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Abstract

In this paper we present a stochastic volatility (SV) model assuming that the return shock has a

skew-Student-t distribution. This allows a parsimonious, flexible treatment of asymmetry and heavy

tails in the conditional distribution of returns. An efficient Markov chain Monte Carlo estimation

method is described that exploits a skew-normal mixture representation of the error distribution with

a gamma distribution as the mixing distribution. We apply the methodology to the NASDAQ daily

index returns.

keywords: Markov chain Monte Carlo, non-Gaussian and nonlinear state space models, skew-

Student-t, stochastic volatility.

1 Introduction

A large literature in financial econometrics has documented stylized facts which are frequently found in

stock and foreign exchange returns: skewness, heavy-tailedness and volatility clustering. These properties

are crucial not only for describing the return distributions but also for asset allocation, option pricing,

forecasting and risk management.
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Stochastic volatility (SV) models were introduced in the financial literature for describing time-varying

volatilities (Taylor, 1982; 1986). Various extensions of the simple SV model with a normal errors have

been discussed in the literature. For instance, many empirical studies have shown strong evidence of

heavy-tailed conditional mean errors in financial time series (see for example Mandelbrot, 1963; Fama,

1965; Chib et al., 2002; Jacquier et al., 2004). In this context, recently Abanto-Valle et al. (2010) extended

the basic SV model by assuming the flexible class of scale mixtures of normal distributions (Lange and

Sinsheimer, 1993). The empirical evidence on the presence of asymmetry in the distribution of financial

returns is not as clear-cut even though asymmetry plays a non-trivial role in shaping economic decisions.

Corrado and Su (1997) suggests that fat tails and asymmetry jointly determine the so-called “volatility

smile” in option pricing using the Black-Scholes approach and that explicit account of them improve

accuracy in option pricing. Peiro (1999) provides further evidence of asymmetry in returns, both from

stock market indices and from individual assets. Further, Mittnik and Paolella (2000) argue that skewness

and heavy tails should be taken into account explicitly in Value-at-Risk forecasts. Cappuccio et al. (2006)

found empirical evidence on asymmetry in financial returns using a simple stochastic volatility modeling

both skewness and heavy tails assuming that the conditional distribution of returns is a skew-generalized

error distribution.

In this paper, in order to model simultaneously skewness and heavy-tailedness, we extend the SV

model by assuming skew-Student-t (ST) introduced by Azzalini and Capitanio (2003) and hence the

SV-ST is defined. Inference in the SV-ST model is performed under a Bayesian paradigm via MCMC

methods, which permits to obtain the posterior distribution of parameters by simulation starting from

reasonable prior assumptions on the parameters.

The remainder of this paper is organized as follows. Section 2 shows a brief review about skew-

normal (Azzalini, 1986) and skew-t distributions and their properties. Section 3 describes the SV-ST

model through Bayesian estimation procedure using MCMC methods. Section 4 is devoted to application
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and model comparison among the SV-ST model against the SV-N, SV-T and SV-SN models using the

NASDAQ data set. Finally, some concluding remarks as well as future developments are deferred to

Section 5.

2 The univariate skew-normal and skew-t distributions

We start by giving an important notation that will be used throughout the paper and present a review

of the univariate skew normal (SN) and skew-t (ST) distributions and a study of some related properties

of those distributions.

A univariate random variable X is said to follow a skew-normal distribution, X ∼ SN (ζ, ω2, λ),

with location, scale and asymmetry parameters given by ζ, ω2 and λ, respectively, if the density of this

distribution has the form

p(x | ζ, ω2, λ) =
2

ω
ϕ

(
x− ζ

ω

)
Φ

(
λ

ω
(x− ζ)

)
, (1)

where ϕ(.) and Φ(.) are, respectively, the probability density function (pdf) and the cumulative dis-

tribution function (cdf) of the standard normal distribution. When λ = 0, the density in equation (1)

becomes N (ζ, σ2)(see Azzalini, 2005, for a comprehensive review). In the next sections, we use the follow-

ing stochastic representation of the SN distribution (Azzalini, 1986; Henze, 1986). Let W ∼ N[0,∞)(0, 1)

and ε ∼ N (0, 1), independently, and let δ ∈ (−1, 1), where N[0,∞)(., .) and N (., .) indicate the truncated

normal and normal distribution, respectively. The random variable X, defined by

X = ζ + ωδW + ω
√
1− δ2ε, (2)

follows a univariate skew-normal distributions, that is, X ∼ SN (ζ, ω2, λ), where λ = δ/
√
1− δ2.

The kurtosis coefficient of a skew-normal distribution is restricted to the interval [3, 3.8692]. To

achieve a higher degree of excess kurtosis, the skew-t distribution has been introduced by Branco and
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Dey (2001) and Azzalini and Capitanio (2003). A univariate random variable X follows the scalar skew-t

distribution, X ∼ ST (ζ, ω2, λ, ν), if it has the following stochastic representation

X = ζ + U−1/2ωδW + U− 1
2ω(1− δ2)

1
2 ε, (3)

where W ∼ N[0,∞)(0, 1), ε ∼ N (0, 1) and U ∼ G(ν2 ,
ν
2 ) are independently distributed. The Gamma

distribution G(a, b) is defined with density p(u | a, b) = baua−1e−bu/Γ(a). The pdf of X is then given by

f(X | ζ, ω2, λ, ν) =
2

ω
tν

(
x− ζ

ω

)
Tν+1

(
λω−1(x− ζ)

√
ν + 1

ν + ω−2(x− ζ)2

)
, (4)

where tν(.) and Tν(.) denote the pdf and cdf of a standard Student-t distribution with ν degrees of

freedom. From (3), we have that

E(X) = ζ +

√
2

π
k1ωδ, (5)

V (X) = ω2k2 −
2

π
k21ω

2δ2, (6)

where δ = λ/
√
1 + λ2 and km = E(U−m/2). E(.) and V (.) denote the expected value and variance,

respectively. The skew-t nests the traditional symmetric Student’s t distribution as a special case when

λ = 0, and the conditional normal distribution as ν → ∞, and can capture left-tailed or negative skewness

when λ < 0, and positive skewness when λ > 0.

To interpret the parameters (λ, ν) in relation to the skewness and heavy-tailedness, skew-t densities

are plotted using several combinations of the parameter values in Figure 1 with ζ and ω fixed at 0 and

2, respectively. In Figure 1, left, the densities are drawn using λ = 0,−2,−4,−8 with ν fixed at 5. As

mentioned, λ = 0 corresponds to a symmetric Student’s t-density. A lower value of λ implies a more

negative skewness or left-skewness as well as heavier tails. Figure 1, right, shows the densities for ν at

2,4,10 and 15 with λ fixed equal to -2. As ν becomes larger, the density becomes less skewed and has

lighter tails. Hence the skewness and heavy-tailedness are determined jointly by the combination of the

parameter values of λ and ν.
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Figure 1: The skew-t distribution. Top: ζ = 0, ω = 2, ν = 5 (fixed), λ = 0,−2,−4,−8. Bottom:

ζ = 0, ω = 2, λ = −2 (fixed), ν = 2, 4, 10 and 15.

3 The skew-t stochastic volatility model

3.1 The model

In order to account for both the excess kurtosis and skewness in stock returns, we introduce the stochastic

volatility model with skew-t errors (SV-ST), which is defined as

yt = e
ht
2 ϵt, (7a)

ht+1 = µ+ φ(ht − µ) + σηηt, (7b)
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where yt and ht are, respectively, the compounded return and the log-volatility at time t. We assume

that |φ| < 1, i.e., the log-volatility process is stationary and that the initial value h1 ∼ N (µ,
σ2
η

1−φ2 ),

ϵt ∼ ST (ζ, ω2, λ, ν) and ηt ∼ N (0, 1) are uncorrelated. The SV-ST defined by equations (7a) and (7b)

can be written hierarchically using the stochastic representation of the skew-t distribution in (3), as

yt = (ζ + ωδWtU
− 1

2
t )e

ht
2 + e

ht
2 U

− 1
2

t ω(1− δ2)
1
2 εt, (8a)

ht+1 = µ+ φ(ht − µ) + σηηt, (8b)

Wt ∼ N[0,∞)(0, 1), (8c)

Ut|ν ∼ G(ν
2
,
ν

2
), (8d)

where εt and ηt are mutually independent and normally distributed with zero mean and unit variance,

δ = λ√
1+λ2

. We set ζ and ω in such a way that E(yt | ht) = 0 and V (yt | ht) = eht . In this setup,

equations (8a) and (8b), with λ = 0 (equivalently δ = 0) and Ut = 1∀t define the SV model with normal

distribution (SV-N). Equations (8a),(8b) and (8d) with λ = 0 define the the SV model with Student-t

distribution (SV-T) defined by Abanto-Valle et al. (2010). Finally, equations (8a),(8b) and (8c) with

Ut = 1, ∀t results the SV model with skew normal distribution (SV-SN).

3.2 Parameter estimation via MCMC

Let θ = (φ, σ2
η, ν, λ)

′ be the full parameter vector of the entire class of SV-ST model, h1:T = (h1, . . . , hT )
′

be the vector of the log volatilities, U1:T = (U1, . . . , UT )
′ be the mixing variables, W1:T = (W1, . . . ,WT )

′

and y1:T = (y1, . . . , yT )
′ be the information available up to time T , while ν is the degrees of freedom

parameter vector associated with the mixture distribution and λ the skewness parameter. The Bayesian

approach to estimate the parameters in the SV-ST model uses the data augmentation principle, which

considers h1:T , W1:T and U1:T as latent variables. The joint posterior density of parameters and latent
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unobservable variables can be written as

p(θ,W1:T ,U1:T ,h0:T | y1:T ) ∝ p(y1:T | θ,W1:T ,U1:T ,h1:T )

× p(h0:T | θ)p(W1:T )p(U1:T | θ)p(θ), (9)

where p(θ) is the prior distribution. Since the posterior density p(h1:T ,W1:T ,U1:T ,θ | y1:T ) does not

have closed form, we first sample the parameters θ, followed by the latent variables W1:T , U1:T and h1:T

using Gibbs sampling. The sampling scheme is described by Algorithm 1. Sampling the log-volatilities

h1:T in step 5 of Algorithm 1 is the most difficult task due to the nonlinear setup in the observational

equation (8a). In order to avoid the higher correlations due to the Markovian structure of the ht’s, in

the next subsection we develop a multi-move block sampler to sample h0:T by blocks (Shephard and Pitt

1997; Watanabe and Omori 2004; Abanto-Valle et al. 2010). Details on the full conditionals of θ and the

latent variables U1:T and W1:T are given in Appendix.

Algorithm 1

1. Set i = 0 and get starting values for the parameters θ(i) and the latent quantities W
(i)
1:T , U

(i)
1:T and

h
(i)
1:T .

2. Generate θ(i+1) in turn from its full conditional distribution, given y1:T , h
(i)
1:T ,W

(i)
1:T and U

(i)
1:T .

3. Draw W
(i+1)
1:T ∼ p(W1:T | θ(i),U

(i)
1:T ,h

(i)
1:T ,y1:T ).

4. Draw U
(i+1)
1:T ∼ p(U1:T | θ(i+1),W

(i+1)
1:T ,h

(i)
1:T ,y1:T ).

5. Generate h1:T by blocks as:

i) For l = 1, . . . ,K, the knot positions are generated as kl, the floor of [T × {(l + ul)/(K + 2)}],

where the u′ls are independent realizations of the uniform random variable on the interval

(0,1).
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ii) For l = 1, . . . ,K, generate hkl−1+1:kl−1 jointly conditional on ykl−1:kl−1, θ
(i+1), W

(i+1)
kl−1+1:kl−1,

U
(i+1)
kl−1+1:kl−1, h

(i)
kl−1

and h
(i)
kl
.

iii) For l = 1, . . . ,K, draw h
(i+1)
kl

conditional on y1:T , θ
(i), W

(i+1)
kl

, U
(i+1)
kl

, h
(i+1)
kl−1 and h

(i+1)
kl+1 .

6. Set i = i+ 1 and return to 2 until convergence is achieved.

In the SV-ST model considered so far, an important modelling assumption is the regularization penalty

p(ν) on the tail thickness. A default Jeffreys’ prior was developed by Fonseca et al. (2008), with a number

of desirable properties particularly when learning a fat-tail from a finite dataset. The default Jeffreys’s

prior for ν takes the form

p(ν) ∝
(

ν

ν + 3

) 1
2
{
ψ′
(
ν

2

)
− ψ′

(
ν + 1

2

)
− 2(ν + 3)

ν(ν + 1)2

} 1
2

, (10)

where ψ′(a) = d{ψ(a)}
da and ψ(a) = d{log Γ(a)}

da are the trigamma and digamma functions, respectively. The

interesting feature of this prior is its behavior as ν goes to infinity and it has polynomial tails of the form

p(ν) ∝ ν−4. In this case, the tail of the prior decays rather fast for large values of ν and assessing the

degree of tail thickness can require prohibitively large samples. To the skewness parameter, we assume

that λ ∼ t0.5(0.0,
π2

4 ), a Jeffreys’ prior suggested by Bayes and Branco (2007).

3.2.1 Block sampler

In order to simulate h1:T = (h1, . . . , hT )
′ in the SV-ST model, we consider a two-step process: first, we

simulate h1 conditional on h2:T , next h2:T conditional on h1. To sample the vector h2:T , we develop

a multi-move block algorithm. In our block sampler, we divide it into K + 1 blocks, hkl−1+1:kl−1 =

(hkl−1+1, . . . , hkl−1)
′ for l = 1, . . . ,K + 1, with k0 = 1 and kK+1 = T , where kl − 1 − kl−1 ≥ 2 is the

size of the l−th block. We sample the block of disturbances ηkl−1:kl−2 = (ηkl−1
, . . . , ηkl−2)

′ given the

end conditions hkl−1
and hkl instead of hkl−1+1:kl−1. In order to facilitate the exposition, we omit the

dependence on θ, Wt+1:t+k and Ut+1:t+k, and suppose that kl−1 = t and kl = t+k+1 for the l−th block,
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such that t + k < T . Then ηt:t+k−1 = (ηt, . . . , ηt+k−1)
′ are sampled at once from their full conditional

distribution f(ηt:t+k−1|ht, ht+k+1,yt:t+k), which without the constant terms is expressed in log scale as

log f(ηt:t+k−1|ht, ht+k+1) = const− 1

2

t+k−1∑
r=t

η2r +

t+k∑
r=t+1

l(hr)

− 1

2σ2
η

[ht+k+1 − µ− φ(ht+k − µ)]2I(t+ k < T ),

where I(.) is an indicator function. We denote the first and second derivatives of l(hr) with respect to hr

by l′ and l′′, where l(hr) = log p(yr | ν, λ,Wr, Ur, hr) is obtained from equation (8a). As (11) does not

have closed form, we use the Metropolis-Hastings acceptance-rejection algorithm (Tierney, 1994; Chib

and Greenberg, 1995) to sample from. We propose to use the following artificial Gaussian state space

model as a proposed density to simulate the block ηt+1:t+k

ŷr = hr + ξr, ξr ∼ N (0, dr), r = t+ 1, . . . , t+ k, (11)

hr+1 = µ+ φ(hr − µ) + σηηr, ηr ∼ N (0, 1), r = t, t+ 1, . . . , t+ k − 1, (12)

where the auxiliary variables dr and ŷr for r = t+ 1, . . . , t+ k − 1 and t+ k = T are defined as follows:

dr = − 1

l
′′
F (ĥr)

,

ŷr = ĥr + drl
′
(ĥr). (13)

For r = t+ k < T , it follows that

dr =
σ2
η

φ2 − σ2
ηl

′′
F (ĥt+k)

,

ŷr = dr

[
l
′
(ĥr)− l

′′

F (ĥr)ĥr +
φ

σ2
η

[hr+1 − µ(1− φ)]

]
. (14)

We obtain the measurement equation (11) by a second-order expansion of lr around some preliminary

estimate of ηr, denoted by η̂r, where ĥr is the estimate of hr equivalent to η̂r, and

l
′′

F (hr) = E[l
′′
(hr)] = −1

2
− (ζ + ωδWtU

− 1
2

t )2

4ω2(1− δ2)
Ur, (15)
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which is everywhere strictly negative. The expectation in (15) is taken with respect to yr conditional on

hr, Wr, Ur, θ. Since (11)-(12) define a Gaussian state space model, we can apply de Jong and Shephard’s

simulation smoother (de Jong and Shephard, 1995) to perform the sampling. We denote this density by

g. Since f is not bounded by g, we use the Metropolis-Hastings acceptance-rejection algorithm to sample

from f , as recommended by Chib and Greenberg (1995). In the SV-SN case, we use the same procedure

with Ut = 1 for t = 1, . . . , T .

The procedure to select the expansion block ĥt+1:t+k is described in the Algorithm 2.

Algorithm 2

1. Initialize ĥt+1:t+k.

2. Evaluate recursively l
′
(ĥr) and l

′′

F (ĥr) for r = t+ 1, . . . , t+ k.

3. Conditional on the current values of the vector of parameters θ, Ut+1:t+k, Wt+1:t+k, ht and ht+k+1,

define the auxiliary variables ŷr and dr using equations (13) or (14) for r = t+ 1, . . . , t+ k.

4. Consider the linear Gaussian state-space model in (11) and (12). Apply the Kalman filter and a

disturbance smoother (Koopman, 1993) and obtain the posterior mean of ηt:t+k (ht:t+k) and set

η̂t:t+k (ĥt:t+k) to this value.

5. Return to step 2 and repeat the procedure until achieving convergence.

Finally, we describe the updating procedure for h1 and the knot conditions hkl , for l = 1, . . . ,K. We

simulate h1 | h2,θ ∼ N (µ + φ(h1 − µ), σ2
η). As the density p(hkl | hkl−1, hkl+1) does not have a closed

form, we use the Metropolis-Hastings algorithm with proposal N (
µ(1−φ)2+φ(hkl−1+hkl+1)

1+φ2 ,
σ2
η

1+φ2 ). Let h
p
kl

and h
(i−1)
kl

denote the proposal value and the previous iteration value. Thus, the acceptance probability

is given by αMH = min{1,
Q(hpkl

)

Q(h
(i−1)
kl

)
}, where Q(hkl) is the conditional density of ykl | θ,Wkl , Ukl , hkl .
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Figure 2: Compounded NASDAQ returns from January 7, 1988 to July 3, 2003. The left panel shows

the plot of the raw series and the right panel the histogram of returns.

4 Empirical Application

This section analyzes the daily closing prices of the NASDAQ Composite index. The NASDAQ Com-

posite is a stock market index of the common stocks and similar securities listed on the NASDAQ stock

market, meaning that it has over 3000 components. It is highly followed in the U.S. as an indicator of

the performance of stocks of technology and growth companies. Since both U.S. and non-U.S. compa-

nies are listed on the NASDAQ stock market, the index is not exclusively a U.S. index. The data set

was obtained from the Yahoo finance web site, available to download at http://finance.yahoo.com.

The period of analysis is July 5, 1988 - July 3, 2003, which yields 3784 observations. Throughout, we

work with the compounded return expressed as a percentage, yt = 100× (logPt − logPt−1), where Pt is

the closing price on day t. The compounded NASDAQ index returns are plotted in Figure 2 as a time

series plot and also as a histogram. We clearly identify the period of elevate volatility around of the

turn of the Millennium associated with the collapse of the Tech bubble. We are particularly interested

in understanding the importance of excess of kurtosis and skewness in the NASDAQ index return and

11
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we avoid confounding our results by this highly influential outlier. There are some interesting pattern

we observe in this history of NASDAQ returns. The average return is 0.04 percent daily with a daily

standard deviation of 1.54. Returns exhibit negative skewness of -0.02 and kurtosis of 9.13. Note also

that the returns have a large range (minimum, -10.16 and maximum, 13.25). We use the the Jarque-Bera

(JB) statistics to test the normality assumption of the returns. In light of the JB statistics (5923.6), the

null hypothesis of normality is rejected (p-value of 0.00) due to negative skewness and excess of kurtosis.

Table 1: Estimation results for the NASDAQ returns. First row: Posterior mean. Second row: Posterior

95% credible interval in parentheses. Third row: CD statistics.

Parameter SV-N SV-T SV-SN SV-ST

0.0623 0.0457 0.0417 0.0314

µ (-0.9523,0.9764) (-1.3032,1.2315) (-1.1524,1.0409) (-1.5076,1.3985)

0.70 0.94 -0.91 -0.66

0.9944 0.9963 0.9954 0.9967

φ (0.9897,0.9984) (0.9926,0.9994) (0.9745,0.9947) (0.9932,0.9995)

1.12 -0.43 0.11 -1.58

0.0172 0.0118 0.0143 0.0107

σ2
η (0.0115,0.0246) (0.0075,0.0171) (0.0097,0.0204) (0.0070,0.0155)

-0.13 0.39 0.81 0.87

– – -1.3908 -1.1528

λ – – (-1.6280,-1.1470) (-1.4020,-0.8820)

– – 0.23 -1.65

– 19.3369 – 19.6797

ν – (11.3700,35.3600) – (11.4000,36.5000)

– -1.78 – 1.72

– 0.0564 – 0.0556

1
ν – (0.0283,0.0879) – (0.0274,0.0877)

– 1.51 – -1.36
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Now, we analyze the NASDAQ index returns with the aim of providing robust inference. In our anal-

ysis, we fit and compare the SV-N, SV-T, SV-SN and SV-ST models. In all cases, we simulated the ht’s

in a multi-move fashion with stochastic knots based on the method described in Section 3.2. We fix the

number of blocks K to be 95 in such a way that each block contained 40 h′ts on average. We set the prior

distribution of the common parameters as: φ ∼ N(−1,1)(0.95, 100), σ
2 ∼ IG(2.5, 0.025), µ |∼ N (0, 100).

For the parameter φ the priors’ mean and variance are 0.0032 and 0.3328, respectively. This prior setup

is equivalent to the uniform distribution on interval (-1, 1), which gives zero mean and variance of 0.3333.

We assume that λ ∼ t0.5(0.0,
π2

4 ), a Jeffreys’ prior suggested by Bayes and Branco (2007). Finally, for

ν, we assume the prior given by equation (10). All the calculations were performed running stand-alone

code developed by us using an open source C++ library for statistical computation, the Scythe statistical

library (Pemstein et al., 2007), which is available for free download at http://scythe.wustl.edu.

For all models, we conducted the MCMC simulation for 50000 iterations. In all cases, the first 10000

draws were discarded as a burn-in period. In order to reduce the autocorrelation between successive

values of the simulated chain, only every 20th values of the chain were stored. With the resulting 2000

values, we calculated the posterior means, the 95% credible intervals and the convergence diagnostic (CD)

statistics (Geweke, 1992). If the sequence of the recorded MCMC output is stationary, it converges in

distribution to the standard normal. According to the CD the null hypothesis that the sequence of 2000

draws is stationary was accepted at the 5% level, CD ∈ (−1.96, 1.96), for all the parameters in all the

models considered here. Table 1 summarizes the results.

From Table 1, consistent with the existing evidence of great persistence in the log-volatility process,

we found that the posterior means of φ and 95% posterior credible intervals very close to the unity.

Being the posterior mean of φ of the SV-ST model slightly higher than those of the other three mod-

els. The posterior mean of σ2
η is smaller in the SV-ST than those of the SV-N, SV-T and the SV-SN

models, indicating that the log-volatility process of the SV-ST is less variable than those of the other ones.
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In the SV-T and SV-ST models, the magnitude of the tail-fatness is measured by the degrees of

freedom, ν, parameter. We found that the posterior mean of ν are the SV-T are 19.34 and 19.68,

respectively, which indicates tail-fatness. In Table 1, we report the posterior mean of 1/ν, for both

models, which, in both cases, are over 3.5 standard deviation from zero. Since the SV-N and SV-SN

models are nested in the limit when 1/ν approaches to zero this provides strong evidence of heavy-

tailness of conditional distributions of the returns.

Regarding the skewness parameter, λ, in the SV-SN and SV-ST models, we found that the posterior

means are -1.3908 and -1.1528, respectively. In both models, the 95% credible interval does not contain

zero, that is the negativity of λ is credible. This supports the strong evidence of skewnesses in the

NASDAQ data set.

The magnitudes of the mixing parameter Ut are associated with extremeness of the corresponding

observations. In the Bayesian paradigm, the posterior mean of the mixing parameter can be used to

identify a possible outlier (see, for instance, Rosa et al., 2003). The SV-T and SV-ST models can

accommodate an outlier by inflating the variance component for that observation in the conditional

distribution with smaller Ut value. This fact is shown in Figure 3 where we depicted the posterior mean

of the mixing variable Ut for the SV-T (top panel) and SV-ST (bottom panel) models, respectively.

To assess the goodness of the estimated models, we calculate the Bayesian predictive information

criteria, BPIC (Ando, 2006; 2007). The BPIC criterion is defined as

BPIC = −2Eθ|y1:T
[log{p(y1:T | θ)}] + 2T b̂, (16)

where b̂ is given by

b̂ ≈ 1

T

{
Eθ|y1:T

[log{p(y1:T | θ)p(θ)}]− log[p(y1:T | θ̂)p(θ̂)] + tr{J−1
T (θ̂)IT (θ̂)}+ 0.5q

}
. (17)

Here q is the dimension of θ, Eθ|y1:T
[.] denotes the expectation with respect to the posterior distribution,

14



time

U t
0.

4
0.

6
0.

8
1.

0

7/6/1988 4/11/1991 1/14/1994 10/22/1996 8/3/1999 5/17/2002

time

U t
0.

4
0.

6
0.

8
1.

0

7/6/1988 4/11/1991 1/14/1994 10/22/1996 8/3/1999 5/17/2002

Figure 3: NASDAQ data set: posterior smoothed mean of mixture variable Ut for the SV-T (top panel)

and SV-ST (bottom panel) models.
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θ̂ is the posterior mode, and

IT (θ̂) =
1

T

T∑
t=1

(
∂ηT (yt,θ)

∂θ

∂ηT (yt,θ)

∂θ′

)∣∣∣∣
θ=

ˆθ
,

JT (θ̂) =
1

T

T∑
t=1

(
∂2ηT (yt,θ)

∂θ∂θ′

)∣∣∣∣
θ=

ˆθ
,

with ηT (yt,θ) = log p(yt | y1:t−1,θ) + log p(θ)/T.

In the SV-N, SV-T, SV-SN, and SV-ST models, the log-likelihood function, log p(y1:T | θ), is estimated

using the auxiliary particle filter (see, e.g., Pitt and Shephard, 1999) with 10000 particles. From Table

2, the BPIC criterion indicates the SV-ST model is the best model among all the models considered

here, suggesting that the NASDAQ index return data demonstrate sufficient departure from underlying

normality assumptions and asymmetry.

In Figure 4 , we plot the smoothed mean of e
ht
2 obtained from the MCMC output for the SV-N (solid

line) and the SV-ST (dotted line). From a practical point of view, we are mainly interested in whether we

find a significant difference between the two series. Therefore, in the bottom panel of Figure 9, we plot

the smoothed mean of the difference of e
ht
2 obtained from the SV-N and SV-T models. Some extreme

returns make the differences clear. This can have a substantial impact, for instance, in the valuation of

derivative instruments and several strategic or tactical asset allocation topics.

5 Conclusions

In this article, we presented a Bayesian implementation of the stochastic volatility model with skew-

Student-t (SV-ST) errors as an alternative to the normal assumption of the conditional distribution of
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Figure 4: NASDAQ data set. Top: Posterior smoothed mean of e
ht
2 . SV-N (solid line) and SV-ST

(dotted line). Bottom: Posterior smoothed mean of the difference of e
ht
2 in both models.
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Table 2: Nasdaq return data set. BPIC: Bayesian predictive information criterion.

Model BPIC Ranking

SV-N 15628.4 3

SV-T 11662.6 2

SV-SN 16012.4 4

SV-ST 11575.3 1

the returns. The SV-ST model allows a parsimonious yet flexible treatment of both skewness and tail

thickness. Under a Bayesian perspective, we developed a fast and efficient MCMC sampling procedure

to estimate all the parameters and latent quantities in our proposed SV-ST model. We use objective

priors for the degrees of freedom and the skewness parameters, ν and λ, based on Fonseca et al. (2008)

and Bayes and Branco (2007), respectively. As a by product of the MCMC algorithm, we were able to

produce an estimate of the latent information process which can be used in financial modelling. The

use of mixing variable, U1:T not only simplifies the full conditional distributions required for the Gibbs

sampling algorithm, but also provides a mean for outlier diagnostics. We illustrated our methods through

an empirical application of the NASDAQ return series, which showed that the SV-ST model provides

better fit than the SV-N, SV-T and SV-SN models in terms of parameter estimates, interpretation and

robustness aspects. On the other hand, since the posterior mean and 95% posterior credibility interval

of the parameter λ contains only negative values, we can conclude that there is a strong evidence of

skewness in the NASDAQ data set.
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Appendix A: The full conditionals

In this appendix, we describe the full conditional distributions for the parameters and the mixing latent

variables U1:T and W1:T for the SV-ST model model.

Full conditional distribution of µ, φ and σ2
η

The prior distributions of the common parameters are set as: µ ∼ N(µ̄, σ2
µ), φ ∼ N(−1,1)(φ̄, σ

2
φ), σ

2
η ∼

IG(T0

2 ,
M0

2 ). We have the following full conditional for µ:

µ | h1:T , φ, σ
2
η ∼ N (

bµ
aµ
,
1

aµ
), (A.1)

where aµ = 1
σ2
α
+ (T−1)(1−φ)2

σ2
η

+ (1−φ)2
σ2
η

and bµ = µ̄
σ2
µ
+ (1−φ2)

σ2
η

h1 +
∑T−1
t=1 (ht+1−φht)(1−φ)

σ2
η

. In a similar way,

the conditional posterior of φ is given by

p(φ | h1:T , µ, σ
2
η) ∝ Q(φ) exp{−aφ

2 (ψ − bφ
aφ

)2}I|φ|<1, (A.2)

where Qφ =
√
1− φ2 exp{− 1

2σ2
η
[(1−φ2)(h1−µ)2}, aφ =

∑T−1
t=1 (ht−µ)2

σ2
η

+ 1
σ2
ψ
, bφ =

∑T−1
t=1 (ht−µ)(ht+1−µ)

σ2
η

+ φ̄
σ2
φ

and I|φ|<1 is an indicator variable. As p(φ | h0:T , α, σ
2
η) in (A.2) does not have closed form, we sample from

it by using the Metropolis-Hastings algorithm with truncated N(−1,1)(
bψ
aψ
, 1
aψ

) as the proposal density.

Finally, the full conditional of σ2
η is IG(T1

2 ,
M1

2 ), where T1 = T0 + T and M1 = M0 + [(1 − ψ2)(h1 −

µ)2] +
∑T−1
t=1 [ht+1 − µ− ψ(ht − µ)]2.

Full conditional of ν, λ, Ut and Wt

We, set ζ and ω in such a way that E(yt | ht) = 0 and V (yt | ht) = eht . So, we have ζ = −
√

2
πk1δω and

ω2 =

[
k2 − 2

πk
2
1δ

2

]−1

, where k1 =
√

ν
2

Γ( ν−1
2 )

Γ( ν2 )
, k2 = ν

ν−2 and δ = λ√
1+λ2

. Then the full the conditionals of
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ν and λ follows:

p(ν | .) ∝
(

ν

ν + 3

) 1
2
{
ψ′
(
ν

2

)
− ψ′

(
ν + 1

2

)
− 2(ν + 3)

ν(ν + 1)2

} 1
2

×
(
1

ω

)T
e
− 1

2ω2(1−δ2)

∑T
t=1 Ute

−ht (yt−ζ−ωδWtU
− 1

2
t e

ht
2 )2

, (A.3)

p(λ | .) ∝
(
1 +

2λ
π2

4

)− 3
4
(

1

1− δ2

)T
2

e
− 1

2ω2(1−δ2)

∑T
t=1 Ute

−ht (yt−ζ−ωδWtU
− 1

2
t e

ht
2 )2

. (A.4)

Since the above full conditional distributions are not in any known closed form, we must simulate ν and

λ using the Metropolis-Hastings algorithm. The proposal density used are N(ν>2)(µν , τ
2
ν ) and N (µλ, τ

2
λ),

with µυ = x− q′(x)
q′′(x) and τ

2
υ = max{0.001, (−q′′(x))−1} for υ = ν or λ, where x is the value of the previous

iteration, q(.) is the logarithm of the conditional posterior density, and q′(.) and q′′(.) are the first and

second derivatives respectively.

As Ut ∼ G(ν2 ,
ν
2 ), the conditional posterior of Ut is given by

p(Ut | ht,Wt, ν, λ) ∝ Q(Ut)U
ν+1
2 −1

t e
−Ut

2 [ν+
e−ht (yt−ζe

ht
2 )2

ω2(1−δ2)
]
, (A.5)

where Q(Ut) = e
U

1
2
t δWte

−ht
2 (yt−ζe

ht
2 )

ω(1−δ2) . As p(Ut | ht,Wt, ν, λ) in (A.5) does not have closed form, we

sample from it by using the Metropolis-Hastings algorithm with G(ν+1
2 , 12 [ν + e−ht (yt−ζe

ht
2 )2

ω2(1−δ2) ]) as the

proposal density. Finally, from equations (8a) and (8c), we have the full conditional of Wt is the

N[0,∞)(
δU

− 1
2

t e−
ht
2 [yt−ζe

ht
2 ]

ω , 1
1−δ2 ).
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