition 1, we have that yo
i ∼ tno

i
(Xo

i β,Σoo
i , ν), yc

i |yo
i ,∼ tnc

i
(µco

i ,Sco
i , ν + no

i ), where

µco
i = Xc

iβ + Σco
i Σoo−1

i (yo
i −Xo

i β), (12)

Sco
i =

(
ν + Q(yo

i )
ν + no

i

)
Σcc.o

i , (13)

with Σcc.o
i = Σcc

i −Σco
i Σoo−1

i Σoc
i and Q(yo

i ) = (yo
i −Xo

i β)>Σoo−1
i (yo

i −Xo
i β). Thus, the

likelihood for cluster i is given by

Li(θ|y) = P (Qi|Ci, θ) = P (yc
i ≤ Qc

i |yo
i = Qo

i , θ)P (yo
i = Qo

i |θ), (14)

= tno
i
(Qo

i |Xo
i β,Σoo

i , ν)Tnc
i
(Qc

i |µco
i ,Sco

i , ν + no
i ) = Li. (15)

Therefore, the log-likelihood function for the observed data is given by `(θ|y) =
∑n

i=1{log Li}.
This can be computed at each step of the EM-type algorithm without additional computa-

tional burden, because Li’s are computed at the E-step (see Subsection 3.3). In addition,

The log-likelihood can be used to monitor the convergence of the algorithm and for model

selection (AIC, BIC, LR).

Lucas (1997) developed an interesting study on the robust aspects of the Student-t M-

estimator in the univariate case using influence functions. He showed that the protection

against outliers is preserved only if the degrees of freedom parameter is fixed. Otherwise, if

the degrees of freedom is also estimated by maximum likelihood, the influence functions for

ν and the change of variance function of the location parameter are not bounded. In this

work we will maintain fixed the degrees of freedom and the shape parameters for Student-t,

and we will use a model selection procedure based on the AIC or BIC to choose the most

appropriate values of ν (see Lange et al., 1989; Meza et al., 2011). Thus, hereafter we

consider that the parameter vector is θ = (β>, σ2,α>)>.

3.3. The EM algorithm

The EM algorithm originally proposed by Dempster, Laird and Rubin (1977) has several

appealing features such as stability of monotone convergence with each iteration increasing

the likelihood and simplicity of implementation. However, ML estimation in model (7)-(8)

and (11) is complicated such that the EM algorithm is less advisable due to a computational

difficulty in the M-step. To cope with this problem, we apply an extension of EM algorithm,

called the ECM (Meng and Rubin, 1993) algorithm, which shares the appealing features of

the EM and has a typically faster convergence rate than the EM in the sense of a small

amount of iterations or actual computer time.
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Let y = (y>1 , . . . ,y>n )>, b = (b>1 , . . . ,b>n )>, u = (u1, . . . , un)>, Q = vec(Q1, . . . ,Qn)

and C = vec(C1, . . . ,Cn), such that we observe (Qi,Ci) for the i-th subject. Treating b,

u and y as hypothetical missing data, and augmented with the observed data Q,C, we set

yc = (C>,Q>,y>,b>,u>)>. Hence, the ECM algorithm is applied to the complete-data

log-likelihood function `c(θ|yc) =
∑n

i=1 `i(θ|yc), given by

`i(θ|yc) = −1
2

[
ni log σ2 +

ui

σ2
(yi −Xiβ − Zibi)>(yi −Xiβ − Zibi)

+ log |D|+ uib>i D−1bi

]
+ h(ui|ν) + C, (16)

where C is a constant that is independent of the parameter vector θ and h(ui|ν) is a

density of a Gamma(ν/2, ν/2). Given the current estimate θ = θ̂
(k)

, the E-step calculates

the conditional expectation of the complete log-likelihood function given by (see appendix)

Q(θ|θ̂(k)
) = E[`c(θ|yc)|Q,C, θ̂

(k)
] =

n∑

i=1

Qi(θ|θ̂
(k)

) =
n∑

i=1

Q1i(β, σ2|θ̂(k)
)+

n∑

i=1

Q2i(α|θ̂
(k)

),

(17)

where

Q1i(β, σ2|θ̂(k)
) = −ni

2
log σ2 − 1

2σ2

[
â
(k)
i − 2β̂

(k)>
X>

i (ûy(k)
i − Ziûb

(k)

i )

+û
(k)
i β̂

(k)>
X>

i Xiβ̂
(k)

]

and

Q2i(α|θ̂
(k)

) = −1
2

log |D| − 1
2
tr

(
ûb2

i

(k)
D−1

)
,

with â
(k)
i = tr

(
ûy2

i

(k)
− 2ûybi

(k)
Z>i + ûb2

i

(k)
Z>i Zi

)
; ûb2

i

(k)
= E{uibib>i |Qi,Ci, θ̂

(k)} =

σ̂2
(k)

Λ̂
(k)

i +ϕ̂
(k)
i (ûy2

i

(k)
− ûy(k)

i β̂
(k)>

X>
i −Xiβ̂

(k)
ûy(k)>

i + û
(k)
i Xiβ̂

(k)
β̂

(k)>
X>

i )ϕ̂>i ; ûb
(k)

i =

E{uibi|Qi,Ci, θ̂
(k)} = ϕ̂

(k)
i (ûy(k)

i − û
(k)
i Xiβ̂

(k)
); ûybi

(k)
= E{uiyib>i |Qi,Ci, θ̂

(k)} =

(ûy2
i

(k)
− ûy(k)

i β̂
(k)>

X>
i )ϕ̂>i , where Λ̂

(k)

i = (σ̂2
(k)

D̂−1(k) + Z>i Zi)−1 and ϕ̂
(k)
i = Λ̂

(k)

i Z>i .

Note that in this case we do not consider the computation of E[h(ui|ν)|Q,C, θ̂
(k)

], because

ν is fixed.

The conditional maximization (CM) steps then conditionally maximize Q(θ|θ̂(k)
) with
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respect to θ and obtain a new estimate θ̂
(k+1)

, as described below:

β̂
(k+1)

=

(
n∑

i=1

û
(k)
i X>

i Xi

)−1 n∑

i=1

X>
i

(
ûy(k)

i − Ziûb
(k)

i

)
, (18)

σ̂2
(k+1)

=
1
N

n∑

i=1

[
â
(k)
i − 2β̂

(k)>
X>

i (ûy(k)
i − Ziûb

(k)

i ) + û
(k)
i β̂

(k)>
X>

i Xiβ̂
(k)

]
, (19)

D̂(k+1) =
1
n

n∑

i=1

ûb2
i

(k)
, (20)

where N =
∑n

i=1 ni. This process is iterated until some distance involving two successive

evaluations of the log-likelihood `(θ|y) described in Section 3.2, like |`(θ̂(k+1)
) − `(θ̂

(k)
)|

or |`(θ̂(k+1)
)/`(θ̂

(k)
) − 1|, is small enough. That is, convergence is declared when the

improvement in log-likelihood falls below a certain preset limit. In practice, pmvt() shows

small random variability, which leads to nonincreasing log-likelihood beyond a certain level.

The variability due to pmvt() can be controlled using the algorithm = GenzBretz(value)

argument.

From (18)-(20) it is clear that the E-step reduces only to the computation of ûy2
i , ûyi

and ûi. These expected values can be determined in closed form, using propositions 1-3, as

follows.

1. If yi = yc
i , i.e, the individual i has only censored components. Then from Proposition

2, we have:

ûy2
i = E{uiyiy>i |Qi,Ci, θ̂} =

Tni(Qi|µ̂i, Σ̂
∗
i , ν + 2)

Tni(Qi|µ̂i, Σ̂i, ν)
E{WiW>

i },

ûyi = E{uiyi|Qi,Ci, θ̂} =
Tni(Qi|µ̂i, Σ̂

∗
i , ν + 2)

Tni(Qi|µ̂i, Σ̂i, ν)
E{Wi},

ûi = E{ui|Qi,Ci, θ̂} =
Tni(Qi|µ̂i, Σ̂

∗
i , ν + 2)

Tni(Qi|µ̂i, Σ̂i, ν)
,

where Wi ∼ Ttni(µ̂i, Σ̂
∗
i , ν + 2;Ai), µ̂i = Xiβ̂, Σ̂

∗
i =

ν

ν + 2
Σ̂i, Σ̂i = σ̂2Ini + ZiD̂Z>i

and Ai = {Wi = (w1, . . . , wni)
>|w1 ≤ Qi1, . . . , wni ≤ Qini}.

2. If yi = yo
i , i.e, the individual i has non censored components. Then,

ûy2
i =

ν + ni

ν + Q(yi)
yiy>i , ûyi =

ν + ni

ν + Q(yi)
yi, ûi =

ν + ni

ν + Q(yi)
,

where Q(yi) = (yi −Xiβ)>Σ−1
i (yi −Xiβ), and finally
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3. If yi = (yc>
i ,yo>

i )>, i.e., for individual i, we observed censored and uncensored compo-

nents. Then from Proposition 3 and by the fact that {yi|Qi,Ci} = {yi|Qi,Ci,yo
i } =

{yc
i |Qi,Ci,yo

i }, we have

ûy2
i = E{uiyiy>i |yo

i ,Qi,Ci, θ̂} =

(
yo

i y
o>
i ûi ûiyo

i ŵ
c>
i

ûiŵc
iy

o>
i ûiŵ2

c

i

)
,

ûyi = E{uiyi|yo
i ,Qi,Ci, θ̂} = vec(yo

i ûi, ŵc
i ),

ûi = E{ui|yo
i ,Qi,Ci, θ̂} =

(
no

i + ν

ν + Q(yo
i )

)
Tp(Qi|µco

i , S̃co, ν + no
i + 2)

Tp(Qi|µco
i ,Sco, ν + no

i )
,

where S̃co =
(

ν + Q(yo
i )

ν + 2 + no
i

)
Σcc.o

i , ŵc
i = E{Wi} and ŵ2

c

i = E{WiW>
i }, with Wi ∼

Ttnc
i
(µco

i , S̃co, ν + no
i + 2;Ac

i ) and Σcc.o
i , µco

i and Sco are as in (12)-(13).

3.4. Estimation of random effects and the expected information matrix

In this subsection we consider an empirical Bayes inference for the random effects, that

is, the minimum mean squared error (MSE) predictor of bi, that is useful for evaluating

subject-specific quantities such as individual intercepts and slopes. Thus, if values of pa-

rameter vector θ = (β>, σ2, α>)> and ν were known, the conditional mean of bi given Ci,

Qi is

b̂i(θ) = E{bi|Qi,Ci} = E{E{E{bi|ui}|yi, ui}|Qi,Ci}
= E{ΛiZ>i (yi −Xiβ)|Qi,Ci} = ΛiZ>i (ŷi −Xiβ), (21)

where Λi is defined in Section 3.3 and ŷi = E{yi|Qi,Ci} is the fist moment of the trun-

cated multivariate-t distribution (Ttni(Xiβ,Σi, ν;Ai)). In practice, the empirical Bayes

estimators of bi, b̂i, can be obtained by substituting the ML estimate θ̂ into (21), which

leads to b̂i = b̂i(θ̂). The conditional covariance matrix of bi given Ci, Qi is

V ar{bi|Qi,Ci} = E{bib>i |Qi,Ci} − b̂i(θ)b̂i(θ)>

=
ν + ni

ν + ni − 2
E

{
(

ν + ni

ν + Q(yi)
)−1|Qi,Ci

}
Λiσ

2 + ΛiZ>i (ŷ2
i − ŷiŷ>i )ZiΛi,

where ŷ2
i = E{yiy>i |Qi,Ci} is the second moment of the truncated multivariate-t distribu-

tion (Ttni(Xiβ,Σi, ν;Ai)). These expected values can be easily accomplished from steps

[1]-[3] given above as a by-product of our proposed ECM algorithm (E-step).

Louis (1982) derives a result that can be used to adjust the variances of the estimated

fixed effects for the information lost due to censoring. Using this method, from the results
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given in Appendix B in Lange et al. (1989), an asymptotic approximation for the variances

of the fixed effects is given by (see Appendix B):

Jββ = V ar(β̂) =

(
n∑

i=1

ν + ni

ν + ni + 2
X>

i Σ−1
i Xi −

n∑

i=1

X>
i Σ−1

i BiΣ−1
i Xi

)−1

, (22)

where Bi = V ar

{
ν + ni

ν + Q(yi)
(yi −Xiβ)|Qi,Ci

}
, with yi ∼ Ttni(Xiβ,Σi, ν;Ai). Asymp-

totic confidence intervals and hypothesis tests for the fixed effects are obtained assuming

that the MLE β has approximately a Np(β,J−1

ββ
) distribution. In practice, Jββ usually

unknown and has to be replaced by its MLE Ĵββ .

3.5. Model choice

A variety of information criteria exist to properly determine the best choice among a set of

competing models. To identify the best selected model support by the data, we adopt the

AIC and the BIC, which are the two most commonly used model selection tools and are of

the form

−2`(θ̂|y) + C(n)p,

where p is the number of parameters in the model and C(n) = 2 for the AIC and C(n) =

log(n) for the BIC. Both criteria can be applied to non-nested and to nested models, but

not always lead to the same choice. Basically, there is no clear consensus regarding which

criterion is better to use. A combined use of AIC and BIC would be of help to screening

reasonable candidate models.

A formal test concerning the appropriateness of using the normal model H0 : ν−1 = 0

versus t model H1 : ν−1 > 0 is nontrivial since the null hypothesis is on the boundary of the

parameter space. For testing parameters under non-standard settings, Self and Liang (1987)

have shown the limiting distribution of the likelihood ratio test (LR) statistic will follow a

mixture of chi-square distributions. Referring to Case 5 of Self and Liang (1987), the LR

statistic under H0 : ν−1 = 0 is an equally weighted mixture of χ2
0 and χ2

1 distributions,

where χ2
0 denotes a degenerate distribution with all of its mass or probability at zero. In

this case, the critical values are 1.65, 2.71 and 5.41 at the 10%, 5% and 1% significance

levels, respectively.
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4. More general linear mixed effects models

4.1. Random effects with different variance matrices

Pinheiro and Bates (2000) proposes different structures for D despite the unstructured

matrix. Following Pinheiro and Bates (2000) and Vaida and Liu (2009) we present how to

implement a variety of structures for D. The new M-step are as follow:

(a) Unstructured D. D̂ = Υ = 1
n

∑n
i=1 ûb2

i , as (20).

(b) Diagonal D. D̂ = diag( 1
n

∑n
i=1 ûb2

ij , j = 1, . . . , q), where ûb2
ij = E(uib

2
ij |Qi,Ci, θ̂).

(c) Block-diagonal D. Define D = diag(D1. . . . ,DM, and let the corresponding sub-

matrices of Υ be Υ1, . . . , ΥM . Then D̂ = diag(Υ1, . . . , ΥM )

(d) Multiple of identity. Define D = τ2I. Then τ̂2 = 1
nq

∑n
i=1

∑q
j=1 ûb2

ij .

(e) Compound symmetry. Let D = τ2I + ρJ, where J is a matrix of ones. Then D =
tr(Υ)

q I + sum(Υ)−tr(Υ)
q(q−1) , where sum(Υ) =

∑
i,j Υij .

The proofs are ommited and are analogous to the ones presented in Vaida and Liu (2009)

(Appendix A1).

4.2. Heteroscedastics Error

A more general linear mixed effects model is represented by

yi = Xiβ + Zibi + εi, (23)

with the assumption that

(
bi

εi

)
ind.∼ tni+q

((
0

0

)
,

(
D 0

0 σ2Ωni

)
, ν

)
, i = 1, . . . , n, (24)

where Ωni , for simplicity of notation Ωi, are positive definite matrices parametrized by αΩ,

such that, Ωi = Ω(αΩ)i. Therefore, when Ωi = Ini we recover the model presented in

Section 3.1. From (24) it follows that

bi
iid∼ tq(0,D, ν) and εi

iid∼ tni(0, σ2Ωi, ν), i = 1, . . . , n. (25)

Define Ω−1/2
i the inverse of Ω1/2

i which is the square root of Ωi, thus Ω = (Ω1/2
i )>Ω1/2

i .

Using Ω−1/2
i let

y?
i = (Ω1/2

i )>yi, ε?
i = (Ω1/2

i )>εi,

X?
i = (Ω1/2

i )>Xi, Z?
i = (Ω1/2

i )>Zi.
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Then, given the parameters αΩ we have that

y?
i = X?

i β + Z?
i bi + ε?

i , bi
iid∼ tq(0,D, ν) and ε?

i
iid∼ tni

(0, σ2Ini
, ν), i = 1, . . . , n,

which is the linear mixed effect model presented in (7) and (8).

Following Vaida and Liu (2009), to estimate αΩ we parametrize Ωi = ViKiVi, where Vi

is diag(
√

var(ε1)/σ2, . . . ,
√

var(εni
)/σ2), Ki = Corr(εi) and assume that αΩ = vec(αv, αk).

This assumption is equivalent to assume that the parameters in Vi and Ki are independent.

Thus, Vi = V(αv)i and Ki = K(αk)i. Such assumption allows αv and αk to be estimated

separately depending on the model asuumed for the variance function and within-subject

correlation structure.

To exemplify how it is done, suppose that Ωi has a first order autoregressive strucuture

(AR(1)), i. e., 


1, ρ|2−1|, . . . , ρ|q−1|

ρ|1−2|, 1, . . . , ρ|q−2|

..., . . . ,
. . . ,

...

ρ|1−q|, ρ|2−q|, . . . , 1




.

The parameter ρ is updated solving

1
2

n∑

i=1

tr{[Ω−1
i − σ−2Ω−1

i E(uiεiε
>
i |Qi,Ci, θ̂)Ω−1

i ]Ω̇i} = 0,

where Ω̇i = ∂Ωi/∂ρ and

E(uiεiε
>
i |Qi,Ci, θ̂) = E(ui(yi −Xiβ − Zibi)(yi −Xiβ − Zibi)>|Qi,Ci, θ̂),

which can be estimated following the steps to solve equation (17) (for more details see

appendix 8). Vaida and Liu (2009) (Subsection 3.2) presents others examples of variance

functions that can be extended for our formulation.

5. The nonlinear case

Extending the notation of the previous section and ignoring censoring, we first propose the

following general mixed-effects model in which the random terms are assumed to follow

a multivariate-t distribution (t-NLME). Let yi = (yi1, . . . , yini)
> denote the (continuous)

response vector for subject i and η = (η(Xi1, φi), . . . , η(Xini , φi))> be a nonlinear vec-

torvalued differentiable function of the individuals random parameter φi and a vector of
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covariates Xi. The t-NLME can then be expressed as:

yi = η(φi,Xi) + εi, φi = Aiβ + Bibi, (26)

where the joint distribution of (bi, εi) is as in (8), Ai and Bi are known design matrices of

dimensions r× p and r× q respectively, possibly depending on some covariable values, β is

the (p× 1) vector of fixed effects, bi is the (q× 1) vector of random effects. Thus, from the

properties of the multivariate-t distribution, we have that marginally,

φi
ind∼ tr(Aiβ,BiDB>

i , ν) and εi
ind.∼ tni(0, σ2Ini , ν), (27)

and as in the linear case, they are uncorrelated because Cov(φi, εi) = 0. For NI-NLME

with non censoring responses, the marginal distribution is given by

f(y|θ) =
n∏

i=1

∫ ∞

0

∫

Rq

φni(yi; η(φi,Xi), u−1
i σ2Ini)φq(φi;Aiβ, u−1

i BiDB>
i )

×G(ui|ν/2, ν/2)dφidui, (28)

which generally does not have a closed form expression because the model function is not

linear in the random effect. In the normal case, various approximations (viz. first-order

Taylor series expansion of the model function around the conditional mode of bi, says b̃i)

have been proposed to achieve tractable numerical optimizations (Wu, 2010). Most algo-

rithms for computing the approximate MLE θ̂ and empirical Bayes estimators (predictors)

for the random effects b̂i considers iterative maximization of the approximate log-likelihood

functions `(θ, b̃) =
∑n

i=1 log f(yi|θ, b̃i). Following Taylor series expansions, we have the

following theorems. The first uses a point in a neighborhood of the conditional mode b̃i as

the expansion point and it has been proven useful for implementation of model selection, in

a Bayesian context (Lachos et al., 2011). The second, useful for the implementation of the

EM algorithm, uses simultaneously neighborhood of bi and β as expansions points, with

the advantage that the likelihood is completely linearized (in bi and β). We call these LME

approximations and can be considered as extensions of the result given in Lindstrom and

Bates (1990) and Pinheiro and Bates (2000) for the Student-t case.

Theorem 1. Let b̃i be an expansion point in a neighborhood of bi, then under the

t–NLME model as in (26)-(27), the marginal distribution of yi, can be approximated as

yi
.∼ tni(η(Aiβ + Bib̃i,Xi)− H̃ib̃i, Ṽi, ν), where Ṽi = (H̃iBi)D(H̃iBi)> + σ2Ini ,

H̃i =
∂η(Aiβ + Bibi,Xi)

∂b>i
|bi=b̃i

and .∼ denotes approximated in distribution.

Proof. See Lachos et al. (2011).
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The next theorem allows the implementation of the EM algorithm.

Theorem 2. Let b̃i and β̃ be expansion points in a neighborhood of bi and β, respec-

tively, then under the t-NLME model as (26)–(27), we have the following linearized model

ỹi = W̃iβ + H̃ibi + εi, i = 1, . . . , n, (29)

where ỹi = yi − η̃(Aiβ̃ + Bib̃i,Xi), bi
ind∼ tq(0,D, ν) and εi

ind.∼ tni
(0, σ2Ini

, ν), H̃i =
∂η(Aiβ + Bibi,Xi)

∂b>i
|bi=b̃i

and W̃i =
∂η(Aiβ + Bibi,Xi)

∂β>i
|
βi=β̃i

and η̃(β̃, b̃i) = η(Aiβ̃ +

Bib̃i,Xi)− H̃ib̃i − W̃iβ̃,

Proof. Based on first-order Taylor expansion of the function η around b̃i and β̃, we

have that

η(Aiβ + Bibi,Xi) ≈ [η(Aiβ̃ + Bib̃i,Xi) + H̃ibi − H̃ib̃i + W̃iβ − W̃iβ̃]

with H̃i =
∂η(Aiβ + Bibi,Xi)

∂b>i
|bi=b̃i

and W̃i =
∂η(Aiβ + Bibi,Xi)

∂β>i
|
βi=β̃i

. It follows

that

εi = yi − η(Aiβ + Bibi,Xi) ≈ yi − [η(Aiβ̃ + Bib̃i,Xi) + H̃ibi − H̃ib̃i + W̃iβ − W̃iβ̃]

= yi − [η̃(β̃, b̃i) + W̃iβ + H̃ibi] = ỹi − [W̃iβ + H̃ibi],

which concludes the proof.

The empirical Bayes estimates of the random effects b̃, given in (21), can be used

iteratively in the linearization procedure from Theorem 2. Note that the distribution of

bi|yi is approximately symmetric (Student-t), and thus b̃i is the mode of the distribution

at each step. As commented by Vaida and Liu (2009), the linearization (L) procedure to

obtain the approximate MLE of θ = (β>, σ2, α>)> consists to iteratively solving the LME

model (L-step) in (29). For censored response the linearized model (29) is an LME with

censored data, with same structure as (7)-(8), which is then solved as indicated in the

previous section. The model matrices in (29) depends on the current parameter value, and

needs to be recalculated at each iteration. The algorithm iterates to convergence between

L-, E-, and CM-steps.

6. Application

We illustrate the proposed methods with the analysis of two HIV datasets previously ana-

lyzed using N-LMEC models.
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Fig. 1. UTI data. (Left panel) plot of the profile log-likelihood of the degrees of freedom ν. (Right
panel) Individual profiles and overall mean (in log10 scale) using the Normal and t distributions for
HIV viral load at different follow-up times. The trajectories for the influential individuals are numbered.

6.1. UTI Data

The first application is a study of 72 perinatally HIV-infected children (Saitoh et al., 2008).

The data set is available in the R package lmec. Primarily due to treatment fatigue,

unstructured treatment interruptions (UTI) is common in this population. Suboptimal ad-

herence can lead to ARV resistance and diminished treatment options in the future. The

subjects in the study had taken ARV therapy for at least 6 months before UTI, and the

medication was discontinued for more than 3 months. Out of 362 observations, 26 (7%)

observations were below the detection limits (50 or 400 copies/mL) and considered left-

censored at these values. The individual profiles of viral load at different followup times

after UTI is presented in Figure 1 (right panel). We consider a profile LME model with

random intercepts bi as yij = bi + βj + εij , where yij is the log10 HIV RNA for subject i

at time tj ,t1 = 0, t2 = 1, t3 = 3, t4 = 6, t5 = 9, t6 = 12, t7 = 18, t8 = 24. Vaida and Liu

(2009) analyzed the same data set by fitting a similar N-LMEC via the EM algorithm, but

from Figure 1 given in Lachos et al. (2011) it is clear that inference based on normality as-

sumptions are questionable (presence of thick tails). Thus, we revisit the UTI data with the

aim of providing robust inferences, from a frequentist perspective, by using the Student-t

distribution. The ML estimates were obtained using the ECM algorithm described in Sec-
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Table 1. ML estimates under normal and Student-t mod-
els fitted to the UTI data. SE are the corresponding stan-
dard errors.

N-LMEC T-LMEC

Parameter estimate SE estimate SE

β1 3.6038 0.1253 3.6182 0.1238
β2 4.1664 0.1285 4.2532 0.1311
β3 4.2413 0.1304 4.3137 0.1332
β4 4.3604 0.1307 4.4580 0.1338
β5 4.5662 0.1398 4.6229 0.1435
β6 4.5692 0.1485 4.6112 0.1532
β7 4.6773 0.1646 4.6978 0.1709
β8 4.7935 0.2018 4.7874 0.2111
σ2 0.3414 0.3503
α 0.7653 0.6662
ν - - 10 -

AIC 844.1172 759.0148
BIC 883.0337 797.9312

tion 3. Starting values were obtained by using the library lmec.

For the Student-t model, we assumed that the degree of freedom ν is know and by using

the AIC criterion we found ν = 10 (see left panel in Figure 1). It is a first indication that

the normal model is inadequate. Table 1 presents the ML estimate of θ and the corre-

sponding standard errors of the fixed effects. Comparing these values we notice a similarity

between the estimates under normal and Student-t models. Additionally, the inferences for

the variance components are similar for the two models, but are not comparable since they

are on different scales. According to the AIC or BIC values, given at the bottom of Table

1, we notice also that the t-LMEC model perform better than the N-LMEC model. For the

LR statistics described in Subsection 3.5, we have that the maximum log-likelihood for the

N-LMEC model is −412.059 and for the t-LMEC model is −369.507, corresponding to a

likelihood ratio statistics of LR = 42.552. Here the LR statistic follows a equally weighted

mixture of χ2
0 and χ2

1 distributions. Therefore, the resulting p-value 3.441×10−11 guarantees

the appropriateness of the use of the multivariate-t distribution. With missing-at-random

assumption as in Vaida and Liu (2009), our dropout (censored) model does not bias the

inference regarding the mean of βj . For both models the mean viral load E(yij) = βj in-

creases gradually throughout 24 months for the two models. For the best model (t-LMEC),

it increases from 3.62 at the time of UTI to 4.79 at 24 months. The estimates of the

between-subject (α) and within-subject (σ2) scale parameters (in log10 scale) are 0.6662

and 0.3503, respectively.

To determine possible influential observations, we use the Mahalanobis distance d2
i (θ) =
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Fig. 2. UTI data. (a) Mahalanobis distance, (b) Estimated d2
ei

(error) and (c) Estimated d2
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(R.E.),
for the N-LMEC model.

(ŷi − Xiβ̂)>Σ−1
i (ŷi − Xiβ̂), i = 1, . . . , 72. As in Pinheiro et al. (2001), replacing θ and

bi with their current estimates, we obtain the following decomposition for the Mahalanobis

distance:

d2
i (θ̂) = (ŷi −Xiβ̂)>(σ̂2Ini + Z>i D̂Zi)−1(ŷi −Xiβ̂)

= − 1

σ̂2
êi
>êi + b̂i

>
D̂b̂i, = d̂2

ei
+ d̂2

bi

where êi = ŷi −Xiβ̂ − Zib̂i where b̂i is as in (21). The estimated distances d2
ei

(Error)

and d2
bi

(Random Effect-R.E.) provide a useful diagnostic statistics for identifying subjects

with outlying observations (see, for example, Meza et al., 2011). Figure 2 presents these

diagnostic statistics for N-LMEC model. Subjects #42 present large values of d2
i and d2

ei
,

suggesting an outlying observation at the within-subject level (e-outlier). Moreover, obser-

vations #20, #35 and #41 presents large value of d2
bi

, suggesting outlying observations at

the between-subject level (b-outlier). Under a Bayesian paradigm, these observations were

also detected as influential in the work by Lachos et al. (2011).

It is well known that outlying observations may affect the estimation of the parameters

under assumptions of normality. However, when we use the Student-t distribution, the EM

algorithm allows to accommodate these discrepant observations attributing to them small

weights in the estimation procedure. The estimated weights (ûi, i = 1, . . . , 72) for the

t-LMEC model are presented in Figure 3. We observe from this Figure that observations

#20, #35, #41 and #42, indicated as outliers under the normal model, take the smaller

values, confirming the robust aspects of the MLE against outlying observations under the

t-LMEC model. The robustness of the t-LMEC is also observed in Figure 1 (right panel),
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where the presence of these outliers might have underestimated the predicted mean curve

for the N-LMEC model as compared to the t-LMEC model. In summary, we can see from

this example that the robust aspects of the t-LME models (Pinheiro et al., 2001) against

outlying observations are also extended to the case in which censoring components are

present.

6.2. AIEDRP study

The second AIDS case study is from the AIEDRP program, a large multicenter observational

study of subjects with acute and early HIV infection. We consider 320 untreated individuals

with acute HIV infection; for more details on this dataset see Vaida and Liu (2009). Of

the 830 recorded observations, 185 (22%) were above the limit of assay quantification,

hence they were considered as right-censored. So, we consider a right-censored version

and accommodate it within our NLME. Following Vaida and Liu (2009), we choose a five-

parameter NLME model (inverted S-shaped curve) as follows:

yij = α1i +
α2

(1 + exp((tij − α3)/α4))
+ α5i(tij − 50) + εij ,

where yij is the log10 HIV RNA for subject i at time tij . The parameter α1i and α2 rep-

resents subject-specific (random) set points and decrease from the maximum HIV RNA. In

the absence of treatment (following acute infection), the HIV RNA varies around a set-point
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Table 2. ML estimates under normal and Student-t mod-
els fitted to the AIEDRP data. SE are the corresponding
standard errors.

N-LMEC T-LMEC

Parameter estimate SE estimate SE

β1 1.60964 0.0147 1.61148 0.0133
β2 0.14217 0.0949 0.16122 0.0849
β3 3.52617 0.0237 3.52370 0.0208
β4 1.05585 0.2677 0.98713 0.2458
β5 -0.0035 0.0014 -0.0031 0.0013
σ2 0.26521 0.20726
α11 0.01769 0.01611
α12 0.00016 0.00013
α22 0.00004 0.00004
ν - - 10 -

AIC 1610.814 1581.416
BIC 1700.521 1623.908
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Fig. 4. AIEDRP data. (Left panel) plot of the profile log-likelihood of the degrees of freedom ν. (Right
panel) Individual profiles and overall mean (in log10 scale) using the Normal and t distributions for
HIV viral load at different follow-up times. The trajectories for the influential individuals are numbered.
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which may differ among individuals, hence the set point is chosen to be subject-specific.

The location parameter α3 indicates the time point at which half of the change in HIV RNA

is attained, α4 is a scale parameter modeling the rate of decline and α5i allows for increasing

HIV RNA trajectory after day 50. To force the parameters to be positive, we reparameterize

as follows: β1i = log(α1i) = β1 + b1i; βk = log(αk), k = 2, 3, 4 and α5i = β5 + b2i. Within

a classical framework, we use the Student-t (t-NLMEC) with the ECM algorithm as de-

scribed in Section 3. As in the previous application, the estimation of the parameters ν was

chosen following the strategy proposed by Lange et al. (1989), which selects a small value

for ν = 10 (see left panel in Figure 4). This parameter act as tuning constant in robust

estimation methods and in our case we see that this choice provide adequate protection

against outliers. For the sake of model comparison, we also fit the N-NLMEC counterparts,

which can be treated as the reduced t-NLMEC as ν tends to infinity.

Table 2 lists the ML estimates parameters for the N-LMEC model and the t-LMEC

model, together with the corresponding standard errors of the fixed effects and the asso-

ciated AIC and BIC values. From this table, we observe that the standard errors of the

t-NLMEC are smaller, indicating that the Student-t model to produce more precise esti-

mates. According to the AIC or BIC values, the t-NLMEC provided much improved model

fits over the N-NLMEC. In fact, the maximum log-likelihood for the N-LMEC is -781.708

and for the t-LMEC model is -775.951, corresponding to the likelihood ratio statistics of

11.508 (p-value = 0.00035), this also reinforce the conclusion that the t-LMEC model fits

the data significantly better than N-LMEC model.

To identify outlying observations, we compute the Mahalanobis distance d2
i (θ̂), i =

1, . . . , 320, the estimated distances d2
ei

(Error) and d2
bi

(Random Effect), were also com-

puted for the normal case. Figure 5 presents these diagnostic statistics for the N-LMEC

model. We can see from this figures that observations #9, #166, #230 and #259 appear

as possibles outliers. The observations #9, #166 and #230 presents large value of d2
ei

,

suggesting an e-outlier. Moreover, observation #259 presents large value of d2
bi

, suggesting

an b-outlier. From figure 4 (right panel), the fitted viral load curve appears to be underes-

timated as compared to the t-NLMEC due to the presence of these outliers. This suggests

that t-NLMEC, which downweights the influence of outliers, provides an appropriate way

for achieving robust inference.

The robustness of the t-LMEC model can be assessed by considering the influence of

a single outlying observation on the ML estimate of θ. In particular, we can assess how

much the ML estimates of θ influences by a change of δ units in a single observation yik.
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Fig. 5. AIEDRP data. (a) Mahalanobis distance, (b) Estimated d2
ei

(error) and (c) Estimated d2
bi

(R.E.). The influential observations are numbered.

We replace a single observation yik by yik(δ) = yik + δ, and record the relative change in

the estimates ((θ̂(δ) − θ̂)/θ̂), where θ̂ denotes the original estimate and θ̂(δ) the estimate

for the contaminated data. In this application we contaminated the first observation on

subject 198 and varied δ between -10 and 10. In Figure 6 we present the results of the

relatives changes of the estimates β and σ2 for different values of δ, under the N-NLMEC

and t-NLMEC models. As expected, the estimates from the t-NLMEC is less affected by

variations of δ than the N-NLMEC.

7. Simulation studies

To study the performance of our proposed methodology we conduct a simulation study to

illustrate the linear and nonlinear cases. The goal of this simulation study is to investigate

the consequences on parameter inference when the normality assumption is inappropriate

as well as to investigate whether the model comparison measures, AIC and BIC determines

the best-fitting model to the simulated data.

7.1. The linear case

To study the linear regression, we consider the following linear mixed model:

yij = β0 + β1tij + b0i + b1itij + εij , i = 1, . . . , 100, j = 1, . . . , 6, (30)

where (b0i, b1i)
iid.∼ t2(0,D, ν), εij ∼ t(0, σ2, ν). We set tij = (2, 4, 6, 8, 10, 24), β> =

(β0, β1) = (−2.83,−0.18), D =

[
0.049 0.001

0.001 0.002

]
, σ2 = 0.15 and ν = 4.

We choose various settings of censoring proportions, 5%, 10%, 20% and 50%, to study
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Fig. 6. AIEDRP data. Relative changes on the ML estimates of θ from the N-NLMEC (solid line) and
the t-NLMEC (dashed line) for different contaminations δ.

the effect of the level of censoring in the estimation. This way, we have 4 different simulation

settings with 100 simulated datasets for each setting. Once the simulated data is generated,

we fit the LMEC model assuming normal and Student-t distributions. For each of the sim-

ulations, we fit the model given in (30) assuming normal and Student-t distributions. For

each simulation, the parameters estimation as well as AIC and BIC were recorded. Table 3

presents the summary statistics for β (the fixed-effects parameters) assuming normal and

Student-t distributions for the 4 censoring patterns. In the Table, MC Mean denotes the

arithmetic average of the 100 estimates given by
∑100

j=1 γ̂j/100 and MC Sd is the arith-

metic average of the 100 posterior standard deviations given by
∑100

j=1 sd(γ̂j)/100, where

γ = β1, β2 or σ2. In addition, we also estimate the MC coverage of β1 and β2, i.e. the

proportion of times the 95% confidence interval includes the true value of the fixed effects.

From Table 3, we observe that the Student-t distribution over perform the normal dis-

tribution at all levels of censoring. Figure 7 shows that for the normal distribution there is

a strong increase of the bias (the deviations of the parameter estimates from the true value)

as well as the mean square error (MSE). Clearly, the Student-t model shows much less
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Table 3. Monte Carlo results based on 100 simulated Student-t samples. MC mean, MC Sd (in parênteses)
and MC Coverage are the respective mean estimates, standard deviations and coverage proportion aver-
age from fitting LMEC with Student-t and normal assumptions with different settings of censoring propor-
tions. IM Sd are the average values of the approximate standard errors obtained through the information-
based method. MC AIC and MC BIC are the arithmetic average of the respective model comparison
measures.

Simulated Student-t data

Censoring Fit β1 β2 σ2 MC AIC MC BIC

5% Normal MC Mean -2.839 -0.179 0.285 604.261 626.484
IM Sd 0.068 0.010
MC Sd 0.065 (0.006) (0.072)

MC Coverage 98% 99%
Student-t MC Mean -2.831 -0.180 0.154 554.302 576.525

IM Sd 0.055 0.008
MC Sd (0.052) (0.005) (0.023)

MC Coverage 95% 100%

10% Normal MC Mean -2.822 -0.180 0.281 569.744 591.966
IM Sd 0.070 0.010
MC Sd (0.061) (0.006) (0.078)

MC Coverage 99% 99%
Student-t MC Mean -2.830 -0.179 0.150 526.334 548.557

IM Sd 0.057 0.008
MC Sd (0.059) (0.006) (0.024)

MC Coverage 97% 100%

20% Normal MC Mean -2.824 -0.180 0.270 505.704 527.927
IM Sd 0.079 0.013
MC Sd (0.076) (0.009) (0.073)

MC Coverage 97% 99%
Student-t MC Mean -2.832 -0.180 0.151 474.053 496.276

IM Sd 0.068 0.011
MC Sd (0.063) (0.007) (0.031)

MC Coverage 100% 99%

50% Normal MC Mean -2.810 -0.183 0.285 407.693 429.916
IM Sd 0.090 0.016
MC Sd (0.088) (0.012) (0.072)

MC Coverage 98% 99%
Student-t MC Mean -2.840 -0.178 0.154 387.582 409.805

IM Sd 0.081 0.015
MC Sd (0.066) (0.007) (0.023)

MC Coverage 98% 100%
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bias and thus more precise estimations. Therefore, models with heavier tails than normal

produce more accurate estimates in the context of censored data; the degree and direction

of the bias in fixed effects depends both on the relative proportions of censoring as well

as model assumption. Observe that from Table 3 σ̂2 for the normal distribution is almost

twice the true σ2. This is due to the fact that in the normal scenario σ2 represents the

variance and therefore should be compared with ν
ν−2σ2, which is 0.30. Notice also that, the

Student-t model has a smaller confidence interval due to the smaller standard deviation but

its coverage is slightly better than the normal method. This fact provides (once again) that

the estimation of the Student-t method is more robust when dealing with censored data.

Table 3 also provides the average values of the approximate standard deviations of the EM

estimates obtained through the information-based method described in Subsection 3.4 (IM

Sd) and the Monte Carlo standard deviation (Mc Sd) for the parameters. As we can see,

the estimation method of the standard deviation provides relatively close results for the

normal and Student-t methods, showing that the proposed asymptotic approximation for

the variances of the fixed effects is reliable.

We also present the arithmetic average (MC AIC and MC BIC) of the model compar-

ison criterions mentioned earlier. All the measures strongly favored the Student-t model,

demonstrating the ability of these measures to detect an obvious departure from normality.

The % of samples when these criteria chooses the t-LMEC also remains high.

7.2. The nonlinear case

As in the linear case we fix the censoring proportion as presented in Section 7.1 and also

generated 100 simulated data sets. Following Vaida and Liu (2009), to study the nonlinear

regression, we consider the following nonlinear mixed model:

yij = α1i +
α2

(1 + exp((tij − α3)/α4i))
+ εij , i = 1, . . . , 100, j = 1, . . . , 10, (31)

where (b1i, b2i)
iid.∼ t2(0,D, ν) and εij ∼ t(0, σ2, ν). We reparametrize β1i = log(α1i) = β1 +

b1i; βk = log(αk), k = 2, 3, α4i = β4+b2i and in addition, we set tij = (1, 10, 20, 30, 40, 50, 60, 70, 80, 90),

β> = (β1, β2, β3, β4) = (1.6094, 0.6931, 3.8067, 2.3026), D =

[
0.0025 −0.0010

−0.0010 0.0100

]
, σ2 =

0.55 and ν = 4.

We fit the NLMEC model (31) assuming normal and Student-t distributions. For each

of the simulations, we fit the reparameterized model given in (31) assuming normal and

Student-t distributions. The model selection criterion AIC and BIC as well as the pa-
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Fig. 7. (a) Represents the bias of β1 in comparison with the true value for the normal and Student-t
models for the 4 censoring patterns (5%, 10%, 20%, 50%)in the LMEC setup. (b) Presents the Mean
Square Error (MSE) for β1 for the normal and Student-t models.

rameters estimation were recorded for each simulation. For the 4 censoring patterns, the

summary statistics for β (the fixed-effects parameters) are presented in Table 4 assuming

normal and Student-t distributions.

From Table 4, we observe that for all levels of censoring the Student-t distribution

performs better than the normal distribution and have a small standard deviation in the

estimates providing more accurate estimation. The arithmetic average (MC AIC and MC

BIC) of the model comparison criteria are also presented and strongly favors the Student-t

model in comparison to the normal model. This, reinforce that these measures are capable

of detecting departures from normality. Like in the linear case, we have that the estimates

σ̂2 of σ2 for the normal distribution must be compared with ν
ν−2σ2, which now is 1.10. As

in the linear setup we can see that the Student-t model continues to have smaller confidence

interval with a usually bigger coverage of the parameters. This is a strong evidence of the

robustness in estimation of the Student-t method. Again, as observed in the linear case

the IM Sd and MC Sd for the nonlinear regression provides close results for both models

(normal and Student-t). This emphasize that the estimation of the standard error provided

by the proposed asymptotic approximation of the fixed effects (Equation 22) is reliable.

In Figure 8 we represent the bias and MSE for the parameter estimates of β4 for the
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Table 4. Monte Carlo results based on 100 simulated Student-t samples. MC mean, MC Sd (in parenthesis) and MC Coverage are
the respective mean estimates, standard deviations and coverage proportion average from fitting NLMEC with Student-t and normal
assumptions with different settings of censoring proportions. IM Sd are the average values of the approximate standard error obtained
through the information-based method. MC AIC and MC BIC are the arithmetic average of the respective model comparison measures.

Simulated Student-t data

Censoring Fit β1 β2 β3 β4 σ2 MC AIC MC BIC

5% Normal MC Mean 1.627 0.642 3.796 2.205 0.967 2865.279 2904.541
IM Sd 0.017 0.068 0.041 0.191
MC Sd (0.016) (0.073) (0.043) (0.192) (0.146)

MC coverage 81% 87% 96% 95%
Student-t MC Mean 1.615 0.667 3.805 2.230 0.642 2654.928 2694.190

IM Sd 0.015 0.058 0.035 0.161
MC Sd (0.012) (0.056) (0.031) (0.150) (0.060)

MC coverage 96% 93% 99% 95%

10% Normal MC Mean 1.623 0.657 3.801 2.235 0.970 2815.475 2854.737
IM Sd 0.018 0.070 0.042 0.191
MC Sd (0.017) (0.069) (0.046) (0.178) (0.141)

MC coverage 86% 88% 92% 95%
Student-t MC Mean 1.613 0.676 3.803 2.253 0.629 2608.471 2647.733

IM Sd 0.015 0.059 0.035 0.160
MC Sd (0.014) (0.057) (0.036) (0.150) (0.057)

MC coverage 94% 94% 95% 97%

20% Normal MC Mean 1.616 0.683 3.806 2.240 0.975 2705.762 2494.963
IM Sd 0.019 0.070 0.042 0.190
MC Sd (0.016) (0.069) (0.042) (0.183) (0.145)

MC coverage 95% 95% 98% 96%
Student-t MC Mean 1.616 0.678 3.797 2.259 0.579 2494.963 2534.225

IM Sd 0.015 0.059 0.035 0.157
MC Sd (0.015) (0.060) (0.032) (0.162) (0.044)

MC coverage 89% 92% 99% 95%

50% Normal MC Mean 1.614 0.684 3.781 2.131 0.978 1982.382 2021.644
IM Sd 0.022 0.073 0.043 0.208
MC Sd (0.023) (0.069) (0.045) (0.160) (0.186)

MC coverage 94% 95% 90% 93%
Student-t MC Mean 1.624 0.650 3.789 2.226 0.546 1879.266 1918.528

IM Sd 0.022 0.075 0.041 0.187
MC Sd (0.016) (0.066) (0.040) (0.151) (0.038)

MC coverage 90% 93% 95% 95%
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Fig. 8. (a) Represents the bias of β4 in comparison with the true value for the normal and Student-t
models for the 4 censoring patterns (5%, 10%, 20%, 50%) in the NLMEC setup. (b) Presents the
Mean Square Error (MSE) for β4 for the normal and Student-t models.

normal and Student-t distributions. It is clear that the normal model has a much bigger

bias and MSE than the Student-t model. Therefore, for censored data the Student-t model

is more robust, providing more accurate estimations when the data has departures from the

normality assumption. Although Figure 8 only presents the results for the estimates of β4

a similar pattern was observed for all the other parameters.

8. Conclusions

We have proposed a robust approach to linear and nonlinear mixed effects models with cen-

sored observation based on the multivariate-t distribution, called the t-LMEC/t-NLMEC.

It offers a great deal of flexibility in dealing with longitudinal data in the presence of out-

liers. A novel ECM algorithm to obtain approximated MLEs is developed by exploring the

statistical properties of the multivariate truncated Student-t distribution. Our proposed

algorithm has a closed-form expression for the E-step, based on formulas for the mean and

variance of the truncated Student-t distribution. Thus, the proposed methodologies allow

the practitioner to fit longitudinal data in a broad variety of considerations. For NLMEC,

the analysis is computationally feasible through approximating the t-NLMEC for a multi-

variate t distribution with specified parameters. We apply our methodology to two recent

AIDS studies (freely downloadable from R) as well as simulated data to illustrate how
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the procedures can be used to evaluate model assumptions, identify outliers, and obtain

robust parameter estimates. From these results it is encouraging that the use of t-LMEC/t-

NLMEC models offer better fitting, protection against outliers and more precise inferences

than the usual normal counterpart.

It may be worthwhile comparing our results in NLMEC with other methods such as the

classical Monte Carlo EM algorithm or the stochastic version of the EM algorithm (SAEM)

which is beyond the scope of this paper. These issues will be considered in a separate future

work. We conjecture that the methodology presented in this paper should yield satisfactory

results in other areas where multivariate data appears frequently, for instance, measure-

ment error models, correlated binary regression, dynamics linear models, spatially censored

data, etc., at expense of moderate complexity of implementation. Finally, the proposed EM

algorithm has been coded and implemented in the R package (R Development Core Team,

2009) and is available from the authors upon request.
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Appendix

Appendix A: The EM algorithm

We include here the derivation of the EM equations (18) - (20). Recall that the vec-

tor of parameters to be estimated is θ = (β>, σ2, α) and that y = (y>1 , . . . ,y>n )>, b =

(b>1 , . . . ,b>n )>, u = (u1, . . . , un)>, Q = vec(Q1, . . . ,Qn) and C = vec(C1, . . . ,Cn), such

that we observe (Qi,Ci) for the ith subject. In their estimation procedure, b, Q and

C are treated as hypothetical missing data, and augmented with the observed data set

yc = (C>,Q>,y>,b>,u>)>.

L(yc|θ) =
n∏

i=1

f(yi,bi, ui) =
n∏

i=1

f(yi|Qi,Ci,bi, ui)f(bi|ui)f(ui)
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The complete log-likelihood is given by

`c(θ|yc) = log(L(yc|θ)) = C +
n∑

i=1

{
h(ui|ν)− 1

2
[
ni log σ2 + log |D|+ uib>i D−1bi

+
ui

σ2
(yi −Xiβ − Zibi)>(yi −Xiβ − Zibi)

]}
,

where C is a constant that is independent of the parameter vector θ and h(ui|ν) is a density

of a Gamma(ν/2, ν/2). The EM function is given by

Q(θ|θ∗) = E[`c(θ|yc)|Q,C, θ∗].

So we have that,

Q(θ|θ∗) = C∗ − 1
2

n∑

i=1

[
ni log σ2 + log |D|+ tr

(
E[uibib>i |Qi,Ci,θ

∗]D−1
)

+E
[ ui

σ2
(yi −Xiβ − Zibi)>(yi −Xiβ − Zibi)|Qi,Ci,θ

∗
]]

,

where C∗ is a constant that is independent of the parameter vector θ.

In order to introduce some important results, we establish the following lemma. The

proof can be found in Arellano-Valle et al. (2005).

Lemma 1. Let Y ind.∼ Np(µ,Σ) and X ind.∼ Nq(η,Ω). So,

φp(y|µ + Ax,Σ)φq(x,Ω) = φp(y|µ + Aη,Σ + AΩA>)

×φq(x|η + ΛA>Σ−1(y − µ−Aη),Σ),

where Λ = (Ω−1 + A>Σ−1A)−1.

Thus, to compute the expectation term above, note first that,

yi
ind.∼ Ttni(Xiβ,Σi, ν),

E(ui|yi) =
ν + ni

ν + δ
,

where δ = (yi −Xiβ)>Σ−1
i (yi −Xiβ), and using the Lemma 1, we have that

bi|yi, ui
ind.∼ Nq

(
ui

σ2

(
uiD−1 +

ui

σ2
Z>i Zi

)−1

Z>i (yi −Xiβ),
(
uiD−1 +

ui

σ2
Z>i Zi

)−1
)

,
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bi|yi, ui
ind.∼ Nq

(
ϕi(yi −Xiβ),

σ2

ui
Λi

)
,

with Λi = (σ2D−1 + Z>i Zi)−1 and ϕi = ΛiZ>i . Using the propositions (1)-(3) we compute

the following expectation terms:

ûyi = E{uiyi|Qi,Ci, θ
∗} = Eyi|Qi,Ci

{Eui|yi
[Ebi|yi,ui

(uyi)]}

= Eyi|Qi,Ci

[
Eui|yi

(uiyi)
]

= Eyi|Qi,Ci

(
(ν + ni)
(ν + δ)

yi

)

=
Tni(a|µ,Σ∗, ν + 2)

Tni
(a|µ,Σ, ν)

E{Wi}.

ûy2
i = E{uiyiy>i |Qi,Ci,θ

∗} = Eyi|Qi,Ci
{Eui|yi

[Ebi|yi,ui
(uyiy>i )]}

= Eyi|Qi,Ci

[
Eui|yi

(uiyiy>i )
]

= Eyi|Qi,Ci

(
(ν + ni)
(ν + δ)

yiy>i

)

=
Tni(a|µ,Σ∗, ν + 2)

Tni(a|µ,Σ, ν)
E{WiW>

i }.

ûi = E{ui|Qi,Ci, θ
∗} = Eyi|Qi,Ci

{Eui|yi
[Ebi|yi,ui

(ui)]}

= Eyi|Qi,Ci

[
Eui|yi

(ui)
]

= Eyi|Qi,Ci

(
(ν + ni)
(ν + δ)

)

=
Tni(a|µ,Σ∗, ν + 2)

Tni(a|µ,Σ, ν)
E{W0

i } =
Tni(a|µ,Σ∗, ν + 2)

Tni(a|µ,Σ, ν)
.

ûbi = E{uibi|Qi,Ci, θ
∗} = Eyi|Qi,Ci

{Eui|yi
[Ebi|yi,ui

(uibi)]}
= Eyi|Qi,Ci

{Eui|yi
[uiEbi|yi,ui

(bi)]}
= Eyi|Qi,Ci

{Eui|yi
[uiϕi(yi −Xiβ)]}

= Eyi|Qi,Ci

[
ϕi(yi −Xiβ)Eui|yi

(ui)
]

= Eyi|Qi,Ci

{
ϕi

[(
(ν + ni)
(ν + δ)

yi

)
−Xiβ

(
(ν + ni)
(ν + δ)

)]}

= ϕi

[
Eyi|Qi,Ci

(
(ν + ni)
(ν + δ)

yi

)
−XiβEyi|Qi,Ci

(
(ν + ni)
(ν + δ)

)]

= ϕi

[
Tni(a|µ,Σ∗, ν + 2)

Tni(a|µ,Σ, ν)
E{Wi} −Xiβ

Tni(a|µ,Σ∗, ν + 2)
Tni(a|µ,Σ, ν)

]

= ϕi [ûyi −Xiβûi] .
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ûb2
i = E{uibib>i |Qi,Ci,θ

∗} = Eyi|Qi,Ci
{Eui|yi

[Ebi|yi,ui
(uibib>i )]}

= Eyi|Qi,Ci
{Eui|yi

[uiEbi|yi,ui
(bib>i )]}

= Eyi|Qi,Ci

{
Eui|yi

[
ui

(
Λi(u−1

i σ2 + Z>i (yi −Xiβ)(yi −Xiβ)>)ϕ>i
)]}

= Λiσ
2 + Eyi|Qi,Ci

[
Eui|yi

(ui)
(
ϕi(yi −Xiβ)(yi −Xiβ)>ϕ>i

)]

= Λiσ
2 + ϕi

{
Eyi|Qi,Ci

(
(ν + ni)
(ν + δ)

yiy>i

)
− Eyi|Qi,Ci

(
(ν + ni)
(ν + δ)

yi

)
β>X>

i

−Xiβ

[
Eyi|Qi,Ci

(
(ν + ni)
(ν + δ)

yi

)]>
+ Eyi|Qi,Ci

(
(ν + ni)
(ν + δ)

)
Xiββ>X>

i

}
ϕ>i

= Λiσ
2 + ϕi

{
Tni

(a|µ,Σ∗, ν + 2)
Tni(a|µ,Σ, ν)

E{WiW>
i } −

Tni
(a|µ,Σ∗, ν + 2)

Tni(a|µ,Σ, ν)
E{Wi}β>X>

i

−Xiβ

[
Tni

(a|µ,Σ∗, ν + 2)
Tni

(a|µ,Σ, ν)
E{Wi}

]>
+

Tni
(a|µ,Σ∗, ν + 2)

Tni
(a|µ,Σ, ν)

Xiββ>X>
i

}
ϕ>i

= Λiσ
2 + ϕi

(
ûy2

i − ûyiβ
>X>

i −Xiβûyi
> + ûiXiββ>X>

i

)
ϕ>i .

ûybi = E{uiyib>i |Qi,Ci,θ
∗} = Eyi|Qi,Ci

{Eui|yi
[Ebi|yi,ui

(uiyib>i )]}
= Eyi|Qi,Ci

{yiEui|yi
[uiEbi|yi,ui

(b>i )]}
= Eyi|Qi,Ci

{
yiEui|yi

[
ui(yi −Xiβ)>ϕ>i

]}

= Eyi|Qi,Ci

[
yiEui|yi

(ui)(yi −Xiβ)>ϕ>i
]

= Eyi|Qi,Ci

{[(
(ν + ni)
(ν + δ)

yiy>i

)
−

(
(ν + ni)
(ν + δ)

yi

)
β>X>

i

]
ϕ>i

}

=
[
Eyi|Qi,Ci

(
(ν + ni)
(ν + δ)

yiy>i

)
− Eyi|Qi,Ci

(
(ν + ni)
(ν + δ)

yi

)
β>X>

i

]
ϕ>i

=
[
Tni(a|µ,Σ∗, ν + 2)

Tni(a|µ,Σ, ν)
E{Wi} − Tni(a|µ,Σ∗, ν + 2)

Tni(a|µ,Σ, ν)
E{WiW>

i }β>X>
i

]
ϕ>i

=
[
ûy2

i − ûyiβ
>X>

i

]
ϕ>i .

Replacing the expectation in Q(θ|θ∗)

Q(θ|θ∗) = C∗ − 1
2

n∑

i=1

[
ni log σ2 + log |D|+ tr

(
ûb2

i D
−1

)
+

Ai

σ2

]
,

where

Ai = tr(ûy2
i )− ûy>i Xiβ − tr(ûybi

>
Zi)− β>X>

i ûyi + β>X>
i ûiXiβ,

+β>X>
i Ziûbi − tr(ûybiZ>i ) + ûbi

>
Z>i Xiβ + tr(ûb2

i Z
>
i Zi).
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The differential with respect to β, σ2 and D are

∂Q(θ|θ∗)
∂β

= − 1
σ2

n∑

i=1

−X>
i (ûyi − ûiXiβ − Ziûbi),

∂Q(θ|θ∗)
∂σ2

= −1
2

n∑

i=1

[
ni

σ2
− Ai

(σ2)2

]
,

∂Q(θ|θ∗)
∂D−1

= − n

σ2
(−2D + diag(D))− 1

2

n∑

i=1

(
ûyi + ûyi

> − diag(ûb2
i )

)
.

The solution of
∂Q(θ|θ∗)

∂β
= 0 is

β̂ =

(
n∑

i=1

X>
i ûiXi

)−1 [
n∑

i=1

Xi(ûyi − Ziûbi)

]
.

The solution of
∂Q(θ|θ∗)

∂σ2
= 0 is

σ̂2 =
∑n

i=1 Ai∑n
i=1 ni

.

For unstructured D, the solution of
∂Q(θ|θ∗)

∂D−1
= 0 for all D is The solution of

∂Q(θ|θ∗)
∂σ2

= 0

is

D̂ =
n∑

i=1

ûb2
i

n
.

Appendix B: The expected information matrix of the fixed effects

In this Appendix we derived the expected information matrix for the fixed effects. Thus,

using the method given by McLachlan and Krishnan (1996), we have that

I(β;y) = Ic(β;y) + Im(β;y),

where I(β;y) is the information matrix about β in the observed data y, Ic(β;y) is the

conditional expectation of the complete-data information matrix, and Im(β;y) is the missing

information matrix.

The missing data information Im(β;y) can be expressed as

Im(β;y) =
n∑

i=1

V ar {Sc(y; β)|Qi,Ci} ,
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where Sc(y;β) = ∂logLc(y;θ)

∂β
is the gradient vector of the complete-data log likelihood

function. So, we have that

Im(β;y) =
n∑

i=1

V ar

((
ν + ni

ν + δ

)
X>

i Σ−1
i (yi −Xiβ)|Qi,Ci

)

= X>
i Σ−1

i

{
V ar

((
ν + ni

ν + δ

)
(yi −Xiβ)|Qi,Ci

)}
Σ−1

i Xi.

Now by using the results given in Lange et al. (1989) (Appendix B), the expected

(complete-data) information matrix is given by

Ic(β;y) =
n∑

i=1

ν + ni

ν + ni + 2
X>

i Σ−1
i Xi.

It follows that the observed information matrix is given by

I(β;y) =
n∑

i=1

ν + ni

ν + ni + 2
X>

i Σ−1
i Xi −

n∑

i=1

X>
i Σ−1

i BiΣ−1
i Xi,

where Bi = V ar

{
ν + ni

ν + Q(yi)
(yi −Xiβ)|Qi,Ci

}
, with yi ∼ Ttni(Xiβ,Σi, ν;Ai).

Appendix C: More general linear mixed effects models

Heteroscedastics Error

We include here the derivation of the equations (23) - (25).

For the general linear mixed effects model represented in (23) - (25), with Ωni with a

first order autoregressive structure (AR(1)), the complete log-likelihood is given by

`c(θ|yc) = C +
n∑

i=1

{
h(ui|ν)− 1

2

n∑

i=1

[
ni log σ2 + log |D|+ uib>i D−1bi + log |Ωni |

+
ui

σ2
(yi −Xiβ − Zibi)>Ω−1

ni
(yi −Xiβ − Zibi)

]}
,

where C is a constant that is independent of the parameter vector θ and h(ui|ν) is a density

of a Gamma(ν/2, ν/2). The EM function is given by

Q(θ|θ∗) = C∗ − 1
2

n∑

i=1

{
ni log σ2 + log |Ωni |+ log |D|+ tr

(
E[uibib>i |Qi,Ci,θ

∗]D−1
)

+E
[ ui

σ2
(yi −Xiβ − Zibi)>Ω−1

ni
(yi −Xiβ − Zibi)|Qi,Ci, θ

∗
]}

,
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where C∗ is a constant that is independent of the parameter vector θ.

Let εi = yi −Xiβ − Zibi, so

Q(θ|θ∗) = C∗ − 1
2

n∑

i=1

{
ni log σ2 + log |Ωni

|+ log |D|+ tr
(
E[uibib>i |Qi,Ci, θ

∗]D−1
)

+
1
σ2

tr
(
E

[
uiεiε

>
i |Qi,Ci, θ

∗]Ω−1
ni

)}
.

The differential with respect to ρ, is

∂Q(θ|θ∗)
∂ρ

= −1
2

n∑

i=1

[
∂ log |Ωni

|
∂ρ

+
1
σ2

∂tr
(
E

[
uiεiε

>
i |Qi,Ci,θ

∗]Ω−1
ni

)

∂ρ

]

= −1
2

n∑

i=1

[
tr

(
Ω−1

ni

∂Ωni

∂ρ

)
− 1

σ2
tr

(
Ω−1

ni

∂Ω−1
ni

∂ρ
Ω−1

ni
E

[
uiεiε

>
i |Qi,Ci, θ

∗]
)]

= −1
2

n∑

i=1

tr
(
Ω−1

ni
Ω̇ni −

1
σ2

Ω−1
ni

Ω̇niΩ
−1
ni

E
[
uiεiε

>
i |Qi,Ci, θ

∗]
)

= −1
2

n∑

i=1

tr
[(

Ω−1
ni
− 1

σ2
Ω−1

ni
E

[
uiεiε

>
i |Qi,Ci,θ

∗]Ω−1
ni

)
Ω̇ni

]
,

where Ω̇ni = ∂Ωni

∂ρ and

E
[
uiεiε

>
i |Qi,Ci, θ

∗] = E
[
ui(yi −Xiβ − Zibi)(yi −Xiβ − Zibi)>|Qi,Ci,θ

∗] .

Therefore the parameter ρ is updated solving
∂Q(θ|θ∗)

∂ρ
= 0.

Then to compute the expectation term above, note first that,

yi
ind.∼ Ttni(Xiβ,Σi, ν),

where Σi = σ2Ωni + ZiDZ>i

E(ui|yi) =
ν + ni

ν + δ
,

where δ = (yi −Xiβ)>Σ−1
i (yi −Xiβ), and using the Lemma 1

bi|yi, ui
ind.∼ Nq

(
ui

σ2

(
uiD−1 +

ui

σ2
Z>i Ω−1

ni
Zi

)−1

Z>i Ω−1
ni

(yi −Xiβ),
(
uiD−1 +

ui

σ2
Z>i Ω−1

ni
Zi

)−1
)

,
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bi|yi, ui
ind.∼ Nq

(
ϕi(yi −Xiβ),

σ2

ui
Λi

)
,

with Λi = (σ2D−1 + Z>i Ω−1
ni

Zi)−1 and ϕi = ΛiZ>i Ω−1
ni

.

Like as in Appendix A, the expectation term are:

ûyi = E{uiyi|Qi,Ci, θ
∗} =

Tni
(a|µ,Σ∗, ν + 2)

Tni
(a|µ,Σ, ν)

E{Wi},

ûy2
i = E{uiyiy>i |Qi,Ci,θ

∗} =
Tni

(a|µ,Σ∗, ν + 2)
Tni

(a|µ,Σ, ν)
E{WiW>

i },

ûi = E{ui|Qi,Ci, θ
∗} =

Tni
(a|µ,Σ∗, ν + 2)

Tni(a|µ,Σ, ν)
,

ûbi = E{uibi|Qi,Ci,θ
∗} = ϕi [ûyi −Xiβûi] ,

ûb2
i = E{uibib>i |Qi,Ci,θ

∗}
= Λiσ

2 + ϕi

(
ûy2

i − ûyiβ
>X>

i −Xiβûyi
> + ûiXiββ>X>

i

)
ϕ>i ,

ûybi = E{uibib>i |Qi,Ci, θ
∗} =

[
ûy2

i − ûyiβ
>X>

i

]
ϕ>i ,

So the value of E
[
uiεiε

>
i |Qi,Ci, θ

∗] is given by

E
[
uiεiε

>
i |Qi,Ci,θ

∗] = E
[
ui(yi −Xiβ − Zibi)(yi −Xiβ − Zibi)>|Qi,Ci,θ

∗]

= tr(ûy2
i )− ûy>i Xiβ − tr(ûybi

>
Zi)− β>X>

i ûyi + β>X>
i ûiXiβ

+β>X>
i Ziûbi − tr(ûybiZ>i ) + ûbi

>
Z>i Xiβ + tr(ûb2

i Z
>
i Zi).
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