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Valparáıso, Chile

Abstract

Microarray data studies allow to generate expression of thousands of genes yielding
valuable information for biologists. However, this kind of data does usually not agree
with the assumption of constant variance in which classic statistical methodology
rely. In order to avoid the transformation of data that conducts to the stabilization of
variance and provide a robust methodology in presence of atypical data, we propose
a model based on a class of symmetric distributions that solves these difficulties.
Specifically, we describe structural aspects of this new distribution considering its
density, distribution and quantile functions, properties, moments and parameter
estimation. Finally, the usefulness of the proposed distribution for modeling gene
expression data is shown by means of a real numerical example.

Key words: Gene expression; Johnson’s system distributions; MA plots;
Microarrays; Non-normality; Transformations.

1 Introduction

An important part of the classic statistical methodology relies on assumptions
of normally and constant variance. When these assumptions are violated, a
logarithmic transformation of the data is usually employed for fulfilling such
assumptions and so utilizing a traditional methodology.

Microarray data studies allow to simultaneously measure the expression of
thousands of genes yielding valuable information for biologists. However, this
kind of data does usually not agree with the above mentioned assumptions;
see Rocke and Durbin (2003). Since the logarithmic transformation of gene
expression data does not always stabilize the variance of such observations
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in presence of non-positive values, a transformation that can be used for this
purpose is given by

glog(x) = arcsinh(x) = log
(
x+

√
x2 + 1

)
, x ∈ R. (1)

This transformation is known as the generalized logarithm (glog); for more
details about how the glog transformation stabilizes the variance of gene ex-
pression data, see Durbin et al. (2002).

Although a practitioner could choose to use the glog transformation for gene
expression data in order to use a classic methodology, some problems such
as reduction the power of the study and difficulties of interpretation could be
presented; see Huang and Qu (2006). An alternative way that one could choose
is developing a new statistical methodology useful for modeling this kind of
data, which should be mathematically treatable and available for users.

Johnson (1949) used the translation method to generate statistical distribu-
tions covering a wide variety of shapes by the random variable (r.v.)

Z = γ + δf
(
Y−ξ
λ

)
, (2)

where Z ∼ N(0, 1) and f(·) is a simple monotone function of Y . These distri-
butions are known as Johnson’s system and have four parameters, such as is
the case of the well-know Pearson’s system. These parameters are denoted by
γ and δ (shape), ξ (location), and λ (scale). Without loss of generality, f(·)
can be assumed as a non-decreasing function and δ and λ as positive values.
Based on Eq. (2), note that (i) if f (x) = log (x), x > 0, we have Johnson’s
SL model and (ii) if f (x) = glog (x), x ∈ R, we have Johnson’s SU model.
Observe that the r.v. given in (i) is related to the well-known normal distri-
bution. On the other hand, the r.v. given in (ii) is related to the glog-normal
(GLN) distribution; see Leiva et el. (2009). In this way, by the use of these
two functions, we are confronting the classic methodology with a new one.
Thus, Johnson’s system of distributions can provide a wide avenue for char-
acterizing complicated data sets such as is the case of microarray data; see
George (2007).

The normal scale mixture models are a family of symmetric distributions that
admits an interesting stochastic representation, which conducts to attractive
properties, such as the robust parameter estimation, easy number generation,
and efficient computation of the ML estimates via the EM-algorithm. (Of
course the normal distribution is a particular case of such a family.) For more
details about this class of models, see Gneiting (1997). Specifically, the nor-
mal scale mixture models are related to the normal distribution through the
stochastic representation

Z = µ+ U−1/2 Z0, (3)
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where Z0 ∼ N(0, σ2), U is a positive r.v. independent of Z0 with cumulative
distribution function (cdf)H(·) indexed by a scalar or vector parameter ν. The
multivariate version of (3) is the family of normal/independent (NI) distribu-
tions discussed by Lange and Sinheimer (1993). Note, when H is degenerate,
with U = 1, we obtain the normal distribution. We base the present study on
these class of normal scale mixture distributions. An r.v. Z has a NI distribu-
tion with location and scale parameters, µ ∈ R and σ2 > 0, respectively, iff
its probability density function (pdf) is of the form

φNI(z) =
∫ ∞

0
φ
(
z;µ, σ2/u

)
dH(u), (4)

where φ(· ;µ, σ2/u) is the pdf of the normal distribution with mean µ and
variance σ2/u and H(u) is the cdf of U introduced in (3). For an r.v. Z with
pdf as given in (4), the notation Z ∼ NI(µ, σ2;H) is used. Now, when µ = 0
and σ2 = 1, we use the simpler notation Z ∼ NI(H). When the EM algorithm
is used in the ML estimation of parameters of the NI distribution, we obtain
similar expressions to the normal case and so the procedure here proposed
generalizes that developed for the normal distribution.

The aims of the article are (i) to introduce and characterize a distribution
based on the generalized logarithm and the normal/independent model, which
we call denoted by GLNI, (ii) to provide a robust parameter estimation proce-
dure based on the GLNI distribution for analyzing gene expression data, and
(iii) to show the utility of such a distribution in the modeling of this kind of
genetics data.

We organize this study as follows. In Section 2, we introduce and characterize
the GLNI distribution and find several of its structural aspects such as its
pdf, cdf, quantile function (qf), properties and moments. In Section 3, we
estimate parameters of this distribution by using the maximum likelihood
(ML) method via an EM-type algorithm. In Section 4, we show the usefulness
of the new distribution in the modeling of gene expression data by means of
a real numerical example. Finally, in Section 5, we draw some conclusions.

2 Characterization of the model

Based on (1), (2) and (3), an r.v. Y follows a GLNI distribution with shape
parameters γ ∈ R and δ > 0, location parameter ξ ∈ R, and scale param-
eter λ > 0, which is denoted by Y ∼ GLNI(γ, δ, ξ, λ;H), if this r.v. can be
stochastically represented by

Y = ξ + λ sinh
(
Z − γ

δ

)
= ξ + λ sinh

(
Z0 −

√
U γ√

U δ

)
,

where Z = U−1/2Z0 ∼ NI(H), with Z0 ∼ N(0, 1) independent of U .
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2.1 Shape analysis

Theorem 1 Let Y ∼ GLNI(γ, δ, ξ, λ;H). Then, the pdf of Y is

fY (y) = φNI (ay)Ay, y ∈ R, γ ∈ R, δ > 0, ξ ∈ R, λ > 0, (5)

where φNI(·) is the pdf of a standard NI distribution given in (4) and ay =

ay(γ, δ, ξ, λ) = γ+δ arcsinh
(
[y−ξ]/λ

)
and Ay = Ay(γ, δ, ξ, λ) =

δ
λ

[{
y−ξ
λ

}2
+ 1

]− 1
2

Theorem 2 Let Y ∼ GLNI(γ, δ, ξ, λ;H). Then the r.v. Y given U = u, which
is denoted by Y |(U = u), follows the GLN distribution with parameters γ, δ, ξ,
and λ, i.e.,

Y |(U = u) ∼ GLN(
√
uγ,

√
uδ, ξ, λ).

Remark 1 Note that if U = 1, we have that the GLNI distribution reduces the
GLN model.

Corollary 1 Let Y ∼ GLNI(γ, δ, ξ, λ;H)). Then,

(i) The pdf of the r.v. U |(Y = y) is given by

fU |Y (u|y) =
φ(ay; 0, 1/u)h(u)

φNI(ay)
, u > 0;

(ii)

E

(
U |y

)
=

1

φNI(ay)

∫ ∞

0
uφ
(
ay; 0, 1/u

)
dH(u).

2.2 Distribution and quantile functions

We find here the cdf and quantile function (qf) of the GLNI distribution.

Theorem 3 Let Y ∼ GLNI(γ, δ, ξ, λ;H). Then, the cdf of Y is

FY (y) = ΦNI (ay) ; y ∈ R, δ > 0, ξ ∈ R, λ > 0,

where ΦNI(·) denotes the cdf of a NI distribution.

Corollary 2 Let Y ∼ GLNI(γ, δ, ξ, λ;H). Then, the qf of Y is

y(q) = F−1
Y (q) = ξ + λ sinh

(
z(q)− γ

δ

)
,

where z(q) is the q-th quantile of the normal/Independent distribution NI(H)
and F−1

Y (·) is the inverse function of FY (·).
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2.3 Properties and moments

The following theorems provide some properties and the moments of the GLNI
distribution.

Theorem 4 Let Y ∼ GLNI(γ, δ, ξ, λ;H). Then, the following holds:

(i) a+ bY ∼ GLNI(γ, δ, a+ bξ, |b|λ;H), where a ∈ R, b ∈ R− {0}, and
(ii) V =

[
γ + δ arcsinh([Y − ξ]/λ)

]2 ∼ Gχ2(H), where Gχ2(H) denotes the
generalized chi-square distribution

Remark 2 (i) From Theorem 4(i) we have that: The distribution of any lin-
ear combination of a r.v. with GLN distribution is also in the same
class. For example, if Y ∼ GLNI(γ, δ, ξ, λ, ), then W = [Y − ξ]/λ ∼
GLNI(γ, δ, 0, 1;H), which can be called the standard GLNI distribution.

(ii) The result in Theorem 4(ii) about the distribution of V , enables us to
check the model in practice, as we will see it in Section 5.

Theorem 5 Let Y ∼ GLNI(γ, δ, ξ, λ;H). Then the k-th moment of Y is

E

[
Y k
]
=

k∑

i=0

i∑

j=0

(
k

i

)(
i

j

)
λi

2i
exp

(
−γ[2j − i]

δ

)
+EU

[
exp

(
[2j − i]2U

2δ2

)]
ξk−i [−1]i−j ,

which depend on the moments of exp(bU), with b > 0. Note that EU [ · ] is
taken with respect to the r.v. U .

Corollary 3 Let Y ∼ GLNI(γ, δ, ξ, λ;H). Then, the mean and variance of Y
are

E[Y ] = ξ − λ sinh
(
γ

δ

)
EU

[
Uδ] and

Var[Y ] =
λ2

2
E [Uδ − 1]

[
cosh

(
2γ

δ

)
+ 1

]
+ λ2 sinh2

(
γ

δ

)
VarU [Uδ] ,

respectively, where VarU(Uδ) = EU [U
2
δ ]− E

2
U [Uδ], with Uδ = exp

(
U
2δ2

)
.

2.4 Special cases of the GLNI family

2.4.1 The GL-contaminated normal distribution

Consider the case when Y ∼ GLNI(γ, δ, ξ, λ;H), with H being the cdf of the
r.v. U , which has a pdf of the form

hU(u) = ν1I{ν2}(u) + [1− ν1]I{1}(u), 0 < ν1 < 1,0 < ν2 < 1, (6)
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where I{A}(·) denotes the indicator function of the set A. Then, from equations
(4) and (5), we have the pdf of the r.v. Y to be

fY (y) = [ν1
√
ν2φ(

√
ν2ay) + (1− ν1)φ(ay)]Ay, y > 0, (7)

where φ(·) is the standard normal pdf. The model with the pdf given as in
equation (7) is the GL-CN distribution. In this case, the pdf of U |(Y = y) is
given by hU |Y (u|y) = ν1p(y, u)I{ν2}(u) + [1− ν1]p(y, u)I{1}(u), where

p(y, u) =

√
u exp

(
−ua2y

2

)

ν1
√
ν2 exp

(
−ν2a2y

2

)
+ (1− ν1) exp

(
−a2y

2

) .

Thus,

E[U |(Y = y)] =
1− ν1 + ν1ν

3/2
2 exp

(
[1−ν2]a2y

2

)

1 − ν1 + ν1
√
ν2 exp

(
[1−ν2]a2y

2

) .

From Corollary 2, we have the mean and variance of Y depend on EU [U
k
δ ],

k = 1, 2 that in this case them are given by

EU [U
k
δ ] = ν1

(
exp (

kν2
2δ2

)− exp (
k

2δ2
)

)
+ exp (

k

2δ2
), k = 1, 2.

2.4.2 The GL-slash distribution

Consider the case when Y ∼ GLNI(γ, δ, ξ, λ;H), with H being the cdf of the
r.v. U ∼ Beta(ν, 1), which has a pdf of the form

hU(u) = νuν−1
I[0,1](u), ν > 0. (8)

Then, from equations (4) and (5), we have the pdf of the r.v. Y to be

fY (y) =
[
ν
∫ 1

0
uν−1φ(ay; 0,

1

u
)du

]
Ay, y > 0. (9)

The model with the pdf given as in equation (8) is the GL-SL distribution. In
this case, U |(Y = y) ∼ Gamma(1/2 + ν, a2y/2) truncated at [0, 1]. Thus,

E[U |(Y = y)] =

[
1 + 2ν

a2y

] P1

(
3
2
+ ν,

a2y
2

)

P1

(
1
2
+ ν,

a2y
2

) ,

where Px(a, b) denotes the cdf of the Gamma distribution of parameters a and
b evaluated at x according to the parametrization established in the pdf given
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in equation (7). To obtain the mean and variance of Y , we need of EU [U
k
δ ],

k = 1, 2 which are given by

EU [U
k
δ ] = ν

∫ 1

0
uν−1 exp

(
ku

2δ

)
du, k = 1, 2.

2.5 The GL-St distribution

Consider the case when Y ∼ GLNI(γ, δ, ξ, λ;H), with H being the cdf of the
r.v. U ∼ Gamma(ν/2, ν/2), which has a pdf of the form

hU(u) =
[ν
2
]
ν
2u

ν
2
−1

Γ(ν
2
)

exp
(
−νu

2

)
, u > 0,ν > 0. (10)

Then, from equations (4) and (5), we have the pdf of the r.v. Y to be

fY (y) =
Γ(ν+1

2
)√

π
√
τΓ(ν

2
)

[
1 +

1

ν
a2y

]− (ν+1)
2

Ay, y > 0. (11)

The model with the pdf given as in equation (10) is the GL-St distribution.
In this case, U |(Y = y) ∼ Gamma([ν + 1]/2, [ν + a2y]/2). Thus,

E[U |(Y = y)] =
ν + 1

ν + a2y
.

Moreover

EU [Uδ] =

(
νδ2

νδ2 − 1

)ν/2

, νδ2 > 1 and EU [U
2
δ ] =

(
νδ2

νδ2 − 2

)ν/2

, νδ2 > 2,

3 Estimation of the model

Next, we discuss ML estimation of the parameter θ = (γ, δ, ξ, λ)> for the
GLNI distribution. We assume that the parameter vector ν that indexes the
pdf hU(·) is known, and from now on the parameter of the model is θ. Thus,
the observed-data log-likelihood function for θ based on observed data set

y = (y1, . . . , yn)
>, is given by `(θ) =

n∑

i=1

`i(θ), where

`i(θ) = log[φNI (ayi)] + log[Ayi], (12)
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with ayi and Ayi are as in Theorem 1.

3.1 The observed information matrix

Letting Iφi (w) = (1/
√
2π)EU

[
Uwe−Ua2

yi
/2
]
, i = 1, .., n, we have the score func-

tion given by U(θ) =
∑n

i=1 Ui(θ), where Ui(θ) has elements given by

Uiη(θ) =
∂`i(θ)

∂η
=

1

φNI (ayi)

∂φNI (ayi)

∂η
+

1

Ayi

∂Ayi

∂η
, η = γ, δ, ξ, λ, (13)

where
∂φNI (ayi)

∂η
= −Iφi (3/2) ayi

∂ayi
∂η

. And the observed information matrix

is given by

J(θ) =−
n∑

i=1

(
∂2`i(θ)

∂η∂τ

)
, η, τ = γ, δ, ξ, λ (14)

where

∂2`i(θ)

∂η∂τ
=− 1

(φNI (ayi))2
∂φNI (ayi)

∂η

∂φNI (ayi)

∂τ
+

1

φNI (ayi)

∂2φNI (ayi)

∂η∂τ

− 1

(Ayi)2
∂Ayi

∂η

∂Ayi

∂τ
+

1

Ayi

∂2Ayi

∂η∂τ

with
∂2φNI (ayi)

∂η∂τ
= Iφi

(
5

2

)
a2yi

∂ayi
∂η

∂ayi
∂τ

− Iφi

(
3

2

)(
∂ayi
∂η

∂ayi
∂τ

+ ayi
∂2ayi
∂η∂τ

)
.

The derivatives of ayi and Ayi involve standard algebraic manipulations which
are given in the Appendix A.

3.2 ML estimation via EM-algorithm

In this section we develop an EM-type algorithm for maximum likelihood
estimation of the parameters of for the GLNI distribution. In order to do this,
we first represent the GLNI model in an incomplete data framework using the
stochastic representation given in Theorem 2. Thus, we consider the following
hierarchical representation for Yi

Yi|Ui = ui
ind∼ GLN(

√
uiγ,

√
uiδ, ξ, λ), (15)

Ui
ind∼ H(.;ν) (16)
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We assume that the parameter vector ν that indexes the pdf hU(·) is known
Specifically, the EM-type algorithm that we produce for ML estimation in
GLNI model considers u = [u1, . . . , un]

> are missing data augmented with the
observed data set y and so the complete data set is yc = [y>,u>]>. Hence,
under the hierarchical representation given in Eqs. (15) and (16), the EM-type
algorithm is applied to the complete-data log-likelihood function that can be
written as (without the additive constant) `(θ|yc) =

∑n
i=1 `i(θ|yi, ui), where

`i(θ|yi, ui) = log(δ)− log(λ)− ui

2
a2yi −

1

2
log



(
yi − ξ

λ

)2

+ 1




with ayi defined as in Eq. (12), for i = 1, . . . , n.

The E-step of the EM-type algorithm requires the evaluation of Q(θ|θ̂) =
E[`(θ|yc)|y, θ̂], where the expectation is taken with respect to the conditional
distribution of U given Y = y and θ̂. Considering the estimate of θ at the
rth iteration, say θ̂

(r)
= (γ̂(r), δ̂(r), ξ̂(r), λ̂(r))>, and letting û

(r)
i = E[Ui|yi, θ̂(r)

],
we obtain the Q(θ|θ̂) has the form

Q(θ|θ̂) =E
[
`(θ|yc)|y, θ̂

]
=

n∑

i=1

Qi(θ|θ̂), (17)

where Qi(θ|θ̂) = log(δ)− log(λ)− 1
2
ûi a

2
yi − 1

2
log

[(
yi−ξ
λ

)2
+ 1

]
.

We then have the following EM-type algorithm:

E-step. Given θ = θ̂
(r)
, compute ûi

(r), for i = 1, . . . , n.

CM-step 1. Fix ξ̂(r) and λ̂(r), and update γ̂(r) and δ̂(r) as

γ̂(r+1)=− δ̂(r+1)

u(r)

[
1

n

n∑

i=1

û
(r)
i arcsinh

(
yi − ξ̂(r)

λ̂(r)

)]
,

δ̂2
(r+1)

=
u(r)

u(r) 1
n

∑n
i=1 û

(r)
i

[
arcsinh

(
yi−ξ̂(r)

λ̂(r)

)]2
−
[
1
n

∑n
i=1 û

(r)
i arcsinh

(
yi−ξ̂(r)

λ̂(r)

)]2 ,

where u(r) = 1
n

∑n
i=1 û

(r)
i , i = 1, . . . , n.

CM-step 2. Fix γ̂(r+1) and δ̂(r+1), and update ξ̂(r) and λ̂(r) as

(ξ̂(r+1), λ̂(r+1)) = argmax
ξ,λ

Q(γ̂(r+1), δ̂(r+1), ξ, λ|θ̂(r)
).
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Remark 3 We note that when γ = 0 CM-step 1 of the EM-type algorithm
presented above reduce to

δ̂2
(r+1)

=
n

∑n
i=1 û

(r)
i

[
arcsinh

(
yi−ξ̂(r)

λ̂(r)

)]2 .

On the other hand, if U = 1 in the EM-algorithm proposed (i.e., if the r.v. U
is degenerate), the EM-algorithm here presented might be to supplement of the
recent work presented by Leiva et el. (2009) in the estimation context of the
parameter.

4 Application of the model in Genetics

In this section, we obtain results for the GLNI distribution to a real data
set from gene expression. First, an implementation in R code of the proposed
methodology is discussed. Second, the problem upon analysis is discussed.
Third, an exploratory data analysis (EDA) is produced. Finally, analysis based
on the GLN and GLNI distribution are carried out first using ML methods
for estimating the parameters of these distributions and then model checking
tools.

4.1 Implementation in R code

We have developed a new R package named glni to analyze data from the
GLNI model, which is available upon request. This package contains diverse
probabilistic indicators and allows practitioners to compute ML estimates of
the parameters of the GLNI distribution and the standard likelihood ratio
(LR) test, which is useful for checking the suitability of the GLNI distribution
with respect to nested models inside it.

4.2 Description of the problem

Microarrays are solid supports onto which nucleotide probes, such as DNA,
are immobilized. The probes are chosen such that they bind to specific sample
molecules; for DNA arrays, this is ensured by the sequence-specificity of the
hybridization reaction between complementary DNA strands. The unknown
DNA from one or two biological samples is prepared in solution, labelled with
fluorescent dyes and allowed to bind to the array, for one-color or two-color
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arrays, respectively. The abundance of sample DNA molecules among differ-
ent conditions can then be studied by comparing the fluorescence intensities
at the matching probe sites. We implement our method for analyzing a subset
of the two-color (green and red representing two channels) array data from
the H25K experiment. These data are included in the Microarray Quality
Control (MAQC) data sets and have been publicly available since October
2006. The experiment that allowed the H25K data used here to be gener-
ated was carried out by using the MAQC guidance with its H25K Human
Genome Microarrays. Specifically, each microarray was hybridized with RNA
tissues (samples) A and B, which were mixed at TeleChem ArrayIt to pro-
duce mixture C. Two colors were used for labelling the RNA of each type
of tissue. Thus, the H25K two-color sample-pairs were generated using the
convention: A (A/B, Cy3/Cy5), B (B/A, Cy3/Cy5), sA (A/A, Cy3/Cy5) and sB

(B/B, Cy3/Cy5), where A means that the tissues A and B were hybridized to
the green (Cy3) and red (Cy5) channels, respectively; B means that the tis-
sues B and A were hybridized to the green (Cy3) and red (Cy5) channels,
respectively; sA means that the tissues A and B were hybridized to the green
(Cy3) and red (Cy5) channels, respectively; and sB means that the tissues B
and A were hybridized to the green (Cy3) and red (Cy5) channels, respec-
tively; for more details about this experiment see Patterson et al. (2006) and
http://arrayit.com/Products/Microarrays/H25K/h25k.html.

4.3 Exploratory data analysis

As it is well known, due to variations in experimental factors, such as amount
of sample mRNA or labelling and hybridization efficiencies, the intensities
cannot be directly compared and therefore calibrated intensities must be
used. The gene expression intensities for the a subset of the H25K data,
which we will call H2KS, were calibrated using the Huber’s method (Hu-
ber et at., 2003) by means of the R package (R Development Core Team,
2008) named vsn available from http://www.bioconductor.org and CRAN
(http://CRAN.R-project.org/). Table 1 presents a descriptive summary of
30 tissues while Fig. 3 (left side) shows the histogram and boxplot of these
data. An EDA of the H25KS calibrated intensities based on Table 1 and the
histogram in Fig. 4 shows a negatively skewed distribution with high kurtosis
and variability degrees. The GLNI distribution considers the degrees of vari-
ability, skewness and kurtosis presented in the data. We propose the GLNI
distribution for modeling these data.

Table 1
Descriptive statistics for H25KS calibrated intensities

Median Mean SD CV CS CK Range Min. Max. n

1116.5 1127.6 3236.9 2.9 −1.0 4.0 18523.4 −10623.3 7900.1 30

11

http://arrayit.com/Products/Microarrays/H25K/h25k.html
http://www.bioconductor.org
http://CRAN.R-project.org/


5 Results

The maximum likelihood estimates of θ = (ξ, δ, λ, γ)
′

using the H25KS data
set have been calculated via the EM-algorithm proposed in Section 3.2 by
beginning with ML estimates of θ in the GLN model reported in Leiva et
al. (2009). Results are displayed in Table 2. For the GL-St, GL-SL and GL-
CN models we have chosen ν that maximizes the likelihood function and
then established as ML estimates of θ those associated with the maximum
likelihood function. We have estimated θ for the GLN model using the GL-St
model with ν1 = 100, assuming that ν1 is large enough to assure convergency
to the GLN model.

Table 2
ML estimation results for fitting the GLN, GL-St, GL-SL and GL-CN models for
the data set. SDs are the estimated asymptotic standard deviations based on the
observed information matrix.

GLN GL-St GL-SL GL-CN

(SD) (SD) (SD) (SD)

ξ 1128.592 1128.592 1128.592 1128.592

(1123.27) (1428.21) (1474.48) (776.45)

δ 1.488 1.779 2.051 2.333

(0.21) (0.45) (0.44) (0.83)

λ 3360.834 3360.834 3360.834 3360.834

(235.46) (769.71) (490.6) (1402.4)

γ -0.025 -0.026 -0.055 0.024

(0.47) (0.74) (0.87) (0.57)

ν1 100 6 2 0.4

ν2 - - - 0.2

All models have produced estimates equal to 1128.592 and 3360.834 for the
location (ξ̂) and scale (λ̂) parameters, respectively. Estimates of the parameter
γ (shape) are close to zero under all models, suggesting the distributions are
symmetric. The GLN model estimated the parameter δ (shape) close to 1.5,
and the other models close to 2. The standard deviations of the estimators
of the parameters have been produced and are dispalyed in Table 2. None of
the models have been absolute in producing the smallest standard deviations
for all parameters simultaneously. Graphics on the top of Figure 1 present the
weights used by the EM procedure for estimating θ; the weights for the GLN
distribution are indicated as a horizontal line. In particular, we notice that
the GL-NI models attribute smaller weight to observation number nine than
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the GLN model. In order to detect outlying observations, the Mahalanobis
distance has been considered. Graphics on the bottom of Figure 1 display
such distances for the GL-NI fitted models. The cutoff lines corresponds to
the quantile of 0.95. In these graphics, we highlight observation 9 as possible
outlier in all models. Replacing the MLE estimates of θ in the Mahalanobis
distance δk, in Figure 2 we present simulated envelopes (lines represent the 5th

percentile, the mean, and the 95th percentile of the 100 simulated points for
each observation). These plots suggest evidence that the GL-NI distributions
provide a better fit to the data set, in particular to observation nine, than the
GLN distribution. The GL-St model seems to accomodate observation number
9 better, by visually inspecting the envelope plots.

We have calculated the relative change (RC) in percentage of each parameter

estimate defined by: RCj =
∣∣∣∣
θ̂j−θ̂j[−i]

θ̂j

∣∣∣∣× 100%, where θ̂j[−i] is the ML estimate

of θj with the ith observation deleted and θ1 = ξ, θ2 = δ, θ3 = λ and θ4 = γ.
RCs are displayed in Table 3. The smallest RCs have been detected on the
MLE of δ for the GL-St model, and on the MLE of γ for the GL-SL model;
for the remaining parameters, the RCs are zero for all models.

We assess how much the ML estimates of θ are influenced by a change of ε
units in a single observation by recording the relative change in the estimates,

defined as RC(ε) =

∣∣∣∣
θ̂j−θ̂(ε)j

θ̂j

∣∣∣∣ × 100%, where θ̂(ε)j is the ML estimate of θj

with the ith observation contaminated as yi+ ε and θ1 = ξ, θ2 = δ, θ3 = λ and
θ4 = γ. In Figure 3 we present the results of relative changes of the estimates
of ξ, δ, λ and γ by contaminating observation 22 of the H25KS data with an
addition of an ε that varies from −50 to 50, by steps of size 10. The estimates
of the parameters by the GL-St, GL-SL and GL-CN models are less affected
by variations of ε than the GLN model. In particular, the GL-St model had
the smallest variation.

In order to verify the fit of the glog distributions to H25KS, we have used
the invariance property of the MLEs for estimating the GL-NI pdfs, which are
shown in Figure 4 on the histogram and empirical pdf of the data, respectively.
The results presented here show the good agreement between the GLN and
GL-NI distributions with the H25KS data. However, we can observe that the
GL-NI models tend to accomodate the tails better than the GLN model.

6 Concluding remarks

In this paper, we have discussed the GL-NI distributions and its extension
based on the glog-normal model. These distributions are very flexible on kur-
tosis and skewness. This is because the GL-NI distributions have greater and
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Table 3
RCs for the parameters of the GLN, GL-St, GL-SL and GL-CN models.

Observation Distribution RCξ RCδ RCλ RCγ

#9 GLN 0 16.1 0 459.3

GL-St 0 4.7 0 297.5

GL-SL 0 12.1 0 169.3

GL-CN 0 26.6 0 684.7
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Fig. 1. Graphics of the EM estimated weights (top) and of the Mahalanobis distances
(bottom) for the GLN, GL-St, GL-SL and GL-CN models using the H25KS data.

lesser kurtosis than the GLN model, allowing positive and negative skewness
as well as symmetry. We have derived the GL-NI density and have carried out
a shape analysis of the distribution in order to see how its parameters influ-
ence the shape and form of the pdf. Thus, we have presented the GL-NI model
as a statistical distribution that can be useful for modeling gene expression
data without transforming them as has been considered by using the loga-
rithmic or glog transformations. An application to real gene expression data
showed that the GL-NI models accomodate the data better than the normal-
glog model for producing more robust parameter estimates. In particular, the
GL-St distribution showed to be more appropriate for fitting the the data set.
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Fig. 2. Simulated envelopes using the GLN, GL-St, GL-SL and GL-CN distributions.
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Fig. 3. Relative changes in the ML estimates of ξ, δ, λ and γ of fitting a GLN, GL-St,
GL-SL and GL-CN distributions for different contaminations of observations #22
in the H25KS data.
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