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Abstract

The last decade has witnessed major developments in Geographical Information Systems

(GIS) technology resulting in the need for Statisticians to develop models that account for

spatial clustering and variation. Study of spatial patterns are very important in epidemio-

logical and environmental problems. Due to spatial characteristics it is extremely important

to correctly incorporate spatial dependence in modeling. This paper develops a novel spatial

process using generalized skew–normal/independent distributions when the usual Gaussian

process assumptions are invalid and transformation to a Gaussian random field is not ap-

propriate. Our proposed method incorporates skewness as well as heavy tail behavior of

the data while maintaining spatial dependence using a Conditional Auto Regressive (CAR)

structure. We use Bayesian hierarchical methods to fit such models. Consequently we use a

Bayesian model selection approach to choose appropriate models for a empirical data set.

Key Words: Bayesian hierarchical methods, Conditional Auto Regressive (CAR), Condi-

tional predictive ordinate, Markov Chain Monte Carlo (MCMC), skew normal distributions,

skew normal independent distributions, spatial association.



1. INTRODUCTION

The field of spatial statistics is a relatively new area and remains very active receiving consid-

erable attention. With the development of the Geographic Information Systems (GIS), many

scientific fields such as agriculture, ecology, biology, geology and geography, have been using

spatial data analysis to improve overall modeling strategies and related data analysis. More-

over, GIS information has brought to the statistical community a new avenue of collecting

data and spatial methods have become extremely important and necessary to accommodate

spatial dependence when performing data analysis. Due to spatial characteristics of certain

data it is extremely important to correctly incorporate spatial dependence in modeling.

To reduce unrealistic assumptions, there is a tendency in spatial data analysis to incor-

porate the spatial dependence to represent features of the data as realistic as possible. Such

assumption drive spatial data analysis towards more flexible methods.

Generalized linear mixed models (GLMM) (Breslow and Clayton 1993) are an important

class of statistical models that are widely used to model dependent data. For dependent

data, such as spatial data, GLMMs introduce dependence through random effects. Un-

der the GLMM framework, scientists have been using Simultaneous Auto-regressive (SAR)

(Whittle 1954) as well as Conditional Auto-regressive (CAR) (Besag 1974), as tools to ac-

commodate spatial dependence for modeling areal data. However, the Gaussian assumption

in the random effect implies symmetry and thin tail which may not be appropriate for many

applications (e.g., Prates et al. 2011a).

When the Gaussian assumption for the random effects is not adequate, e.g., when data

is skewed or present a heavy tail behavior, we need alternative distribution to realistically

represent the data (Branco and Dey 2001). Sahu et al. (2003) and Arellano-Valle and Azzalini

(2006) define the skew–normal (SN) distribution as follows. A random vector Y is said to

follow a d–variate SN distribution with location vector µ ∈ Rd, scale matrix Σd×d positive

definite (p.d.) and skewness matrix Λ = Diag(λ), where λ = (λ1, . . . , λd)
>, if its probability
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density function (pdf) is

f(y) = 2dφd(y|µ,Ω)Φd(Λ
>Ω−1(y − µ)|∆), y ∈ Rd, (1)

where Ω = Σ + ΛΛ>, ∆ = (I + Λ>Σ−1Λ)−1 = I−Λ>Ω−1Λ (I is a d– dimensional identity

matrix), φd(.|µ,Σ) and Φd(.|Σ) denote the pdf of Nd(µ,Σ) and cumulative density function

(CDF) of Nd(0,Σ), respectively. We write SNd(µ,Σ,Λ) to indicate that Y has density (1).

For Λ = 0, equation (1) reduces to the usual symmetric multivariate Nd(µ,Σ) distribution.

The SN distribution as defined in (1) can be stochastically represented as

Y = µ+ Λ|T1|+ T2, (2)

where T1 ∼ Nd(0, I) is independent of T2 ∼ Nd(0,Σ) and |T1| denotes the component wise

absolute value of T1, thus |T1| follows a d–dimensional standard half-normal distribution

denoted by HNd(0, I). Note that the expression (2) provides a representation which is a

useful tool for a generation of random observation from (1). This representation is also useful

for developing various theoretical properties of the SN distribution. According to Arellano-

Valle and Azzalini (2006), the expectation and covariance matrix of Y ∼ SNd(µ,Σ,Λ) are

given by

E[Y] = µSN = µ+

√
2

π
λ and V ar[Y] = ΣSN = Σ + (1− 2

π
)ΛΛ>.

Since the matrix Λ is diagonal, the introduction of skewness does not affect the spatial

dependence structure. When Σ = σ2I then the density (1) gives independent marginal

distributions. Different types of distributions have also been proposed to overcome the

limitation of Gaussian Processes to handle skewed or heavy tailed data (e.g., Prates et al.

2011a).

In this paper, we extend the definition of the multivariate Skew-normal/independent

(SNI) distribution (Lachos et al. 2010) to introduce a new class of Spatial processes. We

propose a generalized SNI (GSNI) process in which the covariance matrix can be partitioned

2



in two components: a spatial component and a skewness component. The class of GSNI

distribution has as specific members the normal and skew-normal distributions as will be

presented in Section 2.

The National Cancer Institute offers public use county-level lung cancer summaries for

99 counties of Iowa, U.S.A. Although cigarettes is the main cause of lung cancer worldwide

it is not the only one. The radon is a radioactive, colorless, odorless, tasteless noble gas,

occurring naturally in nature as a decay product of uranium or thorium. Radon gas levels

were measured per counties in the state of Iowa. The Radon is considered a health hazard

due to its radioactivity. The United States Environmental Protection Agency believes that

radon is the second most frequent cause of lung cancer (U.S. Environmental Protection

Agency 2009). Epidemiological studies have shown that high levels of indoor concentrations

of radon increases the risks of lung cancer. We present a study the of the death by lung

cancer in the state of Iowa including radon and other covariates.

The article is organized as follows, in Section 2 we introduce GSNI distribution and its

properties. Using the GSNI we describe how to accommodate spatial dependence. Conse-

quently, we define a new generalized Skew–Gaussian spatial field in Section 3. We introduce

the conditional predictive ordinate (CPO) as a model selection criterion in Section 4. In

Section 5 we illustrate the new proposed methodology with empirical data analysis on lung

cancer in the state of Iowa by counties. We conclude the paper in Section 6 with a discussion.

2. GENERALIZED SKEW-NORMAL/INDEPENDENT DISTRIBUTIONS

The SNI distribution is defined as a scale mixture of the skew-normal distribution as pre-

sented in (1). A density π(x) is a scale mixture of densities when it can be represented

as

π(x) =

∫
f(x|u)dH(u),
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where f(·|u) is the conditional density of the random vector X given U = u, called the scale

factor, following a distribution function H, where H is called the mixing distribution. The

pdf π(x) belongs to normal independent (NI) family when f(·|u) is a normal density with

mean vector µ and covariance matrix u−1Σ and U is a positive random variable (Andrews

and Mallows 1974). Thus, the SNI distribution is generated by scale mixtures of skew–normal

distributions (see Lachos et al. 2010, for more details).

Following Zeller (2009), we define the d–dimensional Generalized SNI (GSNI) vector Y,

denoted from now on as Y ∼ GSNId(µ,Σ,Λ), as a multivariate mixture of skew–normal

distribution, where U = (U1, . . . , Ud)
> is a vector instead of a scalar. Thus, Y can be

constructed as

Y = µ+ U−1/2 � Z, (3)

where Z ∼ SNd(0,Σ,Λ), U−1/2 = (U
−1/2
1 , . . . , U

−1/2
d )>, and Ui’s are positive, indepen-

dent and identically distributed random variables, independent of Z, with CDF Hd(·; ν) =∏d
i=1H(·; ν) and ν is a parameter of the distribution H. In (3), �, represents the Hadamard

product, i.e., Y�Z = (Y1Z1, . . . , YdZd)
> if both Y and Z are of dimension d, and Y�Z =

(Y1Z, . . . , YdZ)> if Z is scalar. Clearly, when U−1/2 is set to be a scalar the GSNI is equiv-

alent to the SNI distribution proposed by Lachos et al. (2010). Similar to the proposition

2.4 presented in Arellano-Valle and Genton (2005), we obtain that given U = u, Y has a

SN distribution with location vector µ, scale matrix Σu = Diag(u−1/2)ΣDiag(u−1/2) and

skewness parameter matrix Λu = Diag(u−1/2)Λ, i.e., Y|U = u ∼ SNd(µ,Σu,Λu). Hence,

the density function of Y is given by

f(y) = 2d
∫

Rd
+

φd(y|µ,Ωu)Φd(Diag(u1/2)Λ>Ω−1(y − µ)|∆)dHd(u)du, (4)

where Ωu = Diag(u−1/2)ΩDiag(u−1/2).

From (1) and (3) it is clear that

E[Y] = µGSNI = µ+

√
2

π
κ1λ

4



and

V ar[Y] = ΣGSNI = κ2(ν)Σ + (κ2(ν)− 2

π
κ2

1(ν))ΛΛ>, (5)

where κα(ν) = E[U−α/2], α ∈ R and the moments are well defined. As observed in the

skew–normal case, Σ is responsible for accommodating dependence in ΣGSNI because Λ is

diagonal.

Cabral et al. (2012) show that the asymmetrical class of SNI distributions contains a

variety of skewed distributions with different choices of the mixture U , such as:

1. Multivariate skew-normal (SN): Uj = 1 for j = 1, . . . , d;

2. Multivariate skew-t (ST): Uj = Γ(ν/2, ν/2) for j = 1, . . . , d;

3. Multivariate skew-slash (SSL): Uj = Beta(ν, 1) for j = 1, . . . , d;

4. Multivariate contaminated normal (SCN): Uj =

 ν2 with prob ν1

1 with prob 1− ν1

,

for j = 1, . . . , d;

All these distributions have heavier tails than that of the SN one and can be used for

robust inference. Note that, like the SN distribution, the components of the SNI class are

uncorrelated, when Σ is a diagonal matrix. Further, in order to have a zero-mean vector

(µSNI = 0), we should assume the location parameter µ = −
√

2
π
κ1λ, which is what we

assume throughout this article.

3. GENERALIZED SKEW–GAUSSIAN SPATIAL FIELD

Suppose that we observe (Yi,X i) at sites i = 1, . . . , n, where Yi is the response variable and

X i a q×1 vector of covariates that correspond to response Yi at site i. Let e = (e1, . . . , en)>

be a vector of unobserved random effects with joint distribution H, which introduces spa-

tial dependence. A spatial GLMM assumes that, given (X i, ei), the observations Yi’s are
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independent with density h(yi; θi) belonging to a one parameter exponential family

h(y; θi) = exp

(
θiy − ψ(θi)

a(φ)
+ c(y, φ)

)
,

where a(·), ψ(·) and c(·) are known functions, φ is a scale or dispersion parameter, θi is

the canonical parameter, and the support of the distribution does not depend on θi. Let

µi = E(Yi|X, e), where X = (X1, . . . ,Xn)> is the matrix of covariates. The conditional

expectation µi is connected to the covariate X i and random effect ei through a fixed link

function g:

g(µi) = ηi + ei, (6)

where ηi = X>i β is the fixed effect, and β is a q × 1 vector of regression coefficients of

covariates X i. The dependence among random effects e determines the spatial dependence

among conditional means µ = (µ1, . . . , µn)>. Therefore, to fully specify a spatial GLMM, it

is necessary to specify both the link function g and the joint distribution H of e. Commonly,

H is chosen to be a multivariate normal distribution with mean zero and covariance matrix

Σ.

Instead of defining H as a multivariate normal distribution, we propose to use the GSNI

in the random effects to model areal dependence. Besag (1974) proposes the CAR model as

an alternative to capture dependence within areas. The CAR model defines the following

covariance matrix:

Σ = σ2(I − ρW )−1M ,

where W is an n × n matrix with zeros on the diagonal and the neighbor weights (wij) in

the off-diagonal positions if i is neighbor of j and 0 otherwise, and M is an n× n diagonal

matrix,M = diag (τ 2
1 , . . . , τ

2
n). To assure that Σ is positive definite we need some constraints

wijτ
2
j = wjiτ

2
i and ρ ∈ (1/λmin, 1/λmax) where λ’s are the eigen values of M−1/2WM 1/2.

A random vector Z is defined to follow a Generalized Skew–Gaussian Spatial Field (GS-

GSF) when Z ∼ GSNIn(µ,Σ,Λ) and Σ has a spatial dependence generated by CAR (SAR)
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structure. Thus, ΣGSNI will depend on its neighbors since the dependence structure of

ΣGSNI comes entirely from Σ.

Using a Generalized Linear Mixed Model approach we can define a spatial random effect

to follow a GSGSF and therefore capture the skewness and/or heavy tail behavior of the

data. Suppose we have n responses Y = (Y1, . . . , Yn)> that comes from a one parameter

exponential family distribution with probability density/mass function (pdf) h. Thus, we

can model the response Y as

Yi ∼ h(µi), i = 1, . . . , n,

g(µi) = Xiβ + φ,

φ ∼ GSGSFn(−
√

2

π
κ1λ1n,Σ, λI),

where g is a link function, Xi is covariates for i = 1, . . . , n, β are the regression coefficients,

1n = (1, . . . , 1)>, Σ is spatial dependence matrix generated by the covariance structure of

a CAR or SAR model and λ is the skewness parameter to avoid overparametrization and

identifiability problems. With this representation this approach provides a flexible way to

incorporate multivariate asymmetric spatial random effects into modeling.

4. CONDITIONAL PREDICTIVE ORDINATE

The CPO model comparison is a Bayesian cross-validation approach (e.g., Gelfand et al.

1992; Geisser 1993; Dey et al. 1997). Let y be the observed responses {Yi : i = 1, . . . , n}.

Let y−i denote the observed response vector excluding the ith observation. The CPO statistic

associated with the ith observation is defined as the marginal posterior predictive density of

yi, conditioning on y−i:

CPOi =

∫
f(yi|θ)π(θ|y−i)dθ, (7)

where θ = (θ1, . . . , θn) is the vector of parameters of the distribution f , f(yi|θ) is the

conditional probability mass/density function of yi given θ, and π(θ|y−i) is the posterior
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density of θ based on data y−i. The intuition behind the CPO criterion is to choose a model

with higher predictive power measured in terms of predictive density. The idea is similar to

that of a leave-one-out cross validation in that the predictive density of each data point is

evaluated at a density fitted from all other data points.

Although a closed form of (7) is not available, Dey et al. (1997) showed that CPOi can

be estimated from a Monte Carlo integration approach and is approximated by a harmonic

mean:

ĈPOi = B

(
B∑
j=1

[
1

f(yi|θ(j))

])−1

,

where B denotes the size of a MCMC sample of the posterior distribution π(θ|y), θ(j) is

the parameter vector θ in the jth MCMC sample. This approximation is valid when Yi are

assumed to be conditionally independent given θ. Since the approximation is based on the

posterior given all the observations, its calculation is straightforward.

To compare different models, we define a single measure for each model, the logarithm

of the pseudo-marginal likelihood (LPML), LPML =
∑n

i=1 log ĈPOi. The model with the

largest LPML is the best one. For any two competing models, the comparison can be graph-

ically displayed by plotting the log ratio of CPOi from the two models against observation

number i; points supports either one of the models are above and below the zero lines,

respectively (e.g., Prates et al. 2011b).

5. IOWA LUNG CANCER

The National Cancer Institute is perhaps the most complete source of cancer data in the US,

offering public use county-level summaries for several states in various parts of the country.

We collected the death counts of Iowa lung cancer. The Iowa lung cancer data consist of the

average death count of lung cancer patients from the 99 counties of the state of Iowa who

have died between 2003 to 2007 (http://factfinder.census.gov/).

To study the lung cancer death counts over Iowa counties, we include potential important
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covariates to describe the death counts. First, we include the Radon average per county over

the years between 2003 to 2007. The Radon is radioactive, colorless, odorless, tasteless noble

gas, occurring naturally as the decay product of radium. It is one of the densest substances

that remains a gas under normal conditions and is considered to be a health hazard due to

its radioactivity (http://www.idph.state.ia.us/eh/radon.asp). Another important factor to

account for cancer death rates is the population (in thousands) at risk per county. From the

National Census Bureau, demographic information were collected and may help understand-

ing and interpreting the risk factors of lung cancer deaths. For each county we collected

the percentage of people with a bachelor or higher degree, percentage of seniors and average

house income (in thousand dollars).

5.1 Exploratory Analysis

We initiate our study checking for the necessity of spatial random effects. Moreover, we

would like to check that the residuals must be modeled by a distribution with heavy tail

and/or asymmetry. Intuitively, the use of spatial data analysis is important since as we

can see in Figure 1 the Standardized Mortality Ratio (SMR) of lung cancer and the radon

levels do not seem be randomly distributed in the space. We use the Moran’s I statistic

(Moran 1950) to validate our observations. We conclude that both SMR and radon levels

are spatially dependent with p-values 0.001 and 0.015 respectively.

After demonstrating the necessity of spatial effect in the data we continue to investigate

the appropriateness of assymetric and/or heavy tail models instead of the common used

normal regression. Let Yi be the number of lung cancer deaths in each Iowa county, i =

1, . . . , 99. In order to do so, we fit a CAR regression in the

log(Y + 1) = Xβ + e,

where e has a CAR distribution. After, we perform a modeling fitting in the residuals of the

analysis to verify what type of distribution better fits the residuals. Using the mixsmsn R
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Figure 1: (a) SMR levels for the counties of Iowa. (b) Radon levels for the counties of Iowa.

(c) Histogram of the of the residuals of the CAR regression with different SNI distributions

fitting.

package (Prates et al. 2011c), for fitting the residual with distributions of the class SNI, we

get that under the AIC criterion the skew-t distribution is the one the best fit the residuals.

This can also be verified in the histogram in Figure 1(c). Therefore we conclude that the

normal assumption for the residuals are not the most appropriate. In the next section, we

study the lung cancer death using the GSGSF to improve fitting.

5.2 Lung Cancer with GSGSF

In order, to accommodate spatial dependence between the neighboring counties, we use the

proper precision matrix specified in the CAR model. The precision matrix can be represented

as Q = 1
σ2M

−1(I − ρW ), where M is diagonal matrix with each Mii corresponding to the

number of neighbors of site i, ni, W is a normalized weight matrix, σ2 is a parameter to

measure the overall variability in the model and ρ measures the spatial association. Recall

from Section 3 that the GSGSF covariance can be partitioned by its scale matrix Σ and the

skewness parameter λ. Therefore, given σ2 and ρ, we can define Σ = Q−1 and use it in

GSGSF representation to calculate ΣGSGSF which is basically a re-scaled sum of Σ and the

skewness parameter.
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Suppose that for each county, i = 1, . . . , 99, we observe the lung cancer death (Yi) and

the set of covariates Xi. Then we model the death by county as

Yi ∼ Poisson(µi), i = 1, . . . , 99,

log(µi) = Xiβ + φ

φ ∼ GSGSF99(−
√

2

π
κ1λ199,Σ, λI),

where β are the regression coefficients and φ accommodates the underlying spatial depen-

dency with Σ with a CAR structure. To fully specify the model, vague hyper–priors are

chosen. The skewness parameter, λ, is set to follow a N(0, 100), the spatial dependence pa-

rameter, ρ, follows U(0, 1) and the overall precision parameter is set to follow a Γ(0.01, 0.01).

Within the new family proposed in Section 3, we propose 5 new models (skew–normal,

Student–t, skew–t, slash and skew–slash) as alternative to the normal spatial field to analyze

the number of death by lung cancer at the Iowa counties. The LPML statistics is used to

perform our model selection. The estimated LPML values are −304.30, −296.62, −291.59,

−292.54, −290.26, and −291.37 for the normal, skew normal, Student-t, skew-t, slash and

skew slash processes respectively. From this results it is possible to observe that data does

not present skewness since there is no significant difference between the skew-t (skew slash)

and Student-t (slash) distributions by the LPML criterion. Because both normal and skew

normal have a poorer fit there is an indication that the data have heavy tails, which can

be accommodated by both student-t and slash models. If we focus in analyzing the normal

class, it is possible to see improvement between the normal and the skew normal models,

this can be due to the fact that the skewness parameter can somehow capture the heavy tail

behavior.

From the LPML analysis we have the slash model has the bigger LPML, and so, the

corresponding results are presented in Table 1. Observing the HPD intervals we can conclude

that population and the covariate bachelor percentage are significant factor in predicting

lung cancer deaths while the others seems not significant. The population factor apparently
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Table 1: The estimates for the lung cancer death counts for slash model.

Coefficients Estimates 95% HPD interval

Intercept 2.42 (0.23,4.64)

Radon -0.02 (-0.05,0.05)

Bachelor percentage (10−2) -2.14 (-4.12,-0.17)

Senior percentage -1.08 (-4.45,2.45)

Population (10−2) 2.04 (1.44,2.71)

House Income (10−3) 0.97 (-1.37,3.08)

ν 1.33 (1.10,1.82)

increases the lung cancer death for bigger population, this could be due to the fact that the

urban areas tend to have more people at risk and more risk factors for lung cancer than rural

areas. The bachelor percentage factor tends to decrease the cancer deaths which could be due

to the fact that people with bachelor degree have a better information and condition to early

detect lung cancer improving chance of cure. Initially we expected that radon levels should

be an important predictor to lung cancer deaths. However, such assumption is not validated

in our analysis. An explanation for this apparent contradiction is that epidemiologists studies

shown that high indoor radon levels increases the chance of lung cancer, but our radon levels

are not indoors but outdoors. The slash distribution is symmetric (λ = 0) but ν captures

the tail behavior. Since ν is estimated to be 1.33 we can see, as expected, that there is

a heavy-tail underlying spatial process that could not be captured by the common normal

model.

6. CONCLUSIONS

In this paper we presented a the class of distributions called GSNI. The proposed class

successfully extend the SNI class proposed by Lachos et al. (2010). With the use of the
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GSNI in GLMM we incorporated the notion of asymmetric spatial fields with the creation

of the GSGSF.

To illustrate applications of the GSGSF, we presented lung cancer death for the state of

Iowa. From our analysis it is clear that the Slash distribution have better fitting than the

traditional CAR model. Also, we were able to show that distributions that can handle heavy

tail highly improved the fitting when compared with thin tail distributions.

The presented models are easily implemented in WinBUGS and can be used to analyze

data when the symmetric or the thin tails assumptions are not appropriate for empirical

data with a spatial dependence.
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