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Abstract

HIV RNA viral load measures are often subjected to some upper and lower

detection limits depending on the quantification assays, and consequently the

responses are either left or right censored. Linear and nonlinear mixed-effects

models with modifications to accommodate censoring (LMEC and NLMEC)

are routinely used to analyze this type of data. Recently, Vaida and Liu (2009)

proposed an exact EM-type algorithm for LMEC/NLMEC, called SAGE al-

gorithm (Meng and Van Dyk, 1997), that uses closed-form expressions at

the E-step, as opposed to Monte Carlo simulations. Motivated by this algo-

rithm, we propose here an exact ECM algorithm (Meng and Rubin, 1993) for

LMEC/NLMEC, which enable us to develop local influence analysis for mixed

effects models on the basis of the conditional expectation of the complete-data

log-likelihood function. This is because the observed data log-likelihood func-

tion associated with the proposed model is somewhat complex that makes it

difficult to apply directly the approach of Cook (1977, 1986). Some useful

perturbation schemes are discussed. Finally, the results obtained from the

analyses of two HIV AIDS studies on viral loads are presented to illustrate

the newly developed methodology.

Keywords: Censored data, HIV viral load, EM Algorithm, Influential observa-

tions, Linear mixed models.

1 Introduction

Studies of HIV viral dynamics, often considered to be a key issue in AIDS research,

considers repeated/longitudinal measures over a period of treatment routinely ana-

lyzed using linear and non-linear mixed effects models (LME/NLME) to assess rates

of changes in HIV-1 RNA level or viral load (Wu, 2005, 2010). Viral load measures
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the amount of actively replicating virus and its reduction is frequently used as a

primary endpoint in clinical trials of anti-retroviral (ARV) theraphy. However, de-

pending on the diagnostic assays used, its measurement may be subjected to some

upper and lower detection limits, below or above which they are not quantifiable

(resulting in left or right censoring). The proportion of censored data in these stud-

ies may not be small (Hughes, 1999) and so the use of crude/adhoc methods, viz.,

substituting threshold value or some arbitrary point such as mid-point between zero

and cut-off for detection (Vaida and Liu, 2009), might lead to biased estimates of

fixed effects and variance components (Wu, 2010).

Our motivating datasets in this study are on HIV-1 viral load, (i) after unstruc-

tured treatment interruption, or UTI (Saitoh et al., 2008) and (ii) setpoint for acutely

infected subjects from the AIEDRP program (Vaida and Liu, 2009). The former

has about 7% of observations below (left-censored) the detection-limits, whereas

the latter has about 22% lying above (right-censored) the limits of assay quantifi-

cations. As an alternative to crude imputation methods, Hughes (1999) proposed

a likelihood-based Monte Carlo EM algorithm (MCEM) for LME with censored re-

sponses (LMEC). Vaida et al. (2007) proposed a hybrid EM using a more efficient

Hughes algorithm, extending it to NLME with censored data (NLMEC). Recently,

Vaida and Liu (2009) proposed an exact EM-type algorithm for LMEC/NLMEC,

which uses closed-form expressions at the E-step, as opposed to Monte Carlo simu-

lations. Strictly speaking, these algorithms are Space Alternating Generalized EM

(SAGE) algorithms (see Vaida et al., 2007). In this paper, in order to perform di-

agnostics analysis in LMEC/NLMEC models, we first propose a slight modification

to the EM-type algorithm proposed by Vaida and Liu (2009), wherein all the pa-

rameters are updated (M-step) by considering the random effects and the censoring

observations as missing data. Then, the diagnostic measures for assessing the local

influence in LMEC/NLMEC are developed and presented.

The study of influence analysis is an important and key step in data analysis sub-

sequent to parameter estimation. This can be carried out by conducting an influence

analysis for detecting influential observations. There are two primary approaches for

detecting influential observations. The first approach is the case-deletion approach

(Cook, 1977) and it is an intuitively appealing method ( see also Cook and Weisberg

,1982). Deletion diagnostics such as Cook’s distance or the likelihood distance have

been applied to many statistical models. The second approach, which is a general

statistical technique used to assess the stability of the estimation outputs with re-

spect to the model inputs, is the local influence approach of Cook (1986). Following
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the pioneering work of Cook (1986), this method has received considerable atten-

tion recently in the statistical literature of mixed effects models (LME/NLME); see,

for example, Lesaffre and Verbeke (1998), Zhu and Lee (2001), Lee and Xu (2004),

Osorio et al. (2007) and Russo et al. (2009), among others.

Although several diagnostic studies on LME/NLME have appeared in the liter-

ature, to the best of our knowledge, no study seems to have been made on influence

diagnostics for NLMEC/LMEC and certainly not on the local influence analysis.

The main difficulty is due to the fact that the observed log-likelihood function of

the NLMEC/LMEC involves intractable integrals (for instance, the pdfs of trun-

cated multinormal distributions), rendering the direct application of Cook’s ap-

proach (Cook, 1986) to this model to be very difficult if not impossible , since the

measures involve the first and second partial derivatives of this function. Zhu and

Lee (2001) developed an approach for performing local influence analysis for gen-

eral statistical models with missing data. And it is based on the Q-displacement

function that is closely related to the conditional expectation of the complete-data

log-likelihood in the E-step of the EM algorithm. This approach produces results

very similar to those obtained from Cook’s method. Moreover, the case-deletion can

be studied by Q-displacement function following the approach of Zhu et al. (2001).

So, we develop here methods to obtain case-deletion measures and local influence

measures by using the method of Zhu et al. (2001) (see also Lee and Xu, 2004; Zhu

and Lee, 2001) in the context of mixed effects models with censored data. We feel

that the results developed here are a necessary supplement to those presented by

Vaida and Liu (2009) for the analysis of mixed effects models with censored response

and HIV data.

The rest of this paper is organized as follows. In Section 2, the LMEC model is

defined, and an EM-type algorithm for obtaining the ML estimates is described. In

Section 3, we provide a brief sketch of the local influence approach for models with

incomplete data, and also develop a methodology pertinent to the LMEC. Four

different perturbation schemes have been considered. In Section 4, the NLMEC

model is defined. The methodology has been illustrated in Section 5 with the analysis

of two examples involving HIV viral measure and an empirical study. Finally, some

concluding remarks are made in Section 6.
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2 The linear mixed effects with censored response

Ignoring censoring for the moment, the classical normal LME model is specified as

follows (Laird and Ware, 1982):

yi = Xiβ + Zibi + εi, (1)

where bi
iid∼ Nq(0,D) is independent of εi

ind.∼ Nni
(0, σ2Ini

), i = 1, . . . , n; the sub-

script i is the subject index; Ip denotes the p×p identity matrix; yi = (yi1, . . . , yini
)>

is a ni× 1 vector of observed continuous responses for subject i; Xi is the ni× p de-

sign matrix corresponding to the fixed effects, β, of dimension p× 1; Zi is the ni× q

design matrix corresponding to the q × 1 vector of random effects bi; εi of dimen-

sion (ni × 1) is the vector of random errors; and the dispersion matrix D = D(α)

depends on unknown and reduced parameters α. In the present formulation, we

consider the case where the response Yij is not fully observed for all i, j. Let the

observed data for the i-th subject be (Qi,Ci), where Qi represents the vector of

uncensored reading or censoring level, and Ci is the vector of censoring indicators

such that

yij ≤ Qij if Cij = 1,

yij = Qij if Cij = 0. (2)

For simplicity, we will assume that the data are left-censored with the LMEC

being thus defined. The extensions of theses results to arbitrary censoring can be

easily presented.

2.1 The log-likelihood function

Following Vaida and Liu (2009), classical inference on the parameter vector θ =

(β>, σ2, α>)> is based on the marginal distribution of yi. For complete data, we

have marginally that yi
ind.∼ Nni

(Xiβ,Σi), where Σi = σ2Ini +ZiDZ>i . For responses

with censoring pattern as in (2), we have yi ∼ TNni
(Xiβ,Σi;A), where TNni

(.;A)

denotes the truncated normal distribution on the interval A, where Ai = Ai1 ×
. . . ,×Aini, with Aij being the interval (−∞,∞) if Cij = 0 and the interval (−∞, Qij]

if Cij = 1. For computing the likelihood function associated with model (1)and (2),

the first step is to treat separately the observed and censored components of yi.

Let yo
i be the no

i -vector of observed outcomes and yc
i be the nc

i -vector of censored

observations for subject i with (ni = no
i + nc

i) such that Cij = 0 for all elements

in yo
i , and 1 for all elements in yc

i . After reordering, yi, Qi, Xi, and Σi can be
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partitioned as follows:

yi = vec(yo
i ,y

c
i ), Qi = vec(Qo

i ,Q
c
i), X>

i = (Xo
i ,X

c
i) and Σi =

(
Σoo

i Σoc
i

Σco
i Σcc

i

)
,

where vec(.) denote the function which stacks vectors or matrices of the same

number of columns. Then, we have yo
i ∼ Nno

i
(Xo

i β,Σoo
i ), yc

i |yo
i ∼ Nnc

i
(µi,Si),

where µi = Xc
iβ + Σco

i (Σoo
i )−1(yo

i −Xo
i β) and Si = Σcc

i −Σco
i (Σoo

i )−1Σoc
i . Now, let

Φni
(u; a,A) and φni

(u; a,A) be the cdf (left tail) and pdf, respectively, of Nni
(a,A)

computed at vector u. From Vaida and Liu (2009) and Jacqmin-Gadda et al. (2000),

the likelihood function for cluster i (using conditional probability arguments) is given

by

Li(θ) = f(yi|θ) = P (Qi|Ci,θ) = P (yc
i ≤ Qc

i |yo
i = Qo

i ,θ)P (yo
i = Qo

i |θ),

= P (yc
i ≤ Qc

i |yo
i ,θ)f(yo

i |θ)

= φni
(yo

i ;X
o
i β,Σoo

i )Φnc
i
(Qc

i ; µi,Si) = αi, (3)

which can be evaluated without much computational burden through the routine

mvtnorm() available in R; see Genz et al. (2008); R Development Core Team (2009).

The log-likelihood function for the observed data is thus given by `(θ|y) =
∑n

i=1{log αi}.
Thus the estimates obtained by maximizing the log-likelihood function `(θ|y) are

the maximum likelihood estimates (MLEs).

2.2 The EM algorithm

As the observed log-likelihood function involves complex expressions, it is very dif-

ficult to work directly with `(θ|y), either for the ML estimation or to carry out the

influence analysis. For LMEC/NLMEC, an EM-type algorithm was developed by

Vaida and Liu (2009) for the ML estimation, in which β and σ2 are updated by

integrating out bi (marginal model), while D is updated with yi and bi as missing

data. For our purposes, the strategy mentioned earlier makes the implementation of

both the case-deletion methods and the local influence analysis, which are based on

the complete log-likelihood function (Zhu and Lee, 2001; Lee and Xu, 2004), quite

difficult. For this reason, we propose here an expectation conditional maximization

(EMC) algorithm by considering yi and bi as missing data to update (M-step) all

the parameters involved in the model.

Let y = (y>1 , . . . ,y>n )>, b = (b>1 , . . . ,b>n )>, Q = vec(Q1, . . . ,Qn) and C =

vec(C1, . . . ,Cn), and that we observe (Qi,Ci) for the ith subject. In their estimation

procedure, b, Q and C are treated as hypothetical missing data, and augmented
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with the observed data set yc = (C>,Q>,y>,b>)> . Hence, the EM-type algorithm

is applied to the complete-data log-likelihood function `c(θ|yc) =
∑n

i=1 `i(θ|yc),

where

`i(θ|yc) = −1

2

[
log σ2 +

1

σ2
(yi −Xiβ − Zibi)

>(yi −Xiβ − Zibi)

+ log |D| − b>i D−1bi

]
+ C, (4)

and C is a constant that is independent of the parameter vector θ. Given the current

estimate θ = θ̂
(k)

, the E-step calculates the conditional expectation of the complete

data log-likelihood function given by

Q(θ|θ̂(k)
) = E[`c(θ|yc)|Q,C, θ̂

(k)
] =

n∑
i=1

Qi(θ|θ̂
(k)

) =
n∑

i=1

Q1i(β, σ2|θ̂(k)
)+

n∑
i=1

Q2i(α|θ̂
(k)

),

where

Q1i(β, σ2|θ̂(k)
) = −ni

2
log σ2 − 1

2σ2

[
â

(k)
i − 2β>X>

i (ŷ
(k)
i − Zib̂

(k)
i ) + β>X>

i Xiβ
]

and

Q2i(α|θ̂
(k)

) = −1

2
log |D| − 1

2
tr

(
b̂ib>i

(k)

D−1

)
,

with â
(k)
i = tr

(
ŷiy>i

(k)

− 2ŷib>i
(k)

Z>i + b̂ib>i
(k)

Z>i Zi

)
, b̂ib>i

(k)

= E{bib
>
i |Qi,Ci, θ̂

(k)} =

Λ̂
(k)

i + ϕ̂
(k)
i (ŷiy>i

(k)

− ŷi
(k)β̂

(k)>
X>

i − Xiβ̂
(k)

ŷi
(k)> + Xiβ̂

(k)
β̂

(k)>
X>

i )ϕ̂>
i , b̂i

(k)
=

E{bi|Qi,Ci, θ̂
(k)} = ϕ̂

(k)
i (ŷi

(k)−Xiβ̂
(k)

), ŷib>i = E{yib
>
i |Qi,Ci, θ̂

(k)} = (ŷiy>i
(k)

−
ŷi

(k)β̂
(k)>

X>
i )ϕ̂>

i , with Λ̂
(k)

i = (D̂−1(k) + Z>i Zi/σ̂2
(k)

)−1 and ϕ̂
(k)
i = Λ̂

(k)

i Z>i /σ̂2
(k)

.

It is clear that the E-step reduces only to the computation of ŷiy>i = E{yiy
>
i |Qi,Ci, θ̂}

and ŷi = E{yi|Qi,Ci, θ̂}, that is, the first and second moments of a truncated

multinormal distribution. These can be determined in closed-form, as a function

of multinormal probabilities, using a sequence of simple transformations. For more

details on the computation of these moments one may refer to Vaida and Liu (2009).

The conditional maximization (CM) then conditionally maximizes Q(θ|θ̂(k)
) with

respect to θ and obtains a new estimate θ̂
(k+1)

, as follows:

β̂
(k+1)

=

(
n∑

i=1

X>
i Xi

)−1 n∑
i=1

X>
i

(
ŷi

(k) − Zib̂i

(k)
)

, (5)

σ̂2
(k+1)

=
1

N

n∑
i=1

[
â

(k)
i − 2β̂

(k+1)>
X>

i (ŷi
(k) − Zib̂i

(k)
) + β̂

(k+1)>
X>

i Xiβ̂
(k+1)

]
,(6)

D̂(k+1) =
1

n

n∑
i=1

b̂ib>i
(k)

, (7)
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where N =
∑n

i=1 ni. This process is iterated until some distance between two

successive evaluations of the actual log-likelihood `(θ|y) in Section 2.1, such as

|`(θ̂(k+1)
) − `(θ̂

(k)
)| or |`(θ̂(k+1)

)/`(θ̂
(k)

) − 1|, is small enough. The variance of the

fixed effects in the LMEC is then given by (Hughes, 1999)

V ar(β̂) =

(
n∑

i=1

X>
i Σ−1

i Xi −X>
i Σ−1

i V ar(yi|Qi,Ci)Σ
−1
i Xi

)−1

. (8)

3 Diagnostic analysis

Influence diagnostic techniques consist evaluate the sensitivity of the parameter

estimates of a particular model when perturbation occurs either in the data set or

in the underlying assumptions of the model. There are primarily two approaches for

detecting influential observations. The first approach is the case-deletion technique

(Cook, 1977), in which is a common approach for analyzing one or more fitted models

after excluding some observations and then assessing by some metrics such as the

likelihood distance and the Cook’s distance. The second method is the local influence

approach (Cook, 1986), which evaluates the changes in the results of the analysis by

incorporating a minor perturbation to the model. By using the results of Zhu et al.

(2001), we will introduce here the case-deletion measures and the local influence

measures to the censored data on the basis of the following Q-function Q(θ|θ̂). We

discuss first consider the case-deletion measures, then the local influence , and finally

the perturbation schemes used.

3.1 Case-deletion measures

Case-deletion is a common approach to study the effects of dropping the ith case

from the data set. In the following, a quantity with a subscript ”[i]” denotes the orig-

inal quantity with the ith case deleted. The log-likelihood function of θ, based on the

data with the ith case deleted, is denoted by `(θ|Yc[i]). Let θ̂[i] = (β̂
>
[i], σ̂

2
[i], α̂

>
[i])

>

be the maximizer of the function Q[i](θ|θ̂) = E{`(θ|Yc[i])|Q,C, θ̂}, where θ̂ is the

ML estimate of θ. To assess the influence of the ith case on the ML estimate θ̂, we

compare the difference between θ̂[i] and θ̂. If the deletion of a case seriously influ-

ences the estimates, more attention need to be paid to that case. Hence, if θ̂[i] is far

from θ̂ in some sense, then the ith case is regarded as influential. As θ̂[i] is needed

for every case, the required computational effort can be quite heavy, especially when

the sample is large. Hence, the following one-step pseudo approximation θ̂
1

[i] is used

to reduce the burden (see Cook and Weisberg, 1982; Zhu et al., 2001):

θ̂
1

[i] = θ̂ + {−Q̈(θ̂|θ̂)}−1Q̇[i](θ̂|θ̂), (9)
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where Q̈(θ̂|θ̂) =
∂2Q(θ|θ̂)

∂θ∂θ>
∣∣
θ=θ̂

is the Hessian matrix and Q̇[i](θ̂|θ̂) =
∂Q[i](θ|θ̂)

∂θ

∣∣
θ=θ̂

,

i = 1, . . . , n, has its elements as follows

Q̇
[i]β(θ̂|θ̂) = ∂Q[i](θ̂|θ̂)/∂β =

1

σ̂2
E1[i], (10)

Q̇[i]σ2(θ̂|θ̂) = ∂Q[i](θ̂|θ̂)/∂σ2 = − 1

2σ̂2
E2[i], (11)

Q̇[i]α(θ̂|θ̂) = ∂Q[i](θ̂|θ̂)/∂α, (12)

where E1[i] =
∑

j 6=i X
>
j (ŷj − Zjb̂j − Xjβ̂) and E2[i] =

∑
j 6=i(nj − Aj

σ̂2 ), with Aj =

aj − 2β̂
>
X>

j (ŷj − Zjb̂j) + β̂
>
X>

j Xjβ̂. Finally, Q̇[i]α(θ̂|θ̂) has its elements as

Q̇[i]αr(θ̂|θ̂) = −1

2

∑

j 6=i

tr[D−1Ḋ(r)−D−1Ḋ(r)D−1b̂jb
>
j ].

The Hessian matrix Q̈(θ̂|θ̂)

Following Zhu and Lee (2001), to obtain the diagnostic measures for case-deletion

diagnostic and for local influence of a particular perturbation scheme, it is necessary

to compute Q̈(θ|θ̂) =
∑n

i=1 ∂2Qi(θ|θ̂)/∂θ∂θ>, where θ = (β>, σ2,α>)> is the

parameter vector. Hence, the Hessian matrix ∂2Qi(θ|θ̂)/∂θ∂θ> has its elements

as follows:

∂2Qi(θ|θ̂)

∂β∂β>
= − 1

σ2
X>

i Xi,
∂2Qi(θ|θ̂)

∂β∂σ2
= − 1

σ4
X>

i (ŷi − Zib̂i −Xiβ),

∂2Qi(θ|θ̂)

∂β∂αr

= 0,
∂2Qi(θ|θ̂)

∂σ2∂σ2
=

1

2σ4
[ni − 2

σ2
Ai],

∂2Qi(θ|θ̂)

∂σ2∂αr

= 0,
∂2Qi(θ|θ̂)

∂αs∂αr

=
1

2
tr(A(sr))− 1

2
tr(B(sr)b̂ib

>
i ),

where A(sr) = D−1[Ḋ(s)D−1Ḋ(r) − D̈(s, r)] and B(sr) = D−1[Ḋ(s)D−1Ḋ(r) +

Ḋ(r)D−1Ḋ(s)−D̈(s, r)]D−1, with Ḋ(r) = ∂D/∂αr, D̈(s, r) = ∂2D/∂αs∂αr, r, s =

1, . . . , p∗, p∗ = dim(α) and i = 1, . . . , n. After some rearrangement and evaluating

these derivatives at θ = θ̂, we obtain the Hessian matrix Q̈(θ̂|θ̂), which is a block-

diagonal matrix of the form Q̈(θ|θ̂) = diag(Q̈β(θ̂|θ̂), Q̈σ2(θ̂|θ̂), Q̈α(θ̂|θ̂)), as

Q̈β(θ̂|θ̂) = − 1

σ̂2
X>X, Q̈σ2(θ̂|θ̂) = − b

2σ̂4
and Q̈α(θ̂|θ̂) =

n∑
i=1

(
∂2Qi(θ̂|θ̂)

∂αs∂αr

)
,

where X = (X>
1 , ...,X>

n )> and b = −∑n
i=1(ni − 2Ai/σ̂

2).

Next, we will obtain the one-step approximation of θ̂[i] = (β̂
>
[i], σ̂

2
[i], α̂

>
[i])

>, i =

1, . . . , n, based on (9), viz., the relationships between the parameter estimates for

full data and the data with the ith case deleted.
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Theorem 3.1. For the LMEC, the relationships between the parameter estimates

for full data and the data with the ith case deleted are as follows:

β̂
1

[i] = β̂ + (X>X)−1E1[i],

σ̂2
1

[i] = σ̂2 − 1

b
E2[i],

α̂1
[i] = α̂ + {−Q̈α(θ̂|θ̂)}−1Q̇[i]α(θ̂|θ̂),

where E1[i], E2[i] and Q̇[i]α(θ̂|θ̂), i = 1, . . . , n, are as in (10), (11) and (12), respec-

tively.

From Theorem 3.1, case-deletion measures can be developed for assessing influen-

tial observations, such as the generalized Cook distance and the likelihood distance

(Zhu and Lee, 2001). To assess the influence of the ith case on the ML estimate

θ̂, we need to compare θ̂[i] and θ̂, and if θ̂[i] is far from θ̂ in some sense, then the

ith case is regarded as influential. Based on the metric for measuring the distance

between θ̂[i] and θ̂, proposed by Zhu and Lee (2001) based on the EM algorithm,

we consider here the following generalized Cook distance:

GDi = (θ̂[i] − θ̂)>{−Q̈(θ̂|θ̂)}(θ̂[i] − θ̂), i = 1, . . . , n. (13)

Upon substituting (9) into (13), we obtain the approximation

GD1
i = Q̇[i](θ̂)>{−Q̈(θ̂|θ̂)}−1Q̇[i](θ̂), i = 1, . . . , n.

Since Q̈(θ̂|θ̂) is a diagonal matrix, from Xie et al. (2007), GD1
i can be decomposed

into three parts that corresponds to the generalized Cook distance for the parameter

subsets β, σ2 and α, which are denoted, respectively, by GD1
i (β), GD1

i (σ
2) and

GD1
i (α), as follows:

GD1
i = GD1

i (β) + GD1
i (σ

2) + GD1
i (α), (14)

where

GD1
i (β) = Q̇[i]β(θ̂|θ̂)>{−Q̈β(θ̂|θ̂)}−1Q̇[i]β(θ̂|θ̂) =

1

σ̂2
E>

1[i](X
>X)−1E1[i],

GD1
i (σ

2) = Q̇[i]σ2(θ̂|θ̂)>{−Q̈σ2(θ̂|θ̂)}−1Q̇[i]σ2(θ̂|θ̂) =
1

2b
E2

2[i],

GD1
i (α) = Q̇[i]α(θ̂|θ̂)>{−Q̈α(θ̂|θ̂)}−1Q̇[i]α(θ̂|θ̂).

Another measure for the influence of the ith case is the following Q-distance func-

tion, similar to the likelihood distance LDi (Cook and Weisberg, 1982), defined

as

QDi = 2{Q(θ̂|θ̂)−Q(θ̂[i]|θ̂)}. (15)

We can calculate an approximation of the likelihood displacement QDi by substi-

tuting (9) into (15), resulting in the following approximation QD1
i of QDi:

QD1
i = 2{Q(θ̂|θ̂)−Q(θ̂

1

[i]|θ̂)}. (16)
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3.2 Local Influence

In this subsection, we derive the normal curvature of the local influence (Cook,

1986) for some common perturbation schemes either in the model or in the data.

We will consider the case-weight, scale matrix perturbation schemes, and response

perturbation schemes, for this purpose.

Consider a perturbation vector ω = (ω1, ..., ωg)
> varying in an open region Ω ⊂

Rg. Let `c(θ,ω|yc) be the complete-data log-likelihood to the perturbed model.

We assume that there is a ω0 in Ω such that `c(θ,ω0|yc) = `c(θ|yc) for all θ.

Let θ̂(ω) denote the maximum of the function Q(θ, ω|θ̂) = E[`c(θ, ω|yc)|Q,C, θ̂].

The influence graph is then defined as α(ω) = (ω>, fQ(ω))>, where fQ(ω) is the

Q-displacement function defined as follows:

fQ(ω) = 2
[
Q

(
θ̂|θ̂

)
−Q

(
θ̂(ω)|θ̂

)]
.

Following the approach of Cook (1986) and Zhu and Lee (2001), the normal cur-

vature CfQ,d of α(ω) at ω0 in the direction of some unit vector d can be used to

summarize the local behavior of the Q-displacement function. It can be shown that

CfQ,d = −2d>Q̈ωod and − Q̈ω0 = ∆>
ω0

{
−Q̈(θ̂|θ̂)

}−1

∆ω0 ,

where Q̈(θ̂|θ̂) =
∂2Q(θ|θ̂)

∂θ∂θ>
|
θ=θ̂

and ∆ω =
∂2Q(θ,ω|θ̂)

∂θ∂ω> |
θ=θ̂(ω)

.

Following the same procedure as in Cook (1986), the quantity −Q̈ω0 is quite

useful for detecting influential observations. From the spectral decomposition of

a symmetric matrix −2Q̈ω0 =
∑g

k=1 ζkεkε
>
k , where {(ζk, εk), k = 1, . . . , g} are

eigenvalue–eigenvector pairs of −2Q̈ω0 with ζ1 ≥ . . . ≥ ζr > ζr+1 = . . . = 0 and

orthonormal eigenvectors {εk, k = 1, . . . , g}, Zhu and Lee (2001) proposed to inspect

all eigenvectors corresponding to nonzero eigenvalues for capturing more informa-

tion. Based on the work of Zhu and Lee (2001), we consider the following aggregated

contribution vector of all eigenvectors that correspond to nonzero eigenvalues. Let

ζ̃k = ζk/(ζ1 + . . .+ ζr), ε2
k = (ε2

k1, . . . , ε
2
kg)

> and M(0) =
∑r

k=1 ζ̃kε
2
k. The lth compo-

nent of M(0), M(0)l, is equal to
∑r

k=1 ζ̃kε
2
kl. The assessment of influential cases is

based on the visual inspection of the {M(0)l, l = 1, . . . , g} plotted against the index

l. The lth case may be regarded as influential if M(0)l is larger than the benchmark.

The inconvenience on the use of the normal curvature is in deciding about the

influence of the observations, since CfQ,d(θ) may assume any value and it is not

invariant under a uniform change of scale. Based on the work of Poon and Poon

(1999) in using a conformal normal curvature, Zhu and Lee (2001) considered the
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following conformal normal curvature BfQ,d(θ) = CfQ,d(θ)/tr[−2Q̈ω0 ], whose com-

putation is quite simple and also has the property that 0 ≤ BfQ,d(θ) ≤ 1. Let dl be

a basic perturbation vector with lth entry as 1 and all other entries as 0. Zhu and

Lee (2001) showed that for all l, M(0)l = BfQ,dl
. We can therefore obtain M(0)l via

BfQ,dl
.

So far, there is no a general rule to judge how large of the influence of a specific

case in the data is. Let M(0) and SM(0) denote, respectively, the mean and the

standard error of {M(0)l : l = 1, . . . , g}, where M(0) = 1/g. Poon and Poon

(1999) proposed to use 2M(0) as a benchmark for M(0). However, we may use

different functions of M(0). For instance, Zhu and Lee (2001) proposed to use

M(0) + 2SM(0) as a benchmark to take into account the variance of {M(0)l : l =

1, . . . , g}. According to Lee and Xu (2004), the exact choice of the function of M(0)

as the benchmark is subjective. More recently, Lee and Xu (2004) proposed to use

M(0)+ c∗SM(0), where c∗ is a selected constant, and depending on the application,

c∗ may be taken to be any value. In this paper, and here we will use c∗ = 3, 5.

3.3 Perturbation schemes

In this section, we will evaluate the ∆ matrix under the following perturbation

schemes for LMEC models. Case-weight made for detecting observations with out-

standing contribution on the log-likelihood function and that may exercise high

influence on the maximum likelihood estimates. Scale perturbation made on the

scale matrix Σi = σ2Ini +ZiDZ>i . It also can be made on either σ2 or D which may

reveal individuals that are most influential, in the sense, of the likelihood displace-

ment on the scale structure. Finally, perturbation of response variables made on the

response values, which may indicate observations with large influence on the MLE.

In our case, the response variables are Q′s.

For each perturbation scheme, one has the partitioned form

∆ωo = (∆>
β ,∆>

σ2 ,∆>
α )>,

where ∆β =
∂2Q(θ,ω|θ̂)

∂β∂ω> |ωo ∈ Rp×g, ∆σ2 =
∂2Q(θ,ω|θ̂)

∂σ2∂ω> |ωo ∈ R1×g and ∆α =

(∆>
α1, . . . ,∆

>
αp∗)

>, with ∆αr =
∂2Q(θ, ω|θ̂)

∂αr∂ω> |ωo ∈ R1×g, r = 1, . . . , p∗ and g being

the dimension of the perturbation vector ω.

Case weight perturbation
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First, we consider an arbitrary attribution of weights for the expected value of the

complete-data log-likelihood function (perturbed Q–function), which may capture

departures in general directions, represented by writing

Q(θ, ω|θ̂) = E[`c(θ, ω|yc)|Q,C, θ̂] =
n∑

i=1

ωiE[`i(θ|yc)|Q,C, θ̂] =
n∑

i=1

ωiQi(θ|θ̂).

Here, ω = (ω1, . . . , ωn)> is an n× 1 vector and ωo = (1, . . . , 1)>. In addition, it is

possible to show that the local influence for this perturbation scheme is equivalent

to the deletion method discussed in preceding section. For this perturbation scheme,

we find

∆β =
1

σ2
X>D(ε1, . . . , εn),

∆σ2 = − 1

2σ2
n> +

1

2σ4
m>,

∆αr = [
∂Q1(θ|θ̂)

∂αr

, . . . ,
∂Qn(θ|θ̂)

∂αr

], r = 1, . . . , p∗,

where n = (n1, . . . , nn)>, m = (A1, . . . , An)>, D(ε1, . . . , εn) is a block-diagonal ma-

trix, with εi = ŷi−Zib̂i−Xiβ̂i and
∂Qi(θ|θ̂)

∂αr

= −1

2
tr[D−1Ḋ(r)−D−1Ḋ(r)D−1b̂ib

>
i ].

Scale matrix perturbation

To study the effects of departures from the assumption regarding the scale matrix

Σi of the random effects, we consider the perturbations D(ωi) = ω−1
i D or σ2(ωi) =

ω−1
i σ2, for i = 1, . . . , n. Under this perturbation scheme, the non-perturbed model

is obtained when ωo = (1, . . . , 1)>. Moreover, the perturbed Q-function is as in

(5), D(ωi) and σ2(ωi) in place of D and σ2, respectively. The matrix ∆ω0 has its

elements as follows:

• Perturbation on D: ∆β = 0, ∆σ2 = 0 and ∆αr = 1
2
[g1, . . . , gn], where

gi = D−1Ḋ(r)D−1b̂ib
>
i , r = 1, . . . , p∗;

• Perturbation on σ2: ∆β = 1
σ2 X

>D(ε1, . . . , εn), ∆σ2 =
1

2σ4
m> and ∆α = 0.

Response perturbation

A perturbation of the response variables Qij, i = 1, . . . , n, j = 1, . . . , ni, can be

introduced by replacing Qij by Qij(ω) = Qij +ωisij, where sij is a scale factor. Now

substituting Qij(ω) into (2), we can write perturbed model as

yij(ω) ≤ Qij if Cij = 1,

yij(ω) = Qij if Cij = 0,

12



where yij(ω) = yij − ωisij. Hence, the perturbed Q-function Qi(θ|θ̂,ω) is as in

Section 2.2, with ŷi, ŷiy>i and ŷib>i replaced by with ŷiω = ŷi − ωisi, ŷiωy>iω =

ŷiy>i − ωi(ŷis
>
i + siŷ>i ) + ω2

i sis
>
i and ŷiωb>iω = ŷib>i − ωisib̂>i , respectively, with

si = (si1, . . . , sini
)>. Under this perturbation scheme, the vector ω0, representing

no perturbation, is given by ω0 = 0 and ∆ω0 has the following elements:

∆β = − 1

σ2
X>D(s1, . . . , sn),

∆σ2 = − 1

σ4
(Y − Zb−Xβ)>D(s1, . . . , sn),

∆α = 0,

where Y = (ŷ>1 , . . . , ŷ>n )>, b = (b̂1, . . . , b̂n)> and D(s1, . . . , sn) is a block-diagonal

matrix.

4 The nonlinear case

The NLME (Pinheiro and Bates, 2000) is defined as

yi = η(φi,Xi) + εi, φi = Aiβ + Bibi, i = 1, . . . , n, (17)

where bi
iid∼ Nq(0,D) and εi

ind∼ Nni
(0, σ2Ini) are independent; yi is a (ni × 1)

vector of observed continuous responses for subject i; η is a nonlinear function

of the individual random parameter φi; Ai and Bi are known design matrices of

dimensions r×p and r×q, respectively, possibly depending on some covariate values;

β is the (p× 1) vector of fixed effects, and bi is the (q× 1) vector of random effects.

As mentioned by Vaida and Liu (2009), the linearization (L) procedure to obtain

the approximate MLE of θ = (β>, σ2, α>)> involves of taking the first-order Taylor

expansion of ηi around the current parameter estimate β̃ and the random effect

estimates b̃i (empirical predictors), which is equivalent to iteratively solving the

following LME model (L-step):

Ỹi = W̃iβ + H̃ibi + εi, i = 1, . . . , n, (18)

where Ỹi = Yi − η(φ(β̃, b̃i),Xi), bi
iid∼ Nq(0,D) and εi

ind∼ Nni
(0, σ2

eIni
), H̃i =

∂η(Aiβ + Bibi,Xi)

∂b>i
|bi=b̃i

and W̃i =
∂η(Aiβ + Bibi,Xi)

∂β>i
|
βi=β̃i

. Thus, for censored

response, the linearized model (18) is an LME with censored data, with the same

structure as in (1), which is then solved as detailed in the preceding section. The

model matrices in (18) depend on the current parameter value, and need to be

recalculated at each iteration. The algorithm iterates to convergence between the L-

, E-, and CM-steps. Moreover, the influence diagnostic procedures discussed earlier
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in Section 3 can be incorporated along with the approximation in (18) to obtain

approximate influence diagnostics measures for NLMEC. The performance of the

developed influence diagnostics measures are illustrated in the next section.

Table 1: Parameter estimates of the LMEC model and p-values for the UTI data.

SE denotes the standard error.

Parameter Estimate SE p-value

β̂1 3.6038 0.1253 < 0.01

β̂2 4.1664 0.1285 < 0.01

β̂3 4.2413 0.1304 < 0.01

β̂4 4.3604 0.1307 < 0.01

β̂5 4.5662 0.1398 < 0.01

β̂6 4.5692 0.1485 < 0.01

β̂7 4.6773 0.1646 < 0.01

β̂8 4.7935 0.2018 < 0.01

σ̂2 0.3414

α̂ 0.76535

5 Numerical illustrations

We illustrate the performance of the proposed methods with the analysis of two

HIV datasets, previously analyzed by Vaida and Liu (2009), and the analysis of a

simulated example.

5.1 UTI data

The first application is a study of 72 perinatally HIV-infected children (Saitoh et al.,

2008; Vaida and Liu, 2009). The data set is available in the R package lmec. Primar-

ily due to treatment fatigue, unstructured treatment interruptions (UTI) is common

in this population. Suboptimal adherence can lead to ARV resistance and dimin-

ished treatment options in the future. The subjects in the study had taken ARV

therapy for at least 6 months before UTI, and the medication was discontinued

for more than 3 months. The HIV viral load from the closest time points at 0,

1, 3, 6, 9, 12, 18, 24 months after UTI were studied. The number of observa-

tions from baseline (month 0) to month 24 are 71, 62, 58, 57, 43, 34, 24, and 13,

respectively. Out of 362 observations, 26 (7%) observations were below the detec-

tion limits (50 or 400 copies/mL) and were left-censored at these values. Following

Vaida and Liu (2009), we consider a profile LME model with random intercepts
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bi as yij = bi + βj + εij, where yij is the log10 HIV RNA for subject i at time tj,

t1 = 0, t2 = 1, t3 = 3, t4 = 6, t5 = 9, t6 = 12, t7 = 18, t8 = 24. The log10 transfor-

mation of HIV viral load is used to stabilize the variance of the viral load and also

to make the viral load more close to be normally distributed. A summary of these

parameter estimates and their respective p-values are presented in Table 1. These

results conform to those presented in Vaida and Liu (2009). From Table 1, we note

that all the regression parameters are significant at 5% level.

5.1.1 Global influence

In order to identify outlying observations under the fitted model, the index plot of the

Mahalanobis distance di = (ŷi −Xiβ̂)>Σ−1
i (ŷi −Xiβ̂), i = 1, . . . , 72, is displayed

in Figure 1(a). We can see from this figure that observation #42 appears as a

possible outlier. To evaluate the effect on the ML estimates when some observation

is eliminated, we analyze the QD1
i and GD1

i index plots, which are shown in Figures

1(b) and 2(a), respectively. We note from these figures that two cases (#20, #42)

are potentially influential on the parameter estimates. Figures 2(b)-(d) present the

index plots of GD1
i (γ), for γ = β, σ2, α, respectively (see Section 3.1). From these

figures, we see that observation #42 is influential with regard to the parameters β

and σ2, while observation #20 is influential with regard to the parameter α.
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Figure 1: UTI data. (a) Mahalanobis distance and (b) approximate likelihood displace-

ment QD1
i . The influential observations are numbered.
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Figure 2: UTI data. (a) Approximate generalized Cook’s distance GD1
i , (b) GD1

i for

subset β, (c) GD1
i for subset σ2 and (d) GD1

i for subset α. The influential observations

are numbered.

5.1.2 Local influence

Next, we conduct a local influence study on the UTI data, based on M(0) with inter-

est focussing on θ. Here we use the criterion M(0)i > M(0)+3SM(0), i = 1, . . . , 72,

to discriminate whether an observation is influential or not. Figure 3 presents the

index plots of M(0) under the four perturbation schemes described earlier in Section

3.3. From this figure, it is noted that observation #20 appears as influential under

the case weight and scale matrix σ2 perturbation, while observation #42 is more

influential under the perturbation on the scale matrix D. However, no observation

appears to be influential under the response variable perturbation.

In order to assess the impact of the two observations that have been highlighted
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Figure 3: Index plot of M(0) for assessing local influence on θ under (a) case weight

perturbation, (b) perturbation on D, (c) perturbation on σ2 and (d) perturbation on the

response variable for the UTI data. The influential observations are numbered.

as potentially influential on the ML estimates, we refitted the proposed LMEC model

by dropping each one of these cases. Let I1 = {20}, I2 = {42} and I3 = {20, 42}
denotes the sets of observations identified as influential. Table 2 presents the relative

changes (RC) in percentage of these estimates defined by

RCγ̂ =

∣∣∣∣
γ̂ − γ̂[i]

γ̂

∣∣∣∣ ,

where γ = β1, . . . , β8, σ
2, α, and γ̂[i] denotes the ML estimate of γ̂ after the set

Ii, (i = 1, 2, 3) has been removed. Even though some RC values are large, sig-

nificant changes in β are not observed. It is of interest to note from Table 2 the

coherence with the diagnostic plots in Figure 2 (as we would expect). For instance,

the elimination of observation #20 leads to a large change in the RC of α while the
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elimination of observation #42 leads to a large change in the RC of σ2. Moreover,

the elimination of observations #20, #42 leads to a large change in the RC of α and

σ2.

Table 2: RC (in %) for the UTI data.

Dropped RCβ̂1
RCβ̂2

RCβ̂3
RCβ̂4

RCβ̂5
RCβ̂6

RCβ̂7
RCβ̂8

RC
σ̂2 RCα̂

{#20} 1.28 1.13 1.14 1.14 1.07 0.74 0.71 0.75 0.41 19.07

{#42} 0.49 0.44 0.72 1.10 0.29 0.26 0.59 1.04 10.40 0.93

{#20, #42} 0.93 1.69 1.97 2.36 0.89 0.62 0.24 0.16 10.05 18.48

5.2 AIEDRP study

The second AIDS case study is from the AIEDRP program, a large multicenter

observational study of subjects with acute and early HIV infection. We consider

320 untreated individuals with acute HIV infection; for more details on this dataset,

one may refer to Vaida and Liu (2009). Of the 830 recorded observations, 185 (22%)

were above the limit of assay quantification, and so they were considered to be

right-censored. We therefore consider a right-censored version and accommodate

it within our NLME. Following Vaida and Liu (2009), we choose a five-parameter

NLME model (inverted S-shaped curve) as follows:

yij = α1i +
α2

(1 + exp((tij − α3)/α4))
+ α5i(tij − 50) + εij, (19)

where yij is the log10 HIV RNA for subject i at time tij. The parameters α1i and

α2 represent subject-specific (random) setpoints and decrease from the maximum

HIV RNA. In the absence of treatment (following acute infection), the HIV RNA

varies around a set-point which may differ among individuals, and so the setpoint is

chosen to be subject-specific. The location parameter α3 indicates the time point at

which half of the change in HIV RNA is attained, α4 is a scale parameter modeling

the rate of decline, and α5i allows for increasing HIV RNA trajectory after day

50. To force the parameters to be positive, we re-parameterize then as follows:

β1i = log(α1i) = β1 + b1i; βk = log(αk), k = 2, 3, 4, and α5i = β5 + b2i. Table 3

presents the ML estimates for the parameters, together with their corresponding

standard errors, calculated from (8). From Table 3, we note that all the regression

parameters are significant at 5% level, except the parameter β2.
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Table 3: Parameter estimates of the NLMEC model and p-values for the AIEDRP

data. SE denotes the standard error.

Parameter Estimate SE p-value

β̂1 1.6096 0.0137 <0.01

β̂2 0.1422 0.0949 0.1340

β̂3 3.5262 0.0237 <0.01

β̂4 1.0559 0.2677 0.01

β̂5 -0.0035 0.0014 0.01

σ̂2 0.2652

α̂11 0.0177

α̂12 0.0002

α̂22 0.00004

5.2.1 Global influence

In order to identify outlying observations under the fitted model, the index plot

of the Mahalanobis distance is displayed in Figure 4(a). We can see from this

figure that observations #9, #166, #230 and #259 all appear as possible outliers.

As in the previous application, to evaluate the effect on the ML estimates when

some observation is eliminated, we analyze the case deletion measures QD1
i and

GD1
i , which are shown in Figures 4(b) and 5(a), respectively. We note from these

figures that cases #9, #166, #195, #230 and #259 are all potentially influential with

regard to the full parameter estimate θ. On the other hand, from figures 5(b)-(d),

where we present the index plots of GD1
i (γ), for γ = β, σ2, α, respectively, we

can see that observations #166, #195 and #230 are influential with regard to the

regression parameters β, while only observation #259 is influential with regard to

the parameter α.

5.2.2 Local influence

Next, we conduct a local influence study for the AIEDRP data, based on M(0) with

interest focussing on θ. Figure 6 presents the index plots of M(0) under the four

perturbation schemes discussed earlier in Section 3.3. From this figure, it is noted

that observations #9, #166, #195, #230 and #259 all appear as influential under

the case weight and scale- σ2 perturbations, while only observations #198 and #259

are more influential under the perturbation on the scale matrix D. It is noted also

that different observations #174, #175, #176 and #259 appear out as influential

under the response variable perturbation. It is important to emphasize here that, as
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Figure 4: AIEDRP data. (a) Mahalanobis distance and (b) approximate likelihood dis-

placement QD1
i . The influential observations are numbered.

in the uncensored case, the influence measure GD1
i considered here is closely related

to the local influence measure based on the case weight perturbation.

5.3 Simulation Study

Results from analysis of a simulated example are presented here to illustrate the

performance of the proposed diagnostic measures. We consider a logistic model

similar to the one in (19), with random setpoints α1i and random decline rates: α4i,

as follows

yij = α1i +
α2

(1 + exp((tij − α3)/α4i))
+ εij,

where i = 1, . . . , 100, j = 1, . . . , 10, α1i = exp(β1 + b1i), βk = log(αk), k = 2, 3,

α4i = exp(β4 + b2i), (b1i, b2i)
ind.∼ N2 (0,D), and εij

ind.∼ Nni
(0, σ2

eIni
). We set

β = (1.6094, 0.6931, 3.8067, 2.3026)>, σ2 = 0.55, and D with elements D11 = 0.0025,

D12 = −0.001 and D22 = 0.0100. In addition, twenty percent (20%) of all observa-

tions were censored.

After generating the data yij (i = 1, . . . , 100, j = 1, . . . , 10), we perturbed the

response variable of individual #85 as follows: yi2 ← yi2 + 0.1
√

(y∗>y∗), where

y∗ = (y12, . . . , y100,2)
>. By using the approach described earlier in Section 3, we

compute the case deletion measure QD1
i and local influence measures based on the

response and case weight perturbations. As expected, we observe from Figure 7

the influence of the observation #85. This reveals that the influence measures have
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Figure 5: AIEDRP Study data. (a) Approximate generalized Cook’s distance GD1
i , (b)

GD1
i for subset β, (c) GD1

i for subset σ2 and (d) GD1
i for subset α. The influential

observations are numbered.

detected what they are supposed to detect, but at the same time suggest and give

no false influential cases.

6 Conclusions

This article provides a new insight into the classical diagnostics methods for cen-

sored linear and nonlinear mixed effects models, typically used for analyzing cen-

sored HIV viral load outcomes, and also presents an useful expectation conditional

maximization (EMC) algorithm, which enable the development of diagnostic influ-

ence measures. Explicit expressions are obtained for the Hessian matrix Q̈ and for

the matrix ∆ under different perturbation schemes. For NLMEC, the analysis is
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Figure 6: AIEDRP data. Index plot of M(0) for assessing local influence on θ under

(a) case weight perturbation, (b) perturbation on D, (c) perturbation on σ2 and (d)

perturbation on the response variable. The influential observations are numbered.

mathematically (and computationally) feasible through a linearization procedure.

The proposed methodology has been applied to two recent (left and right-censored)

AIDS studies, which is freely downloadable from R. Our findings about the influen-

tial observations for these two datasets agree with those in Lachos et al. (2011) from

a Bayesian perspective. The models can be fitted using standard software packages

like R, and the code is available from the authors upon request.

The proposed methods can be extended to interval-censored longitudinal data,

following the work of Sinha et al. (1999). On the other hand, the models devel-

oped here do not consider skewness in the responses because typically in HIV-AIDS

studies, the responses (censored viral load) is log-transformed to achieve a ‘close to
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Figure 7: Simulated data set. (a) Approximate generalized Cook’s distance GD1
i , (b)

case weight perturbation and (c) perturbation on the response variable. The influential

observations are numbered.

normality’ shape. However, features of non-normality, such as skewness and thick-

tails, need to be incorporated into the proposed methodology to come up with a

more general framework for censored mixed models. This issue is currently under

investigation. Incorporating measurement error models (Wu, 2010) within this ro-

bust analysis framework for the HIV viral load covariates (viz., CD4 cell counts) will

also be of great interest, and we plan to take this on as our future research project.
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