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Often in biomedical studies, the routine use of linear mixed-effects models (based on Gaussian assumptions)
can be questionable when the longitudinal responses are skewed in nature. Skew-normal/elliptical models
are widely used in those situations. Often, those skewed responses might also be subjected to some upper
and lower quantification limits (viz. longitudinal viral load measures in HIV studies), beyond which they
are not measurable. In this paper, we develop a Bayesian analysis of censored linear mixed models replac-
ing the Gaussian assumptions with skew-normal/independent (SNI) distributions. The SNI is an attractive
class of asymmetric heavy-tailed distributions that includes the skew-normal, the skew-t, skew-slash and the
skew-contaminated normal distributions as special cases. The proposed model provides flexibility in cap-
turing the effects of skewness and heavy tail for responses which are either left- or right-censored. For our
analysis, we adopt a Bayesian framework and develop a MCMC algorithm to carry out the posterior analy-
ses. The marginal likelihood is tractable, and utilized to compute not only some Bayesian model selection
measures but also case-deletion influence diagnostics based on the Kullback-Leibler divergence. The newly
developed procedures are illustrated with a simulation study as well as a HIV case study involving analysis
of longitudinal viral loads.
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1 Introduction

In AIDS research, HIVI-RNA (or viral load) measures are collected longitudinally (Wu, 2010) over a
period of treatment to assess reduction in viral load, which is a primary end-point in clinical trials of anti-
retroviral (ARV) theraphy (Jacqmin-Gadda et al., 2000). Mixed-effects models are routinely used (Vaida
et al., 2007; Vaida and Liu, 2009a; Qiu and Wu, 2010) to estimate viral load trajectories as well as to
quantify within-subject and between-subject variations in viral load measurements. Although viral load
has been widely recognized as the best prognostic marker with CD4 + cell counts (Mellors et al., 1996),
its measurement comes with some additional complications, viz., the measures may be subjected to some
upper and lower detection limits, below or above which they are not quantifiable. As a result, the viral load

responses are either left or right censored depending on the diagnostic assays used. However, the proportion
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2 Lachos et al.: Skew normal/independent censored linear mixed models

of censored data in these studies may not be trivial (Hughes, 1999) and considering crude/adhoc methods
viz., substituting threshold value or some arbitrary point such as mid-point between zero and cut-off for
detection (Huang et al., 2001) might lead to biased estimates of fixed effects and variance components
(Gray et al., 2004).

Our motivating data in this paper is from an AIDS clinical trial study (Saitoh et al., 2008), which
measures HIV-1 viral loads after unstructured treatment interruption (UTI). In this study, about 7% obser-
vations lie below the limits of the quantification assay, and hence are considered to be left-censored. As
alternatives to the crude imputation methods described above, Hughes (1999) proposed a likelihood-based
Monte Carlo EM algorithm (MCEM) for linear mixed effects (LME) with censored response (LMEC).
Vaida et al. (2007) proposed a hybrid EM using a more efficient implementation of Hughes algorithm, in-
cluding numerical computation at the E-step for clusters with one or two censored observations. They also
extended the algorithm to NLME with censored data (NLMEC). Their MCEM improves the simulation at
the E-step, the numerical implementation at the M-step, and includes automatic monitoring and stopping
of the algorithm. Recently, Vaida and Liu (2009a) proposed an exact EM algorithm for LMEC/NLMEC,
which uses closed-form expressions at the E-step, as opposed to Monte Carlo simulations. A common
feature of all these methods is the fidelity to the ‘Gaussian’ paradigm for the random-effects and within-
subject random errors. Although the assumptions of normality provides a much simplistic framework for
statistical analysis in guiding the development of treatment strategies and clinical decision, it may lack ro-
bustness against departures from normality and/or outliers (Sahu et al., 2003) and thus statistical inference
and analysis with normal assumption may lead to misleading results. Viral-load measurements are often
highly skewed, and even log-transformations do not render normality (Ghosh et al., 2007). This character-
istic further complicates analysis of mixed-effects models, because one (or both) of the (within-subject)
random error and (between-subject) random effects might contribute to the ‘shift from normality’. For ex-
ample, Figure 1 (panels a and b) display the density histogram and associated Q-Q plots for (repeated and
non-censored) viral load measurements (in natural log,, scale) from the above study, which reveals some
degree of left skewness. Panels (c and d) present the same for empirical Bayes estimates (Laird and Ware,
1982) of random effects b; and panels (e and f) for the residuals, all obtained after fitting a NLMEC model
to the UTT data using the R package Imec (Vaida and Liu, 2009b). These plots reveal left-skewed nature of

subject-specific intercepts at the level of random-effects, but symmetric tail behavior for the random errors.

To deal with the problem of departure from normality in LME models for complete data and elimi-
nate the need of ad hoc data transformations (Azzalini and Capitanio, 1999), several proposals have been
considered in the literature by replacing the normal random effects using finite normal mixtures (Verbeke
and Lesaffre, 1996), smoothing (Ghidey et al., 2004), a semi-nonparametric density (Zhang and Davidian,
2001), a skew-t LME model (Ho and Lin, 2010) etc. Much of the recent frequentist and Bayesian advances
in regression problems revolve around the attractive and popular skew-normal/independent (SNI) distribu-
tions (Lachos et al., 2010). Starting with the multivariate SN density (Azzalini and Dalla Valle, 1996), SNI
linear mixed effects models (SNI-LME) was proposed in Lachos et al. (2010), primarily using EM-type
algorithm for maximum likelihood (ML) estimation. Bayesian analysis in the context of non-linear regres-
sion with multivariate skew-elliptical (skew-normal and skew-t) errors were considered in De la Cruz and
Branco (2009). There had been some recent Bayesian proposals for LME models with SNI distributions
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Figure 1 UTI Data: Density histogram and corresponding Q-Q plots for raw HIV viral load measures
(in log, scale) (Panels a and b), empirical Bayes estimates of random effects (Panels ¢ and d), and model

residuals (Panels e and f) respectively, after fitting a NLMEC model using R package Imec

(Jara et al., 2008; Lachos et al., 2009), but to the best of our knowledge, there are no reported study ex-
ploring a robust unified Bayesian framework simultaneously for asymmetrical and heavy-tailed responses
for LMEC models using the family of SNI distributions.

In this paper, we proceed with our robust parametric LMEC model assuming a SNI distribution for the
random effects and a NI distribution for the random errors, so that the SNI-LMEC model is defined. The
marginal density of the observed quantities is obtained analytically. Our main contribution aims at provid-
ing a Bayesian treatment to censored version of SNI-LME models and studying various Bayesian model
selection and related case-deletion influence diagnostics based on Kullback-Leibler (K-L) divergence mea-
sures as proposed in Peng and Dey (1995) and Cancho et al. (2010). The multivariate SNI distribution used
in our proposition is developed primarily from the multivariate SN density proposed in Azzalini and Dalla
Valle (1996). Although other propositions (Sahu et al., 2003) exist for the multivariate SN density, the dif-
ferences between these are only due to the various parameterizations (Arellano-Valle and Azzalini, 2006)
used. An unification of all skew-normal variants is presented in Arellano-Valle and Genton (2005).
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The rest of the paper is organized as follows. In Section 2, we introduce the multivariate skew-normal
and SNI distributions and state some propositions which are crucial for our methodology developments.
Section 3 formulates our SNI-LMEC and proposes a Bayesian approach for inference. In Section 4, we
discuss relevant Bayesian model selection criteria and influence diagnostic measures. The advantage of the
proposed methodology is illustrated through analysis of the longitudinal HIV viral load in a AIDS study in
Section 5. Section 6 presents a simulation study to compare the finite sample performance of the various
sub-classes of our proposed model. Finally, Section 7 concludes with some discussions and citing avenues
for future research.

2 Preliminaries

2.1 The multivariate skew-normal distribution

We begin with a review of the multivariate SN distribution and a study of some related properties. Some
versions, extensions and unifications of the SN family are carefully surveyed in works like Azzalini (2005)
and Arellano-Valle et al. (2006). A random vector Y has multivariate skew-normal distribution with p x 1
location vector w, p X p positive definite dispersion matrix 3 and p x 1 skewness parameter vector A, if
its density is given by

SN(ylp, BA) = 2¢,(y; p, D) S 2 (y — p)), (1)

where ¢,(.; pu, 3) and ®,(.; p, ) denote respectively the pdf and the cdf of the p-variate normal dis-

tribution N, (p, X), with mean vector p and covariate matrix X, respectively and »~1/2 is such that
» Y2512 — 57!, The univariate standard normal cdf will be denoted by ®(.). In usual notation, we
shall write Y ~ SN, (i, 3, ) for a random vector with density (1). Note that if A = 0, then the density
of Y reduces to the N,,(pt, ) density. Observe that (1) is the conditional density of Y|X > 0, where

Y m =%
x )Nl g )l et ‘

This distribution belongs to the class of fundamental skew-normal (FUSN) distributions proposed in Arellano-

Valle and Genton (2005). It is worth mentioning that although belonging to the FUSN family, the classical
versions introduced by Azzalini and Dalla Valle (1996) and Sahu et al. (2003) are different from (1),
the differences are only due to the various parameterizations (Arellano-Valle and Azzalini, 2006) used as
mentioned earlier. Using version (1) above allows us to develop an EM-type and Gibbs algorithms for
parameter estimation in SN-LME models. Indeed, it has been used as a powerful tool to extend some
traditional normal based models, see Lachos et al. (2009) and Lachos et al. (2010), for more details. For
computational purposes, an useful parametrization is given by

A=X2 T=x201-66")=2=2 - AAT, )
where I denotes the identity matrix of appropriate dimension and § = A/v/'1 + AT, We recover A and
3} using the expressions

Ty-1/2
a- EFAAJTTA g p L AAT 3)
[-AT(T+AAT) 1A]1/2
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Under this parametrizations and following Lachos et al. (2010), the multivariate SN distribution has a
convenient stochastic representation

Y = p+ AT +TV2Ty, “4)

where T' = |Tp|, Tp ~ N1(0,1) and T1 ~ N,(0,1,) are independent, with I, being the p x p identity
matrix and | - | denoting absolute value. It should also be noted crucially that (4) offers a stochastic
representation of Y , which is useful for random number generation and for theoretical purposes. From (4)
the mean and covariance of Y are given, respectively, by

EY]=p+ \/ZA, Var[Y] =X — %AAT. (5)

2.2 The multivariate skew-normal/independent (SNI) distribution

The idea of the SNI distributions originated from an early work by Branco and Dey (2001), which included
the skew-normal distribution as a special case. A SNI distribution is defined by a p—dimensional random
vector

Y = p+ U122, (6)

where U is a positive random variable with the cdf H (u; v) and pdf h(u; v), and independent of the random
vector Z, following SN, (0,3, A). Here v is a scalar or vector parameter indexing the distribution of the
mixing scale factor U. Given U = u, Y follows a multivariate skew—normal distribution with location
vector g, scale matrix '3 and skewness parameter vector A. Then, from (1), the marginal pdf of Y is

fy) = 2 / " oy ) PATE Yy — p))dH (u:v) @

The notation Y ~ SNI,(p, 33, A, H) will be used when Y has pdf (7).

The asymmetrical class of SNI distributions includes the skew—t, the skew—slash, and the skew—contaminated
normal distributions. All these distributions have heavier tails than the skew-normal and can be used for
robust inferences. Some of these distributions are described subsequently. When A = 0, the SNI dis-
tributions reduces to the normal-independent (NI) class (Lange and Sinsheimer, 1993), i.e., the class of
scale-mixtures of the normal distribution represented by the pdf fo(y) = fooo Gp(y; yu ' 2)dH (u;v).
We use the notation Y ~ NI, (p, 33, H) when Y has distribution in the NI class. We refer to Lachos et al.
(2010) for details and additional properties related to this SNI class.

The following results show that the cdf of a SNI random vector and its conditional distribution can be
obtained from a mixture representation of the SNI class. These result are crucial for our methodology
development, in particular essential for computing the likelihood function of a SNI-LMEC. The proofs are
given in the Appendix.

Proposition 2.1 If Y ~ SNI,(p, 3, A, H), then for any’y € R?

i) the cdf of Y is given by

PIY <y) - / " P(Y < ylw)dH (u;v), ®)

(© 0 (copyright holder)
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pY —ul/2s 2N
where P(Y < ylu) = ®,41 ((z7,0)7;0,u7'2), Q = ( " and

—ut2ATEY2 (14 A7)
z=y -

ii) the conditional cdf of Y2|Y is given by

:ﬁ7ﬂ6<mwrwm)mYlymMH@m
f P(Y:1 =y1|u)dH (u;v)

P(Y; <y2[Y1=y1) 9

Proposition 2.2 If Y ~ SNI,(u, X, X, H) then, under the notations of Lemma 1 (see Appendix), we
have that:

i) for H such that P(U = 1) = 1, then the conditional cdf is given by

Pp,11((z",21)7;0,Qn)

P(Y2 <yolY1=y1) = (% (y1 — )

) (10)

_ 3921 —X99.1V2
wherez = yo— , 21 = (V1+2 '3 0v9) T (y1— and Qn = : )
Y2—Ha.1, 21 ( 1 11 2412 2) (Y1 H1) N _U;EZQJ 1+v;22241v2

with po 1 = po + S 217 (Y1 — py);
i) for H = Gamma(v/2,v/2), then the conditional cdf is given by

T;D2+1 ((ZTa;)T; 0, QTa v +p1)

P =y =) = T v+ p1) ! (n
where z = 2~32_21.1(Y2 — o), T = 7'2‘1\/1 + )\;1222‘0\2'1 and Qo — 2_22,1 —é with
P21 = P2t E2121—11(‘{1 — 1y), Doz = (%;yl)) Y21, A2 = Eééiﬁ Ay, Toq =
\/K(y”)\1 (Yl_ul) A= ’\1"'21_11212)\2’ ﬁ S=x12yxn-12

Qy1) = (y1 — py) " 211 (y1 — py), and Ty (5, B, v) (T(.;v)) denotes the cdf of the k-variate

(univariate) Student-t distribution with parameters p, 3 and v (0,1 and v ).

For the SSL case, we can obtain it by using (9) along with the routine integrate() in R For the SCN,
calculation of P(Ys < y2|Y1 = y1) is direct from (10).
3 Model formulation and Bayesian approach

We consider the following general LME model in which the random effects are assumed to follow a SNI

distribution. Simultaneously, the model can be written in matrix form as (Lachos et al., 2010)
yi = X;8+Zb; + €, (12)
with the assumption that

b; X SNI,(cA,D,X\ H) and ¢; % NI,,,(0,6%1,,, H), i =1,...,n, (13)

(© 0 (copyright holder)
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where ¢ = —(2/7)'/2 E[U /2], the subscript i is the subject index; I, denotes the p x p identity matrix;

y, = (yi17 D] 7yini)T
n; X p design matrix corresponding to the fixed effects, 3 is a p x 1 vector of population-averaged regres-

is a n; x 1 vector of observed continuous responses for sample unit ¢, X; is the

sion coefficients called fixed effects, Z; is the n; X ¢ design matrix corresponding to the g x 1 vector of
random effects b;, €; is the n; x 1 vector of random errors, and the dispersion matrix D = D(«) depends
on unknown and reduced parameters c. Note that (13) in conjunction with (5) gives E[b;] = E[e;] = 0.
Thus, this model considers the within-subject errors €; to be symmetrically distributed, while the distri-
bution of random effects to be asymmetric with mean zero. An interesting property of this formulation
is that F[Y;] = X;/3 and hence the fixed effects estimates of SNI-LME model and N-LME model are all
comparable, an important characteristic not introduced in previous developments by Lachos et al. (2007),
Lin and Lee (2008) and Lachos et al. (2009). In the present formulation, we consider the case where the
response Y;; is not fully observed for all ¢, j (Vaida and Liu, 2009a). The observed data for the i-th subject
is (Q;, C;), where Q; represents the vector of uncensored reading or censoring level, and C; the vector of
censoring indicators, such that

vy < Qi if Gy =1,
v = Qi if Cj =0. (14)

For simplicity we will assume that the data are left-censored and thus the SNI-LMEC is defined. The
extensions to arbitrary censoring are immediate. For N-LMEC, an EM algorithm was proposed by Hughes
(1999), with computational improvements considered in Vaida et al. (2007) and Vaida and Liu (2009a).

3.1 The log-likelihood function

Classical inference on the parameter vector 8 = (ﬁT, o2 al, )\T7 I/T)T is based on the marginal distri-
bution for y; (Vaida et al., 2007). For complete data, we have from Lachos et al. (2007), that marginally

Yi ~ SNIH7(§ZZB,22,5\Z,H), Z: ].,..‘,TL,

where

~ ~ B ‘P_l/QZ,LD

A \/1+CTAiC,

with A; = (D' +Z.Z;/0%)~ and ¢ = D~/2 . For responses with censoring pattern as defined in (14),
we have that Y; ~ TSN, (X:3, 3, A, H; A), where TSN, (.; A) denotes the truncated SNI distri-
bution on the interval A; = A;1 X ..., X Ajp;, with A;; as the interval (—oo, 00) if C;; = 0 and (—o0, Q5]
if C;; = 1. Specifically, a p-dimensional vector X ~ T'SNI,(p, %, X, H; A) if its density is given by
TSNI,(x|p, 3, X, H; A) = {SNI,(x|p, B, H)/TIE_ [*7 SN (x|, =, X, H)dx} 4} (x), where
the notation [[?_, [“7 = [*! ... [ stand for the abbreviation of multiple integrals. When A = 0 we
will use the notation X ~ T'NI,(p, X, H; A) and its density by TN I,(x|p, X, H; A)

For computing the likelihood function, the first step is to treat separately the observed and censored
components of Y;. We partition Y into the observed and censored parts as Y; = vec(Y?, YY), such that,

C;; = 0 for all elements in Y?, and 1 for all elements in Y¢. Define Q; = vec(QY, Qf), where vec(.)

(© 0 (copyright holder)
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denote the function which stacks vectors or matrices of the same number of columns. From Lemma 1 (see

Appendix), we can write Y{ ~ SN I,e (f(fz&', hI)a 2003/2,0“ H), where

K2

oo—1lsvoc
’5' Uy + EZ Ez Vo;

i = )
V14 'U;DEEC'OU%

DA S
Let us denote a; = P(y$ < Q§[Y? = QP, 0), which can be directly obtained from Proposition 2.2.

79

. e aeoaco—laor _1/2< »noo 3o
with 260 = 2 — 2R IR0 4, = B2 = (], 0])T and B; = ( P )

Now, following Vaida and Liu (2009a), the likelihood for cluster 7 is given by

Li(0) = f(yil0) = P(yi <Qi|Y{=Q¢,0)P(Y}=Q7|0)
a; SN 1,0 (Q?X9B, 2, £°° /%5, H) (15)

Therefore, the log-likelihood function for the observed data is given by

0(8) = {loga; +log SN 1,0 (Q?|X?B, 9%, £°°}/*,;, H)},
i=1
which can be evaluated without much computational burden through the routines integrate and mvtnorm()
available in R (Genz et al., 2008; R Development Core Team, 2009) along with proposition 2.1 and 2.2.
This log-likelihood is used for Bayesian model selection and to develop a case-deletion influence diagnos-
tics based on the Kullback-Leibler divergence as discussed in Cancho et al. (2010).

Although one might use standard EM-type algorithms for maximum-likelihood (ML) inference, we
choose a Bayesian route primarily for computational simplicity. The ‘M’ step in the EM routine, and the
high-dimensional integrals in our likelihood function can make the ML estimation quite complicated. Our
Bayesian inference relies on the recent developments in Markov chain Monte Carlo (MCMC) algorithms
which facilitates easy and straightforward implementation in conventional software like WinBUGS. The
Bayesian proposition allows for full parameter uncertainty and does not depend on asymptotic results
(Gelman et al., 2006). Interval estimates for model parameters or functions of model parameters can be
easily obtained directly from the MCMC output.

3.2 Prior and posterior specifications

A key feature of this model is that it can be formulated in a flexible hierarchical representation as follows:

Yibi,Ci, Qi T =t;, Ui =u; = TN, (Xi8+Zib;,u; '0?L, ; A), (16)
b|T =t U =u; = Ny(At;,u;'T), (17)

T;\U; = u; ind TN(0,u;*;(0,00)) (18)

U, A H(w), (19)

where the observed data for the i-th subject is (Q;, C;), fori = 1,...,n. Lety = (y{,...,y, ) . b =
(bl ,....b)) T, u=(ug,...,un) "ot = (ts,. .., t,) ", Q = vec(Qy, ..., Q) and C = vec(Cy, ..., Cy).

(© 0 (copyright holder)
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It follows that the complete likelihood function associated with (y, b, Q, C, t), is given by
L(0ly,b,Q,C,t) H {/ TN,,(y:|X:0 + Z; b“u:ngIn” )gbq(bi;Ati,ui—lI‘)

xTNy(t;]0,u; ", (0, 00))dh(us; v)|. (20)

In order to complete the Bayesian specification, we need to consider prior distributions to all the un-
known parameters 6 = (,BT, o2, a’,\)T. A popular choice to ensure posterior propriety in a LMM is to
consider proper (but diffuse) conditionally conjugate priors (Hobert and Casella, 1996; Zhao et al., 2006).
Following Lachos et al. (2009), we have

B~ NP(/BWSB)’

o2 ~ IGamma(qo/2,)o/2),
I' ~ IWishy(Ay*',wo),

A ~ Ny (Ap,Sa),

where IGamma(a, b) denotes the inverse gamma distribution with mean b/(a—1), a > 1,and IWish, (M1

denotes the inverse Wishart distribution with mean M~ /(v — ¢ — 1), vo > ¢+ 1, where M is a g X ¢
known positive definite matrix. Assuming elements of the parameter vector to be independent we consider

that the joint prior distribution of all unknown parameters have density given by
7(0) = m(B)r(c?)n(T)w(A). 21
For the specific NI models, the prior for ~ was chosen accordingly as follows.

(1) Skew-t model (ST-LMEC): Here v ~ TExp(%; (2,00)), i.e., the degrees of freedom parameter v has
a truncated exponential prior distribution on the interval (2, co). This truncation point was chosen to
assure finite variance.

(ii) Skew-slash model (SSL-LMEC): A Gamma(a, b) distribution with small positive values of a and b
(b < a) is adopted as a prior distribution for v.

(iii) Skew-contaminated normal model (SCN-LMEC): A Beta(vy, v1) distribution is used as a prior for v,

and an independent Beta(pg, p1) is adopted as prior for p to achieve conjugacy.

Combining the likelihood function (20) and the prior distribution, the joint posterior density of all

unobservable quantities is given by
m(8,0°,T,A,b,t,y,ulQ,C) H TNy, (yilXiB + Zibi,u; 021, A)dg(bi; Aty u; 'T)

I:Nl(ti\o, u; ', (0,00))H (u;|v)] ©(6). (22)

Distribution is analytically intractable, but MCMC methods such as Gibbs sampler and Metropolis-
Hastings algorithm can be used to draw samples and derive inference from marginal posterior densities of
interest. Given b and u, all conditional posteriors are in the standard SN-LMEC form, and have the same
form for any element of the SNI class. An outline of the conditional posterior densities are given in the
Appendix.

(© 0 (copyright holder)
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4 Bayesian model selection and influence diagnostics

4.1 Model comparison

There exists a wide variety of model selection/assessment measures within the Bayesian toolbox. One
of the most widely used criterion is the conditional predictive ordinate (CPO) statistic, derived from the
posterior predictive distribution (Gelfand et al., 1992). Let D be the full data and D9 denote the data
with the ¢th observation deleted. We denote the posterior density of € given DY by 7r(9|’D(_i)), for
i =1,...,n. For the i-th observation, the CPO; can be written as CPO; = [ f(y:|0)m (0D ~)do =
{f@{ﬂ(0|’D)/f(yi|9)}d0}_1. For our proposed models, a closed form of the C PO; is not available.
However, a Monte Carlo estimate of C'PO; can be obtained by using a single MCMC sample from
the posterior distribution 77(6|D) using a harmonic-mean (HM) identity (Dey et al., 1997b) given by
CPO; = {1/Q Zqul 1/f(yil0,)} 1, where 01, ..., 8¢ is a post burn-in sample of size Q) from (6| D).
A summary statistic of the C'PO;’s is the log pseudo-marginal likelihood (LPML), defined by LPM L =
i log(@i). Larger values of LPM L indicates better fit. Although the harmonic-mean identity pro-
i=1

vides a convenient and simplified practical implementation of the CPO statistic, it is susceptible to in-
stability (Raftery et al., 2007) for very small values of the likelihood. Although several other alternative
approaches (Raftery et al., 2007; Gelfand and Dey, 1994; Dey et al., 1997a) have been prescribed, they
can be computationally challenging. As suggested by the Editor, here we consider a more pragmatic route
and compute the CPO (and associated LPML) statistics using 500 non-overlapping blocks of the Markov
chain each of size 2000 post-convergence (i.e. after discarding the initial burn-in samples), and report the
expected LPML and Monte Carlo standard errors computed over the 500 blocks. If the HM identity is
stable, we expect to have small Monte Carlos sd of the LPMLs. Congdon (2005) also suggests that the HM

estimate is stable as long as the individual log-likelihoods exceed -10 or -20 in value.

Some other measures, like the deviance information criterion (DIC) proposed by Spiegelhalter et al.
(2002b), the expected Akaike information criterion (EAIC) by Brooks (2002), and the expected Bayesian
(or Schwarz) information criterion (EBIC), given in Carlin and Louis (2001) can also be used. These
are based on the posterior mean of the deviance, which can be approximated as D = Zqul D(6,)/Q,
where D(0) = —23%""" | log [f(y:|0)]. The DIC criterion can be estimated using the MCMC output as
DIC =D+ pD, where pp is the effective number of parameters, defined as E{D(0)} — D{FE(0)}, where
D{E(0)} is the deviance evaluated at the posterior mean. Similarly, the EAIC and EBIC can be estimated
as EAIC = D+ 2#(9¥) and EBIC =D+ #(9) log(n), where #(19) is the number of model parameters.
Note that for all these criteria, the evaluation of the marginal likelihood f(y;|0) is a key aspect, however
for our proposed models (SN-LMEC) it can be easily computed from the results given in Subsection 3.1.
Note that the CPO statistics (and associated LPML) compare between competing models marginally by
averaging out all unknown parameters, which is fundamentally different to that of DIC, EAIC and EBIC
which compares models conditional on all unknown parameters (including all fixed and random effects),
penalizing models with more complexity. In this paper, we examine all of them to accommodate multiple
viewpoints (Spiegelhalter et al., 2002a).
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4.2 Bayesian case influence diagnostics

Our proposed regression models might be sensitive to the underlying model assumptions, so it is of interest
to determine which subjects/observations might be influential for the analysis. Let K (P, P(_;)) denote the
K-L divergence between P and P_;), defined as K (P, P._;)) = [ w(8|D) log |:7T(0|'D)/7T(0|D(_i))} dae,
where P denotes the posterior distribution of @ for full data, and P(,Z-) denotes the posterior distribution of
0 without the i-th case. As pointed by Peng and Dey (1995) and Cancho et al. (2010), K (P, P_;)) can be
expressed as a posterior expectation K (P, P_;)) = log Egp {[f(Y:|0)]7'} + Egip {log[f(yi|0)]} =
—log(CPO;) + Egp {log [f(y:0)]} , where Egp(-) denotes the expectation with respect to the joint
posterior 7(6|D). A Monte Carlo estimate of the K-L divergence (see Cancho et al., 2010), is given by

K(P,P_;) = —log(CPO;) ng (yil6)], i=1,....n. 23)

S Applications: UTI Data

We illustrate the proposed methods with the analysis of the HIV UTI data previously analyzed using normal
LMEC model. This is a study of 72 perinatally HIV-infected children (Saitoh et al., 2008; Vaida and Liu,
2009a). The data set is available in the R package Imec (Vaida and Liu, 2009b). Primarily due to treatment
fatigue, unstructured treatment interruptions (UTI) is common in this population. Suboptimal adherence
can lead to ARV resistance and diminished treatment options in the future. The subjects in the study had
taken ARV therapy for at least 6 months before UTI, and the medication was discontinued for more than 3
months. The HIV viral load from the closest time points at 0, 1, 3, 6, 9, 12, 18, 24 months after UTI were
studied. The number of observations from baseline (month 0) to month 24 are 71, 62, 58, 57, 43, 34, 24,
and 13, respectively. Out of 362 observations, 26 (7%) observations were below the detection limits (50
or 400 copies/mL) and were left-censored at these values. The individual profiles of viral load at different
followup times after UTT is presented in Figure 2. Following Vaida and Liu (2009a), we consider a profile
LME model with random intercepts b; given by

Yij = bi + B + €45, (24)

where y;; is the logio HIV RNA for subject ¢ at time t;,t1 = 0,12 = 1,13 = 3,4 = 6,15 = 9, t =
12, t; = 18, tg = 24. Vaida and Liu (2009) analyzed the same data set by fitting a N-LMEC from a
frequentist perspective, but from Figure 1 it is clear that inference based on normality assumptions can
be questionable. In our analysis, we assume a SNI-LMEC as defined in (12), (13) and (14). As prior
choices, we have 3; ~ N1(0,10%), j = 1,...,8, 0% ~ IGamma(0.1,0.1), T ~ IGamma(0.1,0.1),
A ~ N(0,0.001). Additionally, for the ST model we have v ~ TExp(0.1; (2, 00)), for the SSL model
we have v ~ Gamma(0.1,0.01) and for the SCN model, we have v ~ Beta(1,1) and p ~ Beta(2,2).
We generated two parallel independent MCMC runs of size 100,000 with widely dispersed initial values,
where the first 20,000 iterations (burn-in samples) were discarded for computing posterior estimates. To
eliminate potential problems due to auto-correlation, we considered a spacing of size 40. The convergence
of the MCMC chains were monitored using trace plots, auto-correlation (ACF) plots and Gelman-Rubin
R diagnostics. The SSL and SCN models require much larger number of iterations as compared to the N,
SN and ST models to converge. Following Gelman et al. (2006), we considered a sensitivity analysis on
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the routine use of the inverse-gamma prior on the variance components and found that the results are fairly
robust under different choices of prior.

Table 1 UTI data: Comparison between N-LMEC and SNI-LMEC models using various Bayesian model
selection criteria. The numbers in parentheses are the Monte Carlo standard errors of the LPML statistics

computed using 500 blocks of the Markov chain, each of size 2000.

criterion N-LMEC SN-LMEC ST-LMEC SSL-LMEC SCN-LMEC

LPML 42390  -418.62 375.26 368.27 -366.27
(1.37) (3.14) (1.81) (1.04) (1.07)

DIC  2491.82  2459.69  2206.11 2172.61 2149.57
EAIC  853.80 844.99 762.71 751.36 746.45
EBIC  892.71 887.81 809.41 798.06 797.05

Table 1 presents comparison of the four sub-classes with the N-LMEC using various model selection
criteria discussed in Section 4. About 90% of the individual log-likelihoods exceed -10 for all the models
and the reported standard deviations for the LPML statistics are small posing minimal threat on the stability
of the HM identity for CPO and LPML computations. Note that DIC picks the SCN-LMEC to be far
superior (difference of about 23 units) to the nearest competitor (SSL-LMEC), although the LPML, EAIC
and EBIC values were close. All the heavy tailed models (viz. ST, SSL and SCN) provide much better
fit than the SN-LMEC for all the measures. The fit of N-LMEC is the worst providing a lot of concern
for normality assumptions with this dataset. For the SNI-LMEC models, the estimated values of A and
the corresponding 95% credible intervals (CI) (as in Tables 2 and 5) justifies the left-skewed nature of the
UTTI data. For the ST- and SSL-LMEC models, as v (the ¢ degrees of freedom) — oo, they approach the
SN-LMEC model as the limiting case. Because the estimate of v is small, it indicates lack of adequacy of
the normality (and skew-normality) assumptions.

Table 2 reports the posterior mean, standard deviations (sd) and 95% credible intervals (CI) of the
model parameters after fitting the SCN-LMEC model (our best model). The posterior estimates for the
other competing models are presented in Table 5 in the Appendix. Note that the posterior estimates of
(1 — Bs (the slope parameters corresponding to the time points) for the SNI-LMEC models with heavy
tails are quite close to those from the N and SN versions, however the 95% posterior CI of 3 are tighter (due
to smaller estimated standard deviations), indicating that the three heavy-tailed models seem to produce
more precise estimates. As in Vaida and Liu (2009a), our dropout (censored) model does not bias the
inference regarding the mean of ;. The mean viral load E(y;;) = 3; increases gradually throughout 24
months for all the models. In particular for the SCN-LMEC, it increases from 3.86 at the time of UTI to
4.68 at 24 months. The estimates of the between-subject variance (Var(b)) and within-subject variance
(02) (in log, scale) are 1.23 and 0.13 respectively. In addition to A < 0 indicating left-skewness, the
(small) posterior mean estimates of v and p reveal presence of tail behavior.

To determine presence of possible influential observations, K-L divergence measures (23) are presented
in Figure 2 for the competing models. Although it appears from Figure 2 that there might be more ‘out-
lying’ subjects/observations, the individual profiles for subject # 20 and 42 were quite different from the
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Table 2 Posterior parameter estimates obtained after fitting the SC-LMEC model to the UTI data.‘sd’
denotes standard deviation and ‘CI’ denotes credible intervals.

Parameter Mean sd 95% C1
51 3.86 0.119 [3.61 ; 4.09]
o 418 0.119 [3.93;4.41]
(3 421 0.122  [3.95;4.40]
N 437 0.120 [4.14;4.61]
s 453 0.128 [4.25;4.76]
Os 451 0.132 [4.25 ;4.77]
Jore 455 0.145 [4.25;4.83]
Os 4.68 0.164 [4.37 ;4.99]
o? 0.13 0.015 [0.10;0.16]

Var(b) 1.23  0.335 [0.74 ; 1.94]
A -7.09 2827 [-12.47;-2.27]
v 0.121  0.031 [0.07;0.19]
P 0.127 0.024 [0.08 ; 0.18]

fitted (mean) profiles for the various distributions. Our outlier analysis was designed to detect the ‘most’
influential observations, hence we choose cases 20 and 42 which have larger K (P, P(_;y) for N-LMEC
models as compared to the others. For the SN-LMEC, case 20 no longer remains an outlier. In particular,
the effect of these 2 cases (and possibly others) nullified when considering our SNI class, in particular the
SSL and SCN densities. As expected, the posterior estimates of E(3) were attenuated when the heavy-
tailed SNI distributions were considered, suggesting that the SNI-LMEC model is a robust alternative for
censored viral load data in presence of asymmetry. This is also observed in Figure 3 where the presence of
these outliers might have overestimated the predicted mean curve for the N-LMEC model as compared to
the SNI-LMEC. The fitted viral load trajectories for some randomly chosen subjects are presented in Fig-
ure 4. To summarize, these results suggest that our proposed class of SNI-LMEC models provide precise
posterior parameter estimates for our motivating dataset on HIV viral load that exhibits departure from the
traditional normality assumptions due to skewness and (or) presence of heavy tails.

6 Simulation studies

In this section, we conduct a simulation study to illustrate the performance of our proposed methodology.
The goal of this simulation study is to investigate the consequences on parameter inference when the
normality assumption is inappropriate as well as to investigate whether the model comparison measures,
viz., LPML, DIC, EAIC and EBIC determines the best-fitting model to the simulated data. We assume the

following linear mixed-effects model with random slope and intercept, given by:

Yij = P1%1i5 + Ba®aij + boi + bisti; + €45, 1 =1,...,100, j=1,...,5, (25)
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Figure 2 UTI data: Estimated KL-divergence measures K (P, P_;))

iid .
where b; = (b, b1;) ~ piN2(-|€1, Q1) + pata(-|€y, Q2,v), €5 ~ t(:|0,0%,v), with

3 0 1 0
=(2,2), =(0,0), 0?2=2, v=3, Q = , Q= ,
& ( )52 ( )U v 1 <03> 2 <01>

(p1,p2) = (0.25,0.75), B = (0.05,0.1).

Thus, the joint density of the random slope and the random intercept vector b; comes from a mixture
of a bivariate normal and a bivariate t— distribution with 3 degrees of freedom. This yields a skewed
thick-tailed unimodal distribution inspired by an example presented in Ho and Hu (2008). For each subject
i =1,...,100 and fixed time-point vector t; = (1,2,3,4,5) ", we set z1;; = 1 if j > 3 and 0 otherwise —
an indicator variable corresponding to an ‘intervention (treatment)’ effect at ¢ = 3. The co-variate xo;; is
a random sample from a N(3, 3) distribution. To study the effect of the level of censoring on the posterior
estimates, we choose various settings of censoring proportions, say 10%, 20% and 40%. Once 500 sim-
ulated datasets are generated for each of these 3 settings, we fit the N-LMEC, SN-LMEC and ST-LMEC
models using R2ZWinBUGS package available in R. For each of the settings, the following independent
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Figure 3 Individual profiles and overall mean (in log,, scale) using the 4 members of the SNI class and
the Normal model at different follow-up times post-UTI. The trajectories of the influential observations are

numbered.

priors are considered for the MCMC sampling: 3, ~ N1(0,10%), k = 1,2 02 ~ IGamma(0.1,0.1),
0.01 0
L~ IWishy(H ™ 2) with H = | %) and A ~ N(0,0.001), i = 1,2 and_ in addition

v ~ TExp(0.1; (2, 00)) for the ST model. The MCMC scheme follows exactly as in Section 5. We com-
pute the ‘Relative Bias’ (RelBias) and ‘Mean Squared Error’ (MSE) for each parameters over the 500
samples under the 3 different settings. They are defined as:

500 500

RelBias(7) = % 3 (&U‘) o 1) and MSE(y) = % 3 (W) - 7)2 ,
i=1 =1

where v = (31, 52,0?) and ~() is the posterior estimate of ~ for the ith sample. In addition, we also
estimate the Power of the intervention effect 31, i.e. the proportion of times the 95% credible interval of
(1 excludes 0.

From Table 3, we observe that the ST-LMEC model has the smallest RelBias and MSE for (3; and 3
for all levels of censoring, however both the RelBias and MSE increases with increase in the censoring
proportion as expected. The ST model also detects the right-skewed-heavy tailed feature of the simulated
data with posterior estimates of v to be small, however the estimates drifts farther with increasing pro-
portion of censoring. Thus, the ST model (accommodating both skewness and thick tails) produces more
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Figure 4 UTI Data. Individual viral load trajectory estimates for six randomly chosen subjects after
fitting the 4 SNI models. The bold line indicates the Normal fit. Censored observations are represented by
filled circles, whereas the observed ones by not-filled circles.

accurate Bayesian estimates in the context of censored data; the degree and direction of the bias in fixed
effects depends both on the relative proportions of censoring as well as model assumptions. However, the
power to detect the intervention effect (posterior of (31) was higher for the SN model as compared to the
N and ST models across all the 3 scenarios, however the power decreases as the proportion of censoring
increases. In Table 4, we present the arithmetic averages (MC LPML, MC DIC, MC EAIC and MC EBIC)
of the various model comparison measures mentioned earlier. We notice that all these measures favored
the ST-LMEC model for our (true) simulated data demonstrating the ability of these Bayesian selection
methods to detect an obvious departure from normality. The % of samples (out of the 500 samples) when
these criteria chooses the ST-LMEC model also remains high.
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Table 3 Monte Carlo simulation results based on 500 simulated datasets comparing the N, SN and ST

models for various levels of censoring.

Posterior estimates of parameters

Censored Fit 51 Ba o? v (mean and s.d.)
10% Normal RelBias -0.053 0.0121 0.024 - -
MSE 2.869 8547 2524
Power 0.28

Skew-Normal Bias -0.046 0.0123 0.0369
MSE 2.882  8.547 2.516

Power 0.34
Skew-T Bias -0.034  0.011  0.0383 6.759 (0.508)
MSE 2776  8.542 2511
Power 0.31
20% Normal Bias -0.077 0.016  0.029 - -
MSE 2906 8562 2544
Power 0.26

Skew-Normal Bias -0.069 0.016 0.036
MSE 2.893 8.563 2.536

Power 0.31
Skew-T Bias -0.043  0.015  0.042 6.819 (0.807)
MSE 2.819  8.554 2532
Power 0.29
40% Normal Bias -0.087 0.021  0.035 - -
MSE 2.923  8.607 2.550
Power 0.13

Skew-Normal Bias -0.074  0.021 0.029
MSE 2.908 8.606 2.566

Power 0.22

Skew-T Bias -0.055 0.018 0.036 6.921(1.009)
MSE 2.831 8.391 2.564
Power 0.16

7 Conclusions

This article proposes Bayesian implementation of a robust alternative to the linear mixed-effects model
with censored response, where the Gaussian distribution of the random terms are replaced by the skew-
normal/independent distribution. We apply our methodology to a recent AIDS study (freely downloadable
from R) to illustrate how the procedure developed can be used to evaluate model assumptions, identify
outliers and obtain robust parameter estimates. Depending on assay quantifications, censoring can be both
left or right. Our application is based on right-censoring, considerations for right-censoring is immediate
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Table 4 Monte Carlo estimates of various model comparison measures. ‘perc’ is the % of samples that
the criteria choose a ST-LMEC properly.

Criteria
Censored Fit MC B MC DIC MCEAIC MCEBIC
10% Normal -2502.27  9970.12 4995.58 5029.93
Skew-Normal  -2680.12  10453.78  5240.28 5284.45
Skew-T -2484.16  9868.17 4948.54 4997.62
perc 82% 89% 84% 78%
20% Normal -2303.73  9091.89 4556.34 4605.42

Skew-Normal  -2610.53  10057.94  5039.18 5083.35
Skew-T -2267.035  9026.95 4524.01 n4558.37

perc 83% 87% 85% 76%
40% Normal -1963.02  7681.79 3864.34 3913.42
Skew-Normal  -2544.04 9159.87 4573.77 4617.94
Skew-T -1808.25 7193.08 3607.05 3641.40

perc 85% 87% 87% 77%

and follows from (14) by reversing the role of y;; and @;;. It is worth emphasizing that recent papers
by Huang and Dagne (2011, 2010) provides an ad-hoc treatment to the censoring phenomenon in HIV
viral load studies; they replaced censored data with half the value of the quantification limit (QL), which
might lead to bias estimates. This paper provides a first attempt to incorporate censoring in the context of
skew-normal/independent linear mixed-effects models (SNI-LMEC).

Our model assumes the censoring mechanism to be ‘missing-at-random (MAR)’, hence conditional on a
correct model the estimation of the mean viral loads remains unbiased (Vaida and Liu, 2009a). Our method
provides improvement over results from Vaida and Liu (2009a), who considered analysis of this dataset
using normal linear mixed-effects models. Simulation studies reveal gain in efficiency and accuracy for
parameter estimates as well as performance of various model selection techniques to pick the best-fitting

model, where typical assumptions of normality are questionable.

In our SNI proposition, the random error terms follow homoscedastic Normal/Independent (Lange and
Sinsheimer, 1993) distribution typically used for thick tails, with the premise that modeling of any as-
sociated skewness (in the response) is delegated to the random effects term through appropriate skewed
versions of various densities that are members of the SNI class. As pointed out by a reviewer, introduc-
tion of serially (or spatially) correlated random error terms or a doubly-skewed framework (with skewed
random errors in addition) is certainly possible but comes with additional complications in its estimation,
interpretation as well as (latent) identifiability issues as to how the skewness parameter in the random error
term might be related to the skewness in the random effects. It can be further complicated due to unevenly
spaced data and also the choice of an appropriate time-series/ ARIMA structure for the within-subject time
profile. Exploring all these is beyond the current scope of this paper and will be pursued elsewhere.
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The models considered in this paper can be fitted using standard available software packages, like R
and WinBUGS (code available as supplementary material associated with this paper), and this makes our
approach quite powerful and accessible to practitioners in the field and thus provide guidance on using

appropriate statistical models for handling complicated HIV viral load responses.
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Appendix

Appendix A: Proof of Lemma 1 and Propositions 2.1 and 2.2

Lemma 1 Let Y ~ SNI,(p, 3, X, H) and Y is partitioned as Y' = (Y{,Y,)" with dimensions p,
and ps (p1 + p2 = p), respectively. Let

Sy S
s= 20 2P o p=wle) A=)
221 222

be the corresponding partitions of 33, =2 pand A. Then, the marginal density of Y1 is SN I, (14, 311, 21{217, H),

where )
- v + 2] X12U2

U= = )
V14 v, o v

with Bop1 = By — X1 B B1p, v = B2 = (v] ,0)) 7.

Proof. See Lachos et al. (2010). O

Proof of Proposition 2.1: (i) From (1) and from Arellano-Valle and Genton (2005), we have

P(Y < ylu)

2 | o(w| —y + pu DBV + AT V2E 2 (w 4y — p))dVdw
w<0 JV<0
= 2P(W <0,V <0|u),

where W|U = u ~ N(—y + p,u ') and VIW = w,U = u ~ N(=ATu"122Y2(w +y — ), 1).
The proof follows from the fact that

W —y+p ) » —ul/2el/2)
U=u] ~Npp U 1/2y Tx1/2 T
% 0 —ul/2A'S u(l+A'N)

and that P(Y <y) = fooo P(Y < y|u)dH (u;v).
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The proof of (ii) follows from the mixture representation of the SNI class.

Proof of Proposition 2.2: i) It is easy to note that, if U = 1, we are in the skew—normal case and then,
the conditional distribution of Y2|Y is given by

(v (y — p)
@ (y1 — 1))
)@(Zl +vg (y2 — H9,1))
3@ (y1 — 1))

f(y2lY1=y1,0) = ¢p,(yalttaq,Z221)

i

= d(yalpre1, B2

where z; = (vy + 2;11212U2)T(y1 — p1)- Then, the proof follows similarly as in Proposition 2.1, part
i). In addition from Lemma 2 given in Lachos et al. (2010), we have

ElY2[Y1=y1,6] = pyy+We(0)G,
E[YsY; Y1 =y1,0] = pyipsy+ Boo1 + Wa(©) {Hz.lGT +Gpyy — EGGT} ;
B 3921V . ) =T
where G = , with We () = 3 andc=v (Y1 — pq).

V1+v) B 100

ii) From Lee et al. (2010), Y2|Y1 ~ EST (p5 1, 222.1, A2.1,72.1,V + p1), where EST is the extended
skew—t distribution proposed by Arrellano-Valle and Genton (2010). The proof follows by using the form
of the EST cdf also proposed by Arrellano-Valle and Genton (2010).

Appendix B: Outline of the conditional distributions

Our Bayesian model allows a straightforward construction of a Gibbs sampler through the hierarchical
representation given in (12)-(14). To proceed, it is necessary to obtain the conditional distribution of one
variable given values of all the remaining - (C;, Q;) included. We have the following expressions:

1. yi|bs,ui, Ci, Qi 0 ~ f(yilbsi,ui, Ci, Q;,0). Thus, conditional on (b;,w;), y; is a vector of in-
dependent observations, whose distributions are truncated normal, each with untruncated variance
ui_laz and untruncated mean :»(Z»Tj,é’+ziT b;, on the interval y;; < Q;5,1.e. TNy (Xgﬂ+ziT b;, uflaz;

(—00, Q:y)). l

2. bily:, ui, t;, Ci, Qi 0 = bylyi, us, ti, 0 ~ f(b;|Y;,t;,0). This distribution is multivariate normal
with mean b; = A;(Z =7 (y, — XuB) + t,L "' A). and variance u; 'A; with A; = (D' +
Z!Z;/5%)~'. Note that the entire vector Y; is used for sampling from b;.

3. Tilyi, i, bi, Ci, Qi, @ = Tylyi, ui, by, 0 ~ TNy (Ay,ay,, Ay (c,00)), where Ay, = uy "(1+ATT T A) !
and a;, = (AT b, +¢).

el e.
LSS (b= AL) T (b —
g

4. Uilyi,bi, i, Ci, Q4,0 = m(usyi, by, 5, 0) o< (/2 exp{— 5

i

Atl) + t?}h(uz|v), with € =Yi — Xzﬁ — Zibi-

(© 0 (copyright holder)



Technical Report 0 (0) 0 21

5. Now, by observing that 01|y, u;, C, Q, by, t;, 9(791) and 01|y, u;, b;, t;, 0(701) are two equivalent
process, we have:

16|y7u7b7t70(_ﬁ) ~ N(Aﬁﬂﬁ, Ag),

N )
02|y,u,b,t,0(_az) ~ IGamma(qo;r , 0;5

Tly,u,b,t,0_q)y ~ IWishy(A™" v+ n),
A|y7u7b7t79(,x) ~ Nq(AAaAaAA)a

);

where ps = (S5'By + Ly wX] (vi — Zibi)), Ap = (S5 + i, wiX! 371 X) "L N =
Sy s s =D wi(yi = XiB—Ziby) T (yi = XiB—Zibi), A = Ao+ D21 ui(b; — At;) (b; —
At)T,AA = (SR + T30 wit?) Pandap = S A+ TS0 witiby.

5. To complete the Gibbs sampling specifications, we need the full conditional posterior distributions of
v. This density is 7(v|y, b, t,u,0(_p)) o w(v) [T, h(u;|v). These conditionals have been given
in Lachos et al. (2009).

(© 0 (copyright holder)
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Appendix C: Posterior estimates

Table 5 Posterior parameter estimates from fitting the N, SN, ST and SSL sub-classes of the LMEC
model to the UTI data. ‘sd’” denotes standard deviation and ‘CI’ denotes credible intervals.

N-LMEC SN-LMEC
Parameter Mean sd 95% CI Mean sd 95% C1
061 3.65 0.131 [3.39;3.91] 3.61 0.130 [3.34;3.85]
0o 417  0.133 [3.91; 4.44] 4.14 0.133 [3.87;4.40]
B3 424  0.135 [3.98 ; 4.51] 4.21 0.135 [3.94;4.47 ]
o 436 0.136 [4.10; 4.63] 4.33 0.132 [4.05;4.59]
0s 456 0.142  [4.29;4.85] 4.54 0.141 [4.25;4.82]
B¢ 458 0.151 [4.29 ; 4.88] 4.54 0.151 [4.24 ; 4.84]
0B7 4.69 0.171 [4.36; 5.03] 4.65 0.169 [4.30 ; 4.98]
s 480 0.207 [4.41;5.21] 4.76 0.206 [4.36;5.18 ]
o2 0.33  0.030 [0.28 ; 0.40] 0.33 0.030 [0.28 ; 0.40 ]
Var(b) 0.78 0.153 [0.53; 1.15] 0.84 0.192 [0.54;1.27]
A - - - -10.31 3422  [-16.29;-3.66]
ST-LMEC SSL-LMEC
Parameter Mean sd 95% CI Mean sd 95% C1
051 378 0.129  [3.53;4.04] 3.84 0.123 [3.56 ; 4.07]
(o 4.12  0.128  [3.88;4.39] 4.19 0.125 [3.89 ;4.41]
B3 417  0.129 [3.91;4.41] 4.23 0.128 [ 3.93;4.47]
B4 432 0.130 [4.08;4.58] 4.38 0.122 [4.11;4.59]
05 449 0.139  [4.21;4.78] 4.53 0.129 [4.25;4.77]
Be 447 0.144 [4.20;4.75] 4.53 0.134 [4.24;4.77]
0B7 451 0.152 [4.21 ; 4.81] 4.56 0.148 [4.26;4.82]
0Os 4.67 0.179 [4.29 ; 4.98] 4.71 0.168 [4.33;5.05]
o? 0.16 0.026 [0.11;0.21] 0.098 0.0151 [0.07 ; 0.13]
Var(b) 1.29  0.681 [1.02 ; 2.25] 1.27 0.480 [0.67 ; 2.32]
A =721 3.172  [-13.11;-2.03] -6.13  2.280 [-10.49;-2.06]
v 4.67 0.785 [3.44;6.30] 1.65 0.196 [1.32;2.12]
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