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Abstract

Sugiura(1969) gives an asymptotic expansion
of the modified likelihood ratio criteria for testing
the hypothesis that a covariance matrix is equal to
a given matrix. An improvement of this expansion
is presented here. Numerical comparisons via sim-
ulation with the original Sugiura’s approximation
to the distribution of the criteria confirm the su-
periority of our expansion. This enable us to use
the proposed method in usual hypotheses testing
and in applications where extreme tail quantiles
are necessary, as for instance, for monitoring dis-
persion in multivariate processes quality control
charts.

1 Introduction

First consider the problem of monitoring dispersion in the
univariate case. Let s? denote the umbiased estimate of
variance for a random sample of size N. If the process vari-
ance is 02 then the assumption of normality implies that
(N—1)

g,

< has a chi-square distribution with N — 1 degrees
0

of freedom and the usual s? chart is obtained by pivoting
on this expression.

The multivariate analogue of this chart is obtained by
means of the likelihood ratio criteria for testing that a co-
variance matrix is equal to a given matrix. This statistic
has been obtained by various approaches, see for example
Anderson [1] (page 434).

If Xq1,X5,...,XxN is a simple random sample of a p-
variate normal distribution with positive definite covari-
ance matrix X, the likelihood ratio criterion for testing the
equality of ¥ with a simmetric positive definite matrix ¥
is given by

e

A= (-

p N 1
)FISE P eap tr(-550"S) (1)

where X= + Zjvzl X, and
§ =50 (X- X) (K- X)".
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Also may be used the modified likelihood ratio criteria
A*, obtained by substituing in formula (1) the size N of
the sample by n = N — 1.

First the distribution of \* was approximated by the
assymptotic null distribution of the LR criteria (the qui-
square distribution with @ degrees of freedom). After-
wards was introduced the Satterthwaite’s correction [8] [9],
that approximates the distribution of a quadratic form by
a multiple of a chi-square distribution (the constant and
the degrees of freedom calculated by matching the first
two moments of the quadratic form and the approximat-
ing distribution). But, as espected, these methods doesn’t
work well especially for low values of V.

Korin [4] [5] and Sugiura [11] derived very similar
asymptotic expansions for the null distribution of the test
criteria A*. In both papers ([4] and [11]) the null distribu-
tion of (—2)log A* is expressed in the form of asymptotic
series of central qui-square distributions. Sugiura’s paper
is more transparent than Korin’s one. In particular, the
algoritm of calculus of the cumulative distribution func-
tion of the criteria is explicit. As a consequence of this
fact improvements of the former are easier to implement.

The expansions available work well in ordinary hy-
potheses testing (« risk between 0,05 and 0,01, say) but
not necessarily for monitoring « risk in certain applica-
tions such as quality control (o = 0,0027), where the in-
terest is in lower values of .. In the latter case the variance
of the sample quantiles uses to be greater than in the for-
mer one due to lower values of the density (Kendall and
Stuart [3]). Then the improvement of an existing expan-
sion is a natural way to look for more precision.

In this paper an improvement of Sugiura’s asymptotic
expansion is obtained by adding two terms to the orig-
inal one. Numerical comparisons between the original
Sugiuras’s method and the improved one are performed.
These results enable the use of the improved Sugiura’s ap-
proximation in the usual hypotheses testing context and
(in adition) for monitoring dispersion in multivariate pro-
cesses quality control . The improved Sugiura’s approxi-
mation is used here in the calculation of the upper 0,0027



quantiles of (—2) logA* for dimension p between 2 and 4
and some small values of the sample size N.

Since for larger values of NV the available methods work
well, Pham-Gia and Turkkan (2009) [7] tried to obtain the
exact null density function of the test criteria, but this
density does not have an easy representation or a practi-
cal way of implementation. As other authors, Pham-Gia
and Turkkan present, for some small values of N and p,
the upper 1 and 5 percentiles but not the 0,27 one, used
in quality control charts.

Other authors (Nagarsenker and Pillai [6], for instance)
claim to have found the exact distribution of (\*)#, but
we see in this paper the same type of problems that in the
work of Pham-Gia and Turkkan. Also they show only the
upper 1 and 5 percentiles.

The organization of this paper is as follows. In Sec-
tion 2 we introduce some notacion and matemathical tools
(Bernoulli polynomials). In Section 3 we present Sug-
iura’s expansion and our improvement procedure. Section
4 presents some numerical comparisons between the two
methods as well as a table of quantiles. The conclussions
are in Section 5. The references are imediatly after the
consclusions. Section 6 (Appendix 1) contains the formu-
las of the constants B; for j = 1,2,...,6, defined in func-
tion of the Bernoulli polynomials and refered in Section 3.
Section 7 contain the tables of the comparisons and the
quantiles.

2 Notation and mathematical

tools

The Bernoulli polynomial B,.(h) of order 1 and degree r is
defined by the equation (Kendall and Stuart [3]):

o0
Z DB
— 7l

From the above formula and after some simple algebra
is possible to obtain explicit expressions of the polynomi-

als. The Bernoulli polinomials of degrees 1 to 6 to be used
in this paper are listed below:

hz

(2)

Bs(h)
Bg(h) =

W =3 h*+5h—§h
RS —3h°+3 ht— L h2+ 5(3)

The constants B; are defined in terms of the B;(h), j
1,2,....,7+1 by

By =30_ By (+50).
We give here the formulas of Bs, B3, By, B; and Bg,
which will be useful in the next section:
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Approximations to the distribu-
tion of the criteria

3.1 Sugiura’s expansion

Let X1, X5,..., XN be a simple random sample of a p-
variate normal distribution with positive definite covari-
ance matrix . Consider the modified LR criterion

enp

A=)
N -1 X= +YY X; and S
(X;— X)(X;-

n 1
|SE5t 2 exp tr(—iEalS) (4)

where n
PO
=1

The modified likelihood ratio criteria for testing the
null hypotheses ¥ = ¥ against ¥ # ¥y was shown to be
umbiased by Sugiura and Nagao [10]. In Anderson [1] may
be seen that, under the null hypotheses, the limiting dis-
tribution of (—2) log\* is the qui-square distribution with

X)*.

@ degrees of freedom and also that the characteristic
function of (—2) log\* is
n .. T (M) np(1—2it)
Ct) = (5)"" = (1-2it)" = (5)

where T',(¢) is the multivariate gamma function given
by

p

42°
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(6)

Sugiura [11], substituing in (5) the expression of I',(t)
given in (6), derived an expansion of the form:

P((=2)log\* < z) = AgP(x} < 2) + A1P(x}42 < 2)
+ AéP(X?+4 <z+ AéP(Xfu-ﬁ <z)+ O(n74) (7)
where f = p(pTH), X_,Q] denotes the qui-square distri-

bution with g degrees of freedom and the constants A’
depend exclusively on p and n.

3.2 The improved expansion

Sugiura (1969) obtained an aproximation at most of the
order n~* of the characteristic function C(t) of (—2) log\*
as a particular case of the following formula:

r+1
(r+ 1)n"]

k
(1—2it)~ p(pr)exp Z

1

ct) =

(1-2it) " = 1) + O(n=""1)(8)

Now, after some tedious but simple calculations, we
write the exponent in formula (8) as a linear combination
of (1-2it)~" forr = 1,2,...,5 and O(n~%) and obtain the
following aproximation at most of the order n=¢ of C(¢) :

5

exp( Ao—i-ZA 1-2it) ) +0(n"°)

r=1
(9)
for j = 1,2,...,5 (depending on
Bg and n) are given in Appendix 1.

p+1)

O(t) = (1—2it)~ 5™

where the constants Aj,
By, B, ...,

After that, by inversion of the characteristic function
C(t), we obtain the following expansion of the distribution

fuction of (—2)log\*:
P((—2)log\* < z) = Z?:o AjP(X?J,-Qj <z)+ O(n_ﬁ)
where f = % and X; denotes the qui-square dis-

tribution with g degrees of freedom.

4 Numerical results

4.1 Comparisons by simulation

We compare in this section the original method of Sugiura
and the improved one. Table 1 (Appendix 2) is based on
means of 10 replicates of 1.000.000 Matlab simulations of
the modified likelihood ratio criteria supported on random
Wishart matrices, for any combination of sample size (V)
and dimension(p) (N assuming the values 3,4,5, 6, 7, 8,
9, 10,15, 20 and 30 and p being equal to 2,3 and 4). We
remark that the numerical comparisons are restricted to
the case a = 0,0027.

If the dimension p = 2 an error less or equal to 0,00005
is reached begining at N = 8 for the original method (if
N =7 the error is 0,000055) and N =5 for the improved
one. If p = 3 the respective values of N are 20 and 10.
If p = 4 the sample sizes that attain error less or equal
to 0,00005 are N = 30 and N = 15, respectively. The
picture is similar for any value of the error, with the im-
proved method reaching the aimed precision before than
the original one. In all cases the behavior becomes worse
with increasing p. Then, as espected, the performance
of the improved method is better than that of the origi-
nal one. This conclusion enables us to use the improved
method for the calculations of some quantiles of A*.

4.2 Upper Quantiles of \* for a = 0,0027

In this section we give the 0,0027 upper quantiles of A*
for some low values of the simple size N and dimension p
betweeen 2 and 4. The calculations were made by means
of an inversion process (numerical solution of the quan-
tile equation) based on our method, except in the cases
marked with an asterisk. In these particular cases the
calculations were made via simulation, because when the
quocient N/pis near 1 (say, N/p < 1,5) the approximation
methods doesn’t work very well. In the inversion process
of the distribution fuction of A\* we used the software R.
For all the remaning entries of Table 2 (Appendix 2) the
values were calculated by applying our proposed method.

5 Conclusions

It was very comfortable to take the paper of Sugiura [11]
as a starting point, because of its simplicity and trans-
parency. As espected, our expansion works better than
the original of Sugiura, as is easyly verified looking at Ta-
ble 1. We remark that the original Sugiura’s expansion is



an approximation at most of order n~* and our method is
an approximation at most of order n~%. This paper was
not conceived for direct applications of our expansion, but
the good performance of our proposed method enabled us
to construct Table 2, with the 0,0027 upper quantiles of \*
(the limits of usual quality control charts), which is ready
to be used in monitoring multivariate processes dispersion.
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We give here the formulas of the constants A;, j = 1,2,...,5 introduced in Subsection 3.2 defined in terms os the
constants B; of Section 2. The A;’s are used in the expression of the distribution function of (—2)log(A*) as a series
of central qui-square distributions (formula (10)).
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7 Appendix 2: the tables

Table 1: Alpha Risk

p=2 p=3 p=4

N | Sugiura Improved | Sugiura Improved | Sugiura Improved
3 | 0,008274 0,004884 - - - -

4 | 0,003728 0,002973 | 0,025768 0,014027 - -

5 | 0,003054 0,002749 | 0,007396 0,004420 | 0,054918 0,031385
6 | 0,002846 0,002690 | 0,004469 0,003184 | 0,014387 0,007811
7 | 0,002755 0,002690 | 0,003589 0,002811 | 0,007213 0,004318
8 | 0,002728 0,002682 | 0,003179 0,002782 | 0,005051 0,003432
9 | 0,002726 0,002707 | 0,003020 0,002759 | 0,004101 0,003071
10 | 0,002749 0,002685 | 0,002890 0,002723 | 0,003582 0,002849
15 | 0,002681 0,002685 | 0,002751 0,002687 | 0,002856 0,002717
20 | 0,002715 0,002716 | 0,002716 0,002712 | 0,002781 0,002703
30 | 0,002702 0,002701 | 0,002701 0,002700 | 0,002693 0,002712

Table 2: Upper Quantiles (o = 0,0027)

N p=2 p=3 p=4

3 25,195874 * - -

4 19,525525 42,346016 * -

5 17,701035 30,937658 61,689276 *
6 16,805205 27,229300 44,432783 *
7 16,255047 25,486631 38,677972
8 15,909704 24,365813 35,885929
9 15,642290 23,681838 34,184662
10 15,466429 23,134330 33,016720
15 14,923143 21,874310 30,271052
20 14,723554 21,336168 29,276714
30 14,522508 20,864480 28,342020




