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Abstract

This article deduces a model, stated as an integral equation, for a nonlinear elas-

tic isotropic material undergoing a radially symmetric deformation. Such a model is

useful in the study of an explosion, or a spherically symmetric impact. Determining

the effects of nonlinear wave propagation, in relation to linear propagation, can be

truly challenging in 3D dimensions. By reducing the system to a 1D radial partial

integral equation numerical simulations are more accurate and manageable. Also,

understanding the radially symmetric model sheds light on the qualitative behaviour

of the full 3D nonlinear system. An emphasis is given on an intuitive understanding

of the dynamics. After deducing the general integral model we present discontinuous

jump conditions, and then discuss and substitute the Mooney-Rivlin approximation

for the material. We point out how the model for the linearised material can approx-

imate a Mooney-Rivlin material, and subsequentially present the analytical solution

to some important cases of the linearised material. The appendix attempts to be a

rather complete exposition which departs from first principles, where the theoretical

basis follows the axiomatic treatment of elasticity and the integral formulation of

balance principles.

Summary

Throughout this article, we emphasize a qualitative understanding of stretch and the

internal force. Technically difficult passages, such as giving a functional form to the

1This work was kindly supported by the Brazilian National Council for Scientific and Technological

Development (CNPq), arturgower@gmail.com .
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Cauchy stress tensor are left to the Appendix, where we also briefly state the assumptions

that are particular to elasticity in Appendix B, such as locality of the internal forces,

and history independence. For the whole story on elastic constitutive theory see the

books [5],[4] or [1].

To begin with, we introduce how to describe the motion of a body. For each time t,

a body is a set of points S ⊂ R3; for each point x ∈ S we define its initial position, at

t = 0, as X ∈ R3. The set of all these initial positions is defined as B ⊂ R3. We call B

the reference configuration which we will adopt as being the equilibrium configuration,

that is, if at any given time, every x ∈ S is at its initial position X, with velocity ẋ = 0,

then the body will remain still until disturbed by an outside force. We call S the current

configuration.

We can relate these two sets by means of a map φ : B → S which tracks each particle

X ∈ B to its current position at time t: φ(X, t) = x ∈ S, where we assume that φ is

orientation preserving and invertible. In solid mechanics, when large deformations are

present, it is convenient to use the equilibrium position X as a parameter for the state

variables, rather than x. For example, the value ρ(x, t) is the density of the material

at some point x on the body, using φ we can locate x’s initial equilibrium position:

X = φ−1(x, t). Then we define the function ρRef such that ρRef (X, t) = ρ(φ(X, t), t). We

say that ρRef is the density described in the material system, using points X ∈ B, while

ρ is the density described in the spatial system, using points x ∈ S.

The focus of our attention is a map φr : R2 → R, such that if R is the radial equilibrium

position of a particle, then φr(R, t) is the position of the particle at time t. Because the

initial conditions are radially symmetric, and the material is homogeneous and isotropic,

we know that every particle, with equilibrium position (R,Θ,Φ), will be trapped in the

line that joins it and the origin. In other words, the current position of the particle at

time t is

φ(R,Θ,Φ, t) = (φr(R, t),Θ,Φ) = (r, θ, ϕ), (1)

where (r, θ, ϕ) is the current position, at time t, of a particle with equilibrium position

(R,Θ,Φ).
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We then deduce a partial integral equation (PIE) (see equation (7)) that describes the

evolution of r, after which we return to a qualitative understanding of how the internal

forces are represented in the PIE.

The next natural step is to define a specific material. A material’s behaviour is charac-

terized by the internal free-energy per unit mass function Ψ : R4 → R. For a homogeneous

isotropic material Ψ depends only on the eigenvalues of the Cauchy-Green stress tensor2 C

and the temperature Θ. We then conclude that in our coordinate system Ψ depends only

on (∂Rr)
2,(r/R)2 and Θ, where ∂Rr is the partial derivative of r in relation to R. Notice

that due to large displacement, we could not have approximated r/R ≈ 1, therefore it was

necessary to use the material description, i.e. the coordinates (R, t). In isotropic linear

theory, for the purely elastic case, we would need only two coefficients to define the mate-

rial, in nonlinear theory we essentially need the whole function Ψ. It is important to note

that the eigenvalues of C are coordinate independent, therefore we can use experimental

data from any coordinate system to determine the free-energy function Ψ. In euclidean

coordinates these eigenvalues are {(∂Xφx)2, (∂Y φ
y)2, (∂Zφ

z)2}, this association assists in

the interpretation of what kind of stretch and contraction the body is undergoing in any

coordinate system.

After deducing the general model, we suggest an approximation for Ψ which is valid for

moderately nonlinear materials. With this material in mind, we argue that a model rep-

resenting a linearised material is useful, moreover, we present solutions of some important

cases of the linearised material.

Modelling with Radial Symmetry

Due to the radial symmetry of the deformation, we can reduce the problem to one di-

mension by using spherical coordinates, which is related to Euclidean coordinates by the

following

(x, y, z) = r(cos θ sinϕ, sin θ sinϕ, cosϕ), (2)

2a tensor which represents locally the stretch of the material and is defined in equation (B-5)
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similarily for the reference coordinates,

(X, Y, Z) = R(cos Θ sin Φ, sin Θ sin Φ, cos Φ). (3)

Based on the symmetry of the problem, that is radially symmetric initial conditions in an

isotropic material, we know that the motion φ will be radially symmetric,

φ(X, t) = (φr(R, t), φθ(Θ), φϕ(Φ)) = (r,Θ,Φ). (4)

The internal free-energy per unit mass function Ψ, also called internal potential energy,

depends on the principle stretches, to be more precise: let F = Dφ be the spatial differ-

ential3 of the map φ, and C = FTF. The principle stretches are respectively the square

root of each of the eigenvalues λi’s of C, which we call the Cauchy-Green stress tensor.

In our case, λ1 = (∂r/∂R)2, λ2 = (r/R)2 and λ3 = (r/R)2.

A qualitative understanding of the dynamics in the spherical coordinate systems will be

valuable. A good starting point for this understanding is to examine how the deformation

of a finite volume element in spherical coordinates changes its internal free-energy. To

simplify the matter, we shall consider the deformation in the direction of the base vectors

er and eϕ; the displacement in the eθ is analogous to that of eϕ.

Note that any volume element originally in-between the angles ϕ1 and ϕ2, will remain

trapped on the rails defined by ϕ = ϕ1 and ϕ = ϕ2, see Figure 1. Now suppose some time

has passed and the volume element originally at R1 has been shifted upwards to r(R1, t)

while maintaining ∆r = ∆R, thus λ2 has increased while λ1 has remained fixed, see

Figure 1a. To accomplish this, the volume has been stretched in the eϕ and eθ direction

which has increased the internal free-energy.

Now we maintain λ2 = r2/R2 fixed, i.e. r(R1, t) = R1 for every t, and vary λ1 = (∂Rr)
2,

which is exemplified by Figure 1b), where points originally close to R1, after time t,

have been mapped further apart, hence ∆r/∆R ≈ ∂r/∂R > 1 at R1, as a result the

internal energy increased4. Also any combination of these displacements can occur, such

3More explicitly F aA = ∂φa

∂XA and for a vector V ∈ R3, F ·V = eaF
a
AV

A.
4Figure 1b appears to be stretched in the eϕ direction at one point, and compressed at another. This

occurs because we are dealing with a finite volume, rather than the limit as ∆R→ 0.
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as Figure 1c, where the volume element has been compressed in both the er direction and

the eϕ direction.

r(R1, t)
∆r

R1
∆R

ϕ

(a)

r

ϕ1ϕ2

r
∆r

R1
∆R

ϕ

(c)

r

ϕ1ϕ2

∆r
R1

∆R

ϕ

(b)

r

ϕ1ϕ2

Figure 1: Representation of a finite volume element initially at its equilibrium position

(dashed), which then at a later time occupies three distinct deformed states.

From this basic investigation we can already envision the qualitative behaviour of the

system. A volume element will attain equilibrium in the radial direction er and the angle

direction eϕ most likely at different times. While ∂r/∂R oscillates around its equilibrium

value 1, so will r/R oscillate around 1, where both their cycles will manifest as a response

of the internal stress in the radial direction. This change in the stress will determine the

motion. In plain English, it is as if there are two modes of oscillation superimposed onto

each other. However, they can not be separated because the solution is not a simple linear

combinations of the modes. For instance, a compression in the eϕ direction will effect the

difficulty of compressing the material in the er direction.

Knowing what qualitative behaviour to expect of the model is of vital importance when

designing numerical approximations, on the grounds that we can use this understanding

to rule out non-physical behaviour, such as eliminating artificial oscillations.
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Next we relate the internal forces embodied by the Cauchy stress tensor σ, a second-

order tensor of type (0, 2), to Ψ using elastic constitutive hypothesis, balance principles

and other fundamentals of continuum mechanics (see Appendix B),

σrr = 2ρRef
∂Ψ

∂λ1

∂r

∂R

R2

r2
,

σθθ = 2ρRef
∂Ψ

∂λ2

(
∂r

∂R

)−1
1

sin2 ϕr2
, (5)

σϕϕ = 2ρRef
∂Ψ

∂λ2

(
∂r

∂R

)−1
1

r2
.

Note that only σθθ depends on one of the angle coordinates. This is to be expected,

because although the motion is symmetric in the êθ direction, the norm of the base vector

eθ is r sinϕ. The article [2] by Jerrold Marsden and others, demonstrates that the Cauchy

stress tensor may be taken to be a covector-valued differential two-form; The balance laws

and other fundamental laws of continuum mechanics may be neatly rewritten in terms of

this geometric stress.

In the next section, we use σ and balance of momentum to arrive at the general model

for any elastic isotropic material. With the general model in hand, we will return to a

qualitative understanding of the internal stress.

The Model

Returning to the equation of motion (4), and by deriving in time we conclude that vθ =

vϕ = 0, where v = ∂tφ. To allow the possibility of discontinuities, we impose the integral

formulation of balance of momentum (A-19). To do so, we must first choose a constant

direction: ero = er(θo, ϕo), in which θo and ϕo are constants. Then for any nice5 open set

Ut ⊂ S, balance of momentum becomes,

d

dt

∫
Ut
ρ < v, ero > dv =

∫
∂Ut

<< σ, n̂ >, ero > da =⇒

d

dt

∫
Ut
ρvr < er, ero > dv =

∫
∂Ut

σab < eb, n̂ >< ea, ero > da,

5By nice we mean the set has a piecewise smooth boundary.
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where for the last term we sum over the indexes a and b, dv and da are the volume and

area elements and n̂ is the outward unit normal. These equations state that the change

in momentum is due to the internal forces exerted by the material outside of Ut, acting

on the boundary ∂Ut.

The boundary ∂Ut can be divided into six regions, which are the six sides of a spherical

volume element. These regions are defined by the surfaces θ = θo + δθ and θ = θo − δθ

with respectively the unit normals êθ and −êθ , ϕ = ϕo ± δϕ with the unit normals ±êϕ,

r = r2 and r = r1 with respectively the unit normals er and −er. For each of these pairs

of surfaces, we will we will calculate the integral, and then expand θ around θo and ϕ

around ϕo. First we sum the surface integrals defined by θ = θo + δθ and θ = θo − δθ,∫
<< σ, n̂ >,ero > rdϕdr =

∫
±σθθ < eθ, ero > r2 sin(ϕ)dϕdr

=

∫
σθθ sin2(ϕ)r3dr

∫ ϕo+δϕo

ϕo−δϕo

< ±êθ, ero > dϕ

= −4δϕ sin(δθ) sin(ϕo)

∫
σθθ sin2(ϕo)r

3dr.

Summing the surface integrals defined by ϕ = ϕo + δϕ and ϕ = ϕo − δϕ, gives us∫
σϕϕ < eϕ, ero > sin(ϕ)rdθdr =

∫
σϕϕr3dr

∫
< ±êϕ, ero > sin(ϕ)dθ

= sin(2δϕ)((−δθ − sin(δθ)) sin(ϕo) + (sin(δθ)− δθ) sin(3ϕo))

∫
σϕϕr3dr

= −4δθδϕ sin(ϕo)

∫
σϕϕr3dr +O(δθδϕ).

Finally, summing the surface integrals defined by r = r2 and r = r1, results in∫
σrrr2 < er, ero > sin(ϕ)dθdϕ = 4δθδϕ sin(ϕo)σ

rrr2
∣∣∣r2
r1

+O(δθδϕ).

Balance of momentum is valid for every value of δθ and δϕ. Thus we can equate the terms

of the same order and reduce balance of momentum to,

d

dt

∫ r2

r1

ρvr < er, ero > dr = σrrr2
∣∣∣r2
r1
−
∫ r2

r1

(σθθ sin2 ϕ+ σϕϕ)r3dr. (6)

If we assume that ρ, vr, r are differentiable and r is regular we can use constitutive

hypothesis for the stress tensor (5). When discontinuities appear in the solution we expect
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them to be discrete, therefore if we assume that the state variables are differentiable and

use constitutive theory, the value of the integrals above will not be altered. However, more

investigation into the discontinuous jump will be necessary to actually track what happens

at the discontinuiy, this investigation is partly carried out in the section “Discontinuity

Conditions”. Also, taking into account that r is monotonic and differentiable in R by

parts, we can change variables and integrate in R,∫ r2

r1

ρvrr2dr =

∫ R2

R1

ρvrr2 ∂r

∂R
dR =

∫ R2

R1

ρRefv
rR2dR,

where

ρRef (R, t) = ρ(r, t)
∂r

∂R

r2

R2
.

Substituting equations (5) into PIE (6), together with the above variable change, we arrive

at
d

dt

∫ R2

R1

∂r

∂t
R2dR = 2

∂Ψ

∂λ1

∂r

∂R
R2
∣∣∣R2

R1

− 4

∫ R2

R1

∂Ψ

∂λ2

r dR. (7)

Now we shall investigate qualitatively the origin of these terms. To facilitate com-

pression, we shall exemplify the deformation and the forces on a finite spherical volume

element, enclosed by the surfaces defined by R = R1, R = R2, ϕ = ϕ1, ϕ = ϕ2, θ = θ1 and

θ = θ2 where, to simplify the analysis, we restrict our attention to the coordinates ϕ and

r.

The PIE (7) states that the rate of change of momentum, in time, of the material

between the points r(R1, t) and r(R2, t) is due to two phenomenons. The first is due to

the deformation of the material in the radial direction, which manifests as a radial force

on the surfaces defined by R = R1 and R = R2, expressed by the term

2
∂Ψ

∂λ1

∂r

∂R
R2
∣∣∣R2

R1

. (8)

The term ∂Rr is how much the material is locally stretched in the radial direction, and

∂λ1Ψ is, in sense, how hard it is to further stretch the material in the radial direction,

remembering that λ1 = (∂Rr)
2. The term R2 is a geometric factor, brought about because

the above expression represents the total force applied to the surface of a sphere. To
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Fϕ(ϕ1, t)Fϕ(ϕ2, t)
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ϕ
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ϕ
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r
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Figure 2: Figure (a) represents the difference of the radial forces Fr(R1, t) and Fr(R2, t) caused by

the stretch in the radial direction er. Figure (b) represents a state where all the surface forces cancel;

Fϕ(ϕ1, t) and Fϕ(ϕ2, t) are the internal forces exerted on the surfaces defined by ϕ = ϕ1 and ϕ = ϕ2.

summarize, the term (8) contributes to the rate of change in radial momentum when

there is a difference between the force applied on the surfaces R = R1 and R = R2, see

Figure 2a.

The second contribution, in PIE (7), to the rate of change in momentum originates

from the forces in the eθ and eϕ directions. See the equilibrium state of this volume

element represented in Figure 2b, where the sum of all the forces cancel. The integral on

the right hand side of PIE (7) represents the radial projection of the force Fϕ(ϕ1, t) +

Fϕ(ϕ2, t). Notice that this force always acts to pull the volume element towards the origin,

while the force F (R2, t)+F (R1, t) tends to push the volume element away from the origin.
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Discontinuity Conditions

We will assume that the material will not fracture, that no rip appears, hence φr = r

is at least continuous. With this in mind, we apply the results for discontinuous jump

conditions from Appendix A, which assumes the existence of a moving surface Σ(t) ⊂ B,

on which the state variables are discontinuous, but elsewhere are differentiable. We will

imploy the following notation: the vector W(Y, t) is the material velocity of Σ(t) at Y ∈

Σ(t), let f be some function defined on B then the brackets [f ] denotes the discontinuous

jump in value of f across Σ(t), in other words [f ] = f+ − f− where f+ is the limiting

value of f approaching Σ(t) from the “forward moving” side, and analogously for f− and

ωr =
∂r

∂R
WR.

Each balance principle imposes a different discontinuous jump condition. For conservation

of mass, using equations (A-17) and (A-18):

[ρωr] = 0 =⇒ ρ−ωr− = ρ+ωr+

=⇒ ρRef

(
∂r−

∂R

)−1 ( r
R

)2 ∂r−

∂R
WR = ρRef

(
∂r+

∂R

)−1 ( r
R

)2 ∂r+

∂R
WR,

which is satisfied a priori because of the continuity of φr. For Balance of Momentum,

using equation (A-20):

ρ−ωr−[vr] = −[σrr] =⇒ WN [V r] = −2

[
∂Ψ

∂λ1

∂r

∂R

]
.

For Conservation of Energy, using equation (A-27):

[ρe] = −1

2
(σrr+ + σrr−)[vr],

if we assume that the temperature Θ is constant, and that ∂Ψ/∂Θ = 0, then entropy η

is constant throughout the material, and the discontinuous jump condition becomes

[ρψ] = −1

2
(σrr+ + σrr−)[vr] =⇒

[(
∂r

∂R

)−1

Ψ

]
= −(

∂Ψ+

∂λ1

∂r+

∂R
+
∂Ψ−

∂λ1

∂r−

∂R
)[V r].
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For the Entropy Production Inequality, using equation (A-27):

[ρηωr] ≤ −[
qr

Θ
].

If we consider that temperature does not change, then this equation becomes

η+ ≤ η−,

which states that the entropy on the side where the surface has already passed through,

is larger than the entropy of the other side.

This set of basic jump conditions are not enough to define both the velocity of the

shock, or in our case a kink, and how r+ and r− change in time and space. More assump-

tions need to be made to uniquely define the shock in motion.

Moderate Nonlinearity

To specify the material we must choose how the internal energy explicitly depends on the

eigenvalues of the Cauchy-Green tensor λ1 = (∂Rr)
2 and λ2 = (r/R)2, see equation (B-5).

For our purpose, we want a model for Ψ which is as simple as possible, but still

captures prototypically nonlinear phenomena and can be fitted to available experimental

data. One most convincing choice would be to use Spline interpolation, however data is

often to scarce for this. A more manageable choice would be to approximate Ψ close to

the equilibrium point (λ1, λ2, λ2) = (1, 1, 1), such as,

Ψ(λ1, λ2, λ2) = (9)

Ψ +
∂Ψ

∂λ1

(λ1 − 1) +
∂Ψ

∂λ2

(λ2 − 1) +
∂Ψ

∂λ3

(λ3 − 1) +
∂2Ψ

∂λ1∂λ1

(λ1 − 1)2 + 2
∂2Ψ

∂λ1∂λ2

(λ1 − 1)(λ2 − 1)

+ 2
∂2Ψ

∂λ1∂λ3

(λ1 − 1)(λ3 − 1) + 2
∂2Ψ

∂λ2∂λ3

(λ2 − 1)(λ3 − 1) +
∂2Ψ

∂λ3∂λ3

(λ3 − 1)2 +
∂2Ψ

∂λ2∂λ2

(λ2 − 1)2

+O(λ1 − 1)2 +O(λ2 − 1)2 +O(λ3 − 1)2,

when left unspecified Ψ is evaluated at (1, 1, 1). The value for Ψ(1, 1, 1) is arbitrary,

since only the rate of change of Ψ in relation to the stretch influences the dynamics,

so we adopt Ψ(1, 1, 1) = 0. To clean up the approximation, we remind ourselves of
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some of the inherit symmetries of isotropic materials: Ψ(γ, 1, 1) = Ψ(1, γ, 1) = Ψ(1, 1, γ)

and Ψ(γ, γ, 1) = Ψ(1, γ, γ) = Ψ(γ, 1, γ) for every γ > 0. Therefore we can rename the

following,

η =
∂Ψ

∂λ1

=
∂Ψ

∂λ2

=
∂Ψ

∂λ3

, µ =
∂2Ψ

∂λ1∂λ1

=
∂2Ψ

∂λ2∂λ2

=
∂2Ψ

∂λ3∂λ3

,

ν = 2
∂2Ψ

∂λ1∂λ2

= 2
∂2Ψ

∂λ1∂λ3

= 2
∂2Ψ

∂λ2∂λ3

.

Substituting these equations in equation (9),

Ψ(λ1, λ2, λ2) =η(λ1 + λ2 + λ3 − 3) + µ(λ1 − 1)2 + µ(λ3 − 1)2 + µ(λ2 − 1)2

+ ν(λ1 − 1)(λ2 − 1) + ν(λ1 − 1)(λ3 − 1) + ν(λ2 − 1)(λ3 − 1)

+O(λ1 − 1)2 +O(λ2 − 1)2 +O(λ3 − 1)2 =⇒

Ψ(λ1, λ2, λ3) =κ(λ1 + λ2 + λ3 − 3) + µ(λ2
1 + λ2

2 + λ2
3 − 3) + ν(λ1λ2 + λ1λ3 + λ2λ3 − 3)

+O(λ1 − 1)2 +O(λ2 − 1)2 +O(λ3 − 1)2,

where κ = (η − 2µ − 2ν). To interpret this approximations recall that in Euclidean

coordinates λ1 = (∂Xφ
x)2, λ2 = (∂Y φ

y)2 and λ3 = (∂Zφ
z)2. Hence only the term mul-

tiplying ν represents how the material responds when deformed simultaneously in two

directions, such as ex and ey. An approximation which is simpler, captures this simulta-

neous deformation response, can be fitted to abundant available data and has had success

in representing materials in a prototypical manner, is called the Mooney-Rivlin material,

where

Ψ(λ1, λ2, λ3) ≈ κ(λ1 + λ2 + λ3 − 3) + ν(λ1λ2 + λ1λ3 + λ2λ3 − 3),

where κ and ν must both be positive to garantee that Ψ increases together with λ1, λ2

and λ3. For each material, the constants κ and ν are determined through experimental

data. For radial symmetry λ2 = λ3, thus for this type of material

∂λ1Ψ = κ+ 2νλ2 and ∂λ2Ψ = κ+ ν(λ1 + λ2),

substituting these equations in to our general model (7), we conclude that

d

dt

∫ R2

R1

∂r

∂t
R2dR = 2(κ+ 2ν

r2

R2
)
∂r

∂R
R2
∣∣∣R2

R1

− 4

∫ R2

R1

(κ+ 2ν(
∂r

∂R
+
r2

R2
))r dR. (10)
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Assume for time being that the following initial conditions
◦
φ (R) = φ(R, 0). Then

when R >> ||
◦
φ ||∞ the function ∂λ1Ψ can be approximated by a constant. In this region

the model locally behaves qualitatively like the model of a linearised material, i.e. with a

linear stress to strain relation, this is specifically true for the First Piola-Kirchhoff stress

tensor. Also the model linearised around the equilibrium state represents a physically

viable material, hence its solution will exhibit “reflection” from R = 0. What this means

exactly will be clarified in the next section, where we linearise the material and present

the analytical solution for some important cases.

The Linear Model

First we write the localized form of PIE (10), to do so, we assume that ∂tr and ∂Rr are

differentiable. Then, in conservation form

∂2r

∂t2
R2 − d

dR

(
V 2 ∂r

∂R
R2

)
+ 2W 2r = 0, (11)

where

V 2 = 2
∂Ψ

∂λ1

, and W 2 = 2
∂Ψ

∂λ2

,

this renaming also serves to suggest that these quantities represent velocities, in some

sense. We will consider that these velocities are constants, and expand equation (11)

∂2r

∂t2
= V 2 ∂

2r

∂R2
+

2V 2

R

∂r

∂R
− 2W 2 r

R2
=⇒ ∂2(Rr)

∂t2
= V 2∂

2(Rr)

∂R2
− 2W 2Rr

R2
,

or,
∂2u

∂t2
= V 2 ∂

2u

∂R2
− 2W 2 u

R2
, (12)

where u = Rr. We can solve the above system for certain cases, but first, an easy task is

to find the stationary configurations, where

∂2u

∂R2
=

2W 2

V 2

u

R2
, with u(0, t) = 0 and ∂Ru(0, t) = r(0, t) = 0,

then the stationary solution is

u(R, t) = R1/2+
√

1+8W 2/V 2/2. (13)
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For the nonlinear case we know that rest can only be achieved for r(R, t) = R or

u(R, t) = R2. Assuming uniqueness for the stationay solution, for the nonlinear model,

is similar to assuming that the internal free-energy Ψ is a convex function. It is not

a necessary assumption for constitutive elastic thoery, however it is comunly seen in

experiments conducted in an approximate elastic regime.

Returning to our previous discussion, we conclude from the stable configurations (13)

that the only linear model which oscillates around the equilibrium of the nonlinear model

is such that V = W . This in part is the reason why only this linear model exhibits

“reflection” from the origin.

To solve the PDE (11) we convert it into an ODE by applying the Fourier Transform

in time on both sides of the equation. then using a series substituition, and after some

technical details related to the PDE’s dependence on the initial condition, we where able

to solve analytically the cases where

W 2

V 2
=

(2n+ 1)2 − 1

8
,

for n ∈ N. For the case V = W , we have that

u(R, t) =
1

2
u(|R− V t|, 0) +

1

2
u(R + V t, 0) +

∫ R+V t

|R−V t|

−V t
2RP

u(P, 0) dP

+

∫ R+V t

|R−V t|

(P 2 +R2 − V 2t2)

4V RP

∂u

∂t
(P, 0) dP. (14)

Through symmetry the origin of the spatial map R = 0 should remain still, i.e. r(0, t) = 0,

spherically symmetric forces do not cause translation. Let us now check this property, i.e.

does the limit limR→0 r(R, t) = 0?

Theorem 1 The map r governed by the equation (14) satisfies the following limit,

lim
R→0

r(R, t) = 0.

Proof: For any given t choose δ(t) > 0 small enough so that

|R| < δ =⇒ |R− V t| = V t−R,

14



then there exists R > 0 where |R− V t| < δ such that

−V t
2R

∫ R+V t

|R−V t|

1

P
u(P, 0) dP =

−V t
2R

u(R, 0)

∫ R+V t

V t−R

dP

P
=
−V t
2R

u(R, 0) ln

(
V t+R

V t−R

)
,

rewriting the function ln as a second order truncated taylor series implies that,

−V t
2R

∫ R+V t

|R−V t|

1

P
u(P, 0) =

−V t
2R

u(R, 0)(
2R

V t
+O(R3))

= −u(R, 0)(1 +O(R2)) = −u(V t, 0) +O(R).

Upon taking the limit δ → 0 which implies that R → 0, the above term will cancel with

the terms
1

2
u(V t−R, 0) +

1

2
u(R + V t, 0) = u(V t, 0) +O(R2).

The remaining term tends to zero faster than R, where we repeat the argument that there

exists R2 such that∫ R+V t

|R−V t|

(P 2 +R2 − V 2t2)

4V RP

∂u(P, 0)

∂t
dP

=
∂u(R2, 0)

∂t

∫ R+V t

|R−V t|

(P 2 +R2 − V 2t2)

4V RP
dP

=
1

4V tR

∂u(R2, 0)

∂t

(
2V tR− (R2 − V 2t2)

(
−2R

V t
+O(R2)

))
=
R2

2V t

∂u(R2, 0)

∂t
+O(R2),

therefore limR→0 r(R, t) = limR→0 u(R, t)/R = 0. �

Theoretically, we can now impose the boundary condition u(0, t) = 0 and the solution

will continue monotonic and continuous, a seemingly trivial imposition for the linear model

but vital for the numerical simulation of the nonlinear model. Below we show qualitatively

this “reflection” from the origin for the initial data, u(R, 0) = R2 + R2e−10(R−0.5)2 , and

V = 2. To facilitate, we plot u−R2, since u oscillates around R2, see Figure (3).

Repeating the same process for the case n = 2 and W/V =
√

7/2, which will not

15
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Figure 3: Reflection from origin.

exhibit reflection from the spatial origin6. The solution is

u2(R, t) =
1

2
u(|R− V t|, 0) +

1

2
u(R + V t, 0)

+

∫ R+V t

|R−V t|

(3V t(V 2t2 − P 2 −R2))

4P 2R2
u(P, 0) dP

+

∫ R+V t

|R−V t|

(
3P 2 + 2 (R2 − 3V 2t2)

16V R2
+

3(R2 − V 2t2)2

16V P 2R2

)
∂u(P, 0)

∂t
dP.

The solution to the limiting case n = 0 and W/V = 0 is well known,

u0(R, t) =
1

2
u(|R− V t|, 0) +

1

2
u(R + V t, 0) +

1

2V

∫ R+V t

|R−V t|

∂u(P, 0)

∂t
dP.

The comun structure of the solutions of these case do suggest a base of functions that

we could use to approximate the general linear solution. Also, physically, solutions for

intermediate values of W/V should behave similarly, numerical simulations based on the

series solution in the frequency domain confirm this.

6There can only be reflection if the material undulates around the state of rest V = W , ergo, reflection

does not occur for the model linearised around a state that is not in equilibrum.
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Future Research

The next step is to numerically simulate the model (10), to do so, we change to a co-

ordinate system which follows the domain of dependency. Devising a numerical scheme

appropriately in this coordinate system not only guarantees extracting information from

the correct domain, but also attempts to capture the way in which information is spread

in the domain of dependence. Physical characteristics such as being TVD, total variation

diminishing, and obeying the discontinuous jump conditions are taken into account. The

model behaves much like the linearised model far from the origin. Close to the origin

difficulties arise, and at the moment we are working on a solution. Below are some fig-

ures that shows wave propagation far from the origin for several materials. The colour

represents the value r −R.
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Appendices

A Appendix

Coordinate Independent Balance Principles

This section presents the basic dynamical equations, in the form of balance laws, for

continuum mechanics. All of which originate from an integral equation in the spatial
18



picture7 and are then translated to the material picture. These laws are used to give

functional form to stress tensor, and to acquire the discontinuous jump conditions.

Transport Theorem

All classical balance laws involve equating an extensive quantity8 in any domain with a

flux through the boundary, to do so, we will need the theorems below.

Theorem 2 (Transport Theorem) Let f(x, t) be a given C1 scalar function of time t

and position x ∈ W(t) ⊂ S, where W(t) is a moving open set. Suppose that ∂W(t) is

moving with velocity w(x, t) at x ∈ W(t). Then,

d

dt

∫
W(t)

fdv =

∫
W(t)

∂f

∂t
dv +

∫
∂W(t)

fwnda (A-1)

where wn is the normal outward component of the velocity field w on ∂W(t).

Proof: Using appendix C, this can be restated as

d

dt

∫
W(t)

fdv =

∫
W(t)

df

dt
+ f

(
dv

dxm

)m
dv,

then by extending w to a vector field from which we can define the flow9 ψ(W0, t) =W(t),

i.e. w(x, t) = ψ̇t ◦ ψ−t(x), we can apply the results from appendix C.

Theorem 3 (Discontinuous Transport Theorem) Let f(x, t) be given. Suppose f(x, t)

and φ(X, t) have a jump discontinuity across a surface10 σ(t) ⊂ S, but both are C1 and φ(t)

is regular elsewhere. Let us track this surface in the material system: φ(Σ(t), t) = σ(t),

where Σ(t) ⊂ B possible varies in time. Assume that Lvf and ∂f/∂t are integrable on

φ(U , t). Then for a nice open set U ⊂ B,

d

dt

∫
φ(U ,t)

fdv =

∫
φ(U ,t)

∂f

∂t
dv +

∫
∂φ(U ,t)

f vnda+

∫
φ(U ,t)∩φ(Σ(t),t)

[f(vn + ωn)]da (A-2)

7Using x ∈ S and t as the parameters for the state variables.
8A quantity directly proportional to the system size or the amount of material in the system.
9To define the flow uniquely it is sufficient that w(x, t) be Lipschitz in x.

10Which divides φt(U) into two pieces.

19



the brackets [∗] denote the discontinuous jump in value across σ(t). If one of the sides of

σ(t) is the boundary of the material (such a boundary can appear after a rip) the value

f is to be considered zero on this side. Also, vn is the normal component of v, and ω is

defined for every Y ∈ Σ(t) as

ω(x, t) =
∂φ(Y, t)

∂XA
WA(Y, t),

where W(Y, t) is the material velocity of Σ(t) at Y ∈ Σ(t).

Proof: Divide Ut = φ(U , t) = U+
t ∪U−t , where U+

t is on the ”forward moving” side of σ(t),

and let ∂U+
t = (∂Ut ∩U+

t )∪ σ(t), and analogously for ∂U−t . Let n̂ be the outward normal

vector for ∂U+
t . To apply the results of Theorem 2 we need the velocity of the boundary

σ(t), let Y ∈ Σ(t), then

dφ(Y, t)

dt
=
∂φ(Y, t)

∂t
+
∂φt(Y, t)

∂XA
WA(Y, t) = v + ω = w.

Now using Theorem 2 we conclude that

d

dt

∫
U+
t

fdv =

∫
U+
t

∂f

∂t
dv +

∫
∂Ut∩U+

t

f vnda+

∫
φ(Σ(t),t)

f+(v+
n + ω+

n )da, (A-3)

where f+ is the limiting value of f approaching φ(Σ(t), t) from U+
t , analogously for v+

n

and ω+
n . Repeating the above reasoning with U−t we get

d

dt

∫
U−
t

fdv =

∫
U−
t

∂f

∂t
dv +

∫
∂Ut∩U−

t

f vnda−
∫
φ(Σ(t),t)

f−(v−n + ω−n )da, (A-4)

noting that for U−t the outward normal at σt is −n̂, then summing equations (A-3)

and (A-4) we conclude theorem 3. �

Corollary 1 Discontinuous Transport Theorem (3) in the material system becomes

d

dt

∫
U
FJdV =

∫
U

∂F

∂t
JdV +

∫
∂U
F VNJdA+

∫
U∩Σt

[F (Vn +Wn)]Jda , (A-5)

where F = f ◦ φt, W = dφ−1w, V = dφ−1v and J , the Jacobian, is the determinant of

the linear transformation Dφ,

Dφ = ea
∂φa

∂XA
dXA , and J =

∂(φ1, . . . , φn)

∂(X1, . . . , Xn)

√
det gab

detGAB

.
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Proof: This is established by means of a pull-back of the Discontinuous Transport Theo-

rem11, and using results and notation from appendix C,

d

dt

∫
φ(U ,t)

fdv =
d

dt

∫
U
FJdV =

∫
U

∂F

∂t
JdV +

∫
∂U
F φ∗t (ivdv) +

∫
U∩Σ(t)

[Fφ∗t (ivdv + iωdv)]

=

∫
U

∂F

∂t
JdV +

∫
∂U
F VNJdv +

∫
U∩Σ(t)

[F (VN +WN)]JdA,

where we used that φt is regular12, implying that ∂φ(U , t) = φ(∂U , t) and assume that

Σ(t) ⊂ U which implies that φ(U , t) ∩ φ(Σ(t), t) = φ(U ∩ Σ(t), t).

Balance Principles

All balance principles can be written in the form of the master balance principal below.

Definition 1 Let f(x, t), h(x, t) be scalar functions defined for x ∈ φ(B, t) for every t

in some open interval, and u(x, t) a given vector field on φ(B, t). We say that f , h and

u satisfy the master balace law if, for every nice open set U ∈ B the following integral

equation holds

d

dt

∫
φ(U ,t)

fdv =

∫
φ(U ,t)

hdv +

∫
∂φ(U ,t)

〈u, n̂〉 da. (A-6)

where n̂ is the unit outward normal to ∂φ(U , t). If the above equality is replaced by the

inequality

d

dt

∫
φ(U ,t)

fdv ≥
∫
φ(U ,t)

hdv +

∫
∂φ(U ,t)

〈u, n̂〉 da. (A-7)

we say that f , h and u satisfy the master balace inequality.

In the material picture this balance law becomes,

d

dt

∫
U
FJdV =

∫
U
HJdV +

∫
∂U

〈
U, N̂

〉
dA. (A-8)

11A less concise but more evident proof would be to use a material version of Transport Theorem (2),

and then repeat an analogous argument to the one used for Discontinuous Transport Theorem.
12The map φt being regular implies points in the domain can not be mapped to the same point in the

image, because if this where so, then in Rn there would be a point whose direction derivative would be

zero.
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where N̂ is the outward unit normal to ∂U in the material system, and again the map φt

must be regular for ∂φt(U = φt(∂U), and so that the material functions are well defined

as

F (X, t)JdV = φ∗t (fdv)(X, t) = f(φ(X, t), t)J(X, t)dV (X),

H(X, t)JdV = φ∗t (hdv)(X, t) = h(φ(X, t), t)J(X, t)dV (X),

iUdV = φ∗t (iudv) = iφ∗tuφ
∗
tdv = iφ∗tuJdV = iJφ∗tudV

=⇒ U(X, t) =
∂φ−1

t

∂xa
(x, t)ua(φt(X), t)J(X, t).

For more details on notation see appendix C. Much like a physical law, f , h and u must

satisfy this balance principle everywhere, that is for every nice U ⊂ B. Using this, we

shall simplify the discontinuity conditions.

Discontinuous Balance Principle

Let f , h, u satisfy the master balance principal, assume the existence of a surface σ(t) =

φ(Σ(t), t) on which f , h, u and φ are discontinuous, but elsewhere f ∈ C1, h,u ∈ C0

and φ for t fixed is regular. Divide the nice open domain in the same manner as the

Discontinuous Transport Theorem, that is φ(U0, t) = Ut = U−t ∪ σt ∪ U+
t , then this

theorem states that

d

dt

∫
Ut
fdv =

∫
Ut

∂f

∂t
dv +

∫
∂Ut

f vnda+

∫
Ut∩σ(t)

[f(vn + ωn)]da,

where vn is the outward normal component of v = dφ/dt, and ω(y, t) is the velocity of

y ∈ σ(t) relative to the particle at y, or simply

ω(y, t) =
∂φ

∂XA
(Y, t)WA(Y, t),

where y = φ(Y, t) and W is the material velocity of the discontinuous surface as defined

in Theorem 3. Substituting the above equation in the master balance principal (A-6),∫
Ut

∂f

∂t
dv +

∫
∂Ut

f vnda+

∫
Ut∩σt

[f(vn + ωn)]da =

∫
Ut
hdv +

∫
∂U
〈u, n̂〉 da, (A-9)
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the functions f , h, u satisify the master balance principal for the open sets W+ ⊂ U+
t

and W− ⊂ U−t seperatly, resulting in13,

d

dt

∫
W+

fdv =

∫
W+

∂f

∂t
dv +

∫
∂W+

f vnda =

∫
W+

hdv +

∫
∂W+

〈u, n̂〉 da, (A-10)

and

d

dt

∫
W−

fdv =

∫
W−

∂f

∂t
dv +

∫
∂W−

f vnda =

∫
W−

hdv +

∫
∂W−
〈u, n̂〉 da. (A-11)

Now subtract both equations (A-10) and (A-11) from equation (A-12). Then take the

limits W+ to U+
t , and W− to U−t , resulting in∫

Ut∩σ(t)

[fωn]da = −
∫
Ut∩σ(t)

[〈u, n̂〉]da. (A-12)

This statemente is valid for every U . Because un, f, ωn on Ut∩σ(t) are at least continuous

everywhere except Ut ∩ σ(t), then we can conclude that

[fωn] = −[〈u, n̂〉]. (A-13)

Theorem 4 (Localized Theory) If f, φt, u ∈ C1, φt is regular and h ∈ C0, then they

satisfy the master balance law iff

df

dt
=
∂f

∂t
+

(
d(fv)

dxa

)a
= h+

(
du

dxa

)a
. (A-14)

They satisfy the master balance inequality iff

df

dt
=
∂f

∂t
+

(
d(fv)

dxa

)a
≤ h+

(
du

dxa

)a
. (A-15)

The proof of this theorem is a direct application of Transport Theorem. The material

version of these localized theorems are:

∂(FJ)

∂t
= HJ +

(
dU

dXA

)A
and

∂(FJ)

∂t
≤ HJ +

(
dU

dXA

)A
. (A-16)

13The Balance Principle does not necessarily hold on U+
, which would result in an equation similar to

equation (A-3), because U+
is closed. For balance of momentum this would be like demanding that two

plates in contact both exert no force upon each other so that total force balances.
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Conservation of Mass

States that the total mass of the set φ(U , t) does not change in time,

d

dt

∫
φt(U)

ρdv = 0.

To find the discontinuity conditions substitute ρ = f in equation (A-13), resulting in

ρ+ω+
n = ρ−ω−n , (A-17)

if ρ and J are smooth, then by changing variables to the material system, we conclude

that

ρRef (X) = ρ(x, t)J(X, t), (A-18)

where

J(X, t) =
∂(φ1, φ2, φ3)

∂(X1, X2, X3)

√
det gab(x)√

detGAB(X)
.

Balance of Momentum

The integral form of momentum balance is subject to an important criticism: it is not form

invariant under general coordinate transformations, although the dynamical equations

themselves are. One way to work around this in R3 is as follows.

Given a constant vector w ∈ R3, then momentum balances in the fixed w direction,

Definition 2 (Balance of Momentum) Given φt a regular map, ρ(x, t) the density,

t(x, t, n̂) the internal stess, and an external force b(x, t) we say that balance of momentum

holds if for every fixed w ∈ R3 and every nice open set U ⊂ B,

d

dt

∫
φ(U ,t)

ρ < v,w > dv =

∫
φ(U ,t)

ρ < b,w > dv +

∫
∂φ(U ,t)

<t,w > da (A-19)

where t is evaluated with the outward normal n̂ to ∂φ(U , t).

Using Cauchy’s theorem on stress ( see theorem 2.2 p.134 in [5]), we can substitute the

internal stress with the Cauchy stress tensor which depends on the outward unit normal
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of the boundrary ∂φt(U), in other words: t = σn. To acquire the discontinuous jump

conditions we use equation (A-12) with

f = ρ < v,w >, h = ρ < b,w > and < u,n > =< σn,w >=< σw,n >,

resulting in the conditions,

[ρ < v,w > ωn] = −[< σn,w >],

which together with the discontinuity conditions for conservation of mass (A-17), and

noting that the above is valid for every fixed w, results in

ρ−ω−n [v] = −[σn], (A-20)

this can be interpreted as the mass flow times the velocity difference accounts for the

difference in internal forces at the discontinuity.

In a domain U , where the quantities involved are continuous and φt is regular and C1

then

d

dt

∫
φt(U)

ρ < vt,w > dv =

∫
φt(U)

∂ρ

∂t
< vt,w > dv +

∫
φt(U)

ρ <
∂vt
∂t

,w > dv (A-21)

+

∫
∂φt(U)

ρ < vt,w > div vdv. (A-22)

using the conservation of mass ρ̇+ ρ div v = 0, then balance of momentum becomes∫
φt(U)

ρ <
dvt
dt
,w > dv =

∫
φt(U)

<ρbt,w > dv +

∫
∂φt(U)

<σn,w > da, (A-23)

the material balance of momentum becomes∫
U
ρRef <

dVt

dt
,w > dV =

∫
U
<ρRefBt,w > dV +

∫
∂U
<PN,w > dA, (A-24)

where V = v ◦φt,B = b ◦φt,N is normal to ∂U , n is normal to ∂φt(U) and P is the first

Piola-Kirchhoff stress tensor.
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Conservation of Energy

Let B be a simply body in S = R3, φt a regular differentiable motion of B in S, h(x, t, n̂)

the heat flux across a surface with unit normal n̂, and e(x, t) the internal energy function

per unit mass.

Definition 3 (Conservation of Energy) Given φ(X, t), ρ(x), t(x, t,n), e(x, t), b(x, t)

and h(x, t, n), we say that conservation of energy holds provided that for every nice open

set U ⊂ B,

d

dt

∫
φ(U ,t)

ρ(e+
1

2
< v,v >)dv =

∫
φ(U ,t)

ρ < b,v > dv −
∫
∂φ(U ,t)

< σn,v > qnda, (A-25)

where we have used cauchy’s theorem to substitute t =< σ, n̂ >= σn and

h(x, t, n̂) = −qn(x, t).

To obtain the discontinuous jump conditions we use equation (A-12) with

f = ρ(e+
1

2
< v,v >), and < u, n̂ > =< σn,v > −qn

resulting in the conditions,

[ρ(e+
1

2
< v,v >)ωn] = −[< σn,v >], (A-26)

which together with the discontinuity condition (A-20) results in,

[ρe] = −1

2
< σn+ + σn−, [v] > . (A-27)

The Entropy Production Inequality

The second law of thermodynamics is frequently shrouded in mysterious physical jargon,

and my education was no exception. The results needed are given a consise mathemat-

ical treatment. This “law” is vital in elasticity, for with it we can uniquely define the

internal stress in terms of the internal free-energy ψ, where e = ψ + η and η(x, t) is the
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specific entropy14 per unit mass. Also assume there is function θ(x, t) > 0, the absolute

temperature.

Definition 4 (Clausius-Duhen inequality) The functions in the inequality below are

said to obey the entropy production inequality or the Clausius-Duhen inequality if, for

all nice U ⊂ B we have

d

dt

∫
φ(U ,t)

ρη dv ≤ −
∫
∂φ(U ,t)

qn

θ
da, (A-28)

where we have used cauchy’s theorem to substitute h(x, t,n) = −qn(x, t).

the discontinuous jump condition is

[ρηωn] ≤ [
qn

θ
]. (A-29)

B Appendix

Assumptions of Elasticity

This appendix will breifly summarize the assumptions which are particular to elastic

theory. From this, we hope the reader can visualize what elastic theory attempts to

capture.

The constitutive function Ψ̂ is a map that given a motion φ and temperature field Θ

returns a function for the internal free-energy Ψ. Below we informally define a constitutive

funciton for thermoelasticity.

Definition 5 A constitutive function for thermoelasticity

Ψ̂ : (φ,Θ) 7→ Ψ

14For a more advanced mathematical treatment, in which entropy is regarded as a measure of disorder

and its origins in statistical mechanics via the Boltzmann’s equation can be found in Ruelle [7] and [8]
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is called local and history independent if for any open set U ⊂ B and any two motions φ1

and φ2 and temperature fields Θ1 and Θ2, such that φ1(X, t) = φ2(X, t) and Θ1(X, t) =

Θ2(X, t) for every X ∈ U , then Ψ̂(φ1,Θ1) and Ψ̂(φ2,Θ2) agree on U .

The idea of using locality as a basic postulate is due to Noll[1958]. However, is must

be emphasized, that this does not stop us from imposing nonlocal constraints, such as

incompressibility.

Example 1 Nonlocal operator:

f : C0[0, 1]→ C0[0, 1] by f(φ)(x) =

∫ x

0

φ(s)ds.

the functions φ1 and φ2 can agree on a ball around x and have that f(φ1)(x) is not equal

to f(φ2)(x) on this same ball.

Axiom 1 (Axiom of Locality) Constitutive functions for thermoelasticity are assumed

to be local.

Axiom 2 (Axiom of History Independence) Constitutive functions for thermoelas-

ticity do not depend on all past histories, but only on the current map, φ for t fixed, and

temperature distribution, Θ for t fixed.

These assumptions capture the essence of elasticity, for instance a consequence from15

axiom 2 is that the internal free-energy Ψ depends on how much the material is stretched,

i.e. on C, and not on the rate the material is being stretched. Independent of what has

happened to the material, upon returning to the same spatial configuration the internal

free-energy will be the same. This also excludes plasticity.

Using these axioms we can uniquely relate internal free energy and stress by assuming

the entropy production inequality holds for all regular motions and temperature configu-

rations. We achieve this by varying independently φ and Θ.

15Together with many other typical axioms imployed in continuum mechanics and physical balance

laws.
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Axiom 3 (Axiom of Entropy Production) For any regular motion and temperature

configuration of B, the thermoelastic constitutive functions are assumed to satisfy the

entropy production inequality:

ρRef (N̂
∂Θ

∂t
+
∂Ψ̂

∂t
)− P̂ :

∂F

∂t
+

1

Θ
< Q̂,∇Θ >≤ 0.

Theorem 5 (Coleman and Noll) [1963] Suppose the axioms of locality and entropy

production hold. Then Ψ̂ depends only on the variables X, F , and Θ. Moreover, we have

N̂ = − ∂Ψ̂

∂Θ
and P̂ = ρRefg

#∂Ψ̂

∂F
, that is, P̂A

a = ρRef
∂Ψ̂

∂Fa
A

, (B-1)

where the derivatives are taken in the Fréchet sense, and the entropy production inequality

reduces to

< Q,∇Θ >≤ 0.

Proof: see p.190 Marsden [5]. �

It can shown (see p.217 from [5]) by using material frame indifference, that for an

isotropic material Ψ depends only on the eigenvalues of C = FTF and temperature Θ.

Recall that the eigenvalues of C are the principle stretchs squared.

Now by using the above theorem, and that Ψ depends on C only through its eigenvalues

λi’s, we can relate the cauchy stress tensor σ with the motion φ and Ψ,

σab = P aA ∂φb

∂XA
J−1 = ρRefg

ab ∂Ψ̂

∂F a
A

∂φb

∂XA
J−1 = ρRefg

ab ∂Ψ̂

∂λj

∂λj
∂F a

A

∂φb

∂XA
J−1, (B-2)

where the metric g and G, for the current and reference configuration coordinate systems,

respectively, are defined by

gab =< ea, eb > , GAB =< EA,EB >,

where the vectors e1, e2, e3,E1,E2,E3 are the base vectors of the spatial and reference

configuration coordinate systems, and

J(X, t) =
∂(φx, φy, φz)

∂(X, Y, Z)

√
det gab(x)√

detGAB(X)
.
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Spherical Coordinates Constitutive Equation

Let us develop the above constitutive equation for the Cauchy stress tensor σ in spherical

coordinates both for the material body and current body. The same coordinate system

used in the section Modelling with Radial Symmetry.

Using the above formula for the determinant of the Jacobian J,

J(X, t) =
∂(φr, φθ, φϕ)

∂(R,Θ,Φ)

√
det gab(x)√

detGAB(X)
=

∂r

∂R

r2

R2
,

the density ρRef (X) is a given constant function, and the metrics for spherical coordinates

is

grr = 1 , gθθ = (r sinϕ)2 , gϕϕ = r2. (B-3)

similarily for the reference coordinate system,

GRR = 1 , GΘΘ = (R sin Φ)2 , GΦΦ = R2. (B-4)

We also need the Cauchy-Green tensor C, which in coordinates is defined by

CAB = gabF
a
CF

b
BG

AC ,

the tensor GAB is the inverse of GAB, in other words GCDG
CB = δBC , which is one if C = B

and zero otherwise. With the above tensors we can attain the Cauchy-Green tensor C,

which can be represented by the following matrix,

(CAB)AB =


(F r

R)2 0 0

0 (F θ
Θ)2
(
r
R

)2
0

0 0 (Fϕ
Φ )2
(
r
R

)2

 . (B-5)

Although F θ
Θ and Fϕ

Φ are both the identity map for our application, they have been

explicitly left because the constitutive equation, which relates the internal forces σ and

the internal energy Ψ, uses the general dependence that Ψ has on the eigenvalues of C

in this coordinate system, in other words, Ψ̂ is uniquely defined by λ1 = (F r
R)2, λ2 =

(F θ
Θ)2
(
r
R

)2
,λ3 = (Fϕ

Φ )2
(
r
R

)2
and temperature Θ.
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Substituting the relevant quantities in equation (B-2), then the Fréchet derivative

evaluated at this systems configuration, i.e. Fϕ
Φ = F θ

Θ = 1, results in,

σrr = 2ρRef
∂Ψ

∂λ1

∂r

∂R

R2

r2
,

σθθ = 2ρRef
∂Ψ

∂λ2

(
∂r

∂R

)−1
1

sin2 ϕr2
,

σϕϕ = 2ρRef
∂Ψ

∂λ3

(
∂r

∂R

)−1
1

r2
.

C Appendix

Results from Differential Geometry

Lie Derivative

Before defining this object we show where it appears in our application. In all balance

principles, integrals of the following form will be present,

d

dt

∫
ψt(P)

α,

where ψt is a function S → B, and ψt(x) = ψ(x, t). This notation will be adopted bellow

when we only wish to deal with the spatial parameters x, and maintain t fixed. In regions

in which we assume α is differentiable we can recast this integral in another form,

d

dt

∫
ψt(P)

α =
d

dt

∫
P
ψ∗t α =

∫
P

d

dt
(ψ∗t α) =

∫
ψt(P)

ψt∗
d

dt
(ψ∗t α) =∫

ψt(P)

(
ψs
−1
∗
d

dt
(ψ∗t α)

)
s=t

=

∫
ψt(P)

(
d

dt

(
ψ∗t,sα

)) ∣∣∣
s=t

=

∫
ψt(P)

Lv α, (C-1)

where ψt,s(x) = ψ(ψ−1(x, s), t), above the last equality is the definition of Lie Derivative,

Definition 6 Let w be a C1, time dependent, vector field on the manifold M, and let

ψt,s denote its flow, i.e. (dψt,s/dt)|s=t = wt. If T is a C1 tensor field on M, then the Lie

Derivative of T with respect to w is defined by

LwT =

(
d

dt
ψ∗t,sTt

) ∣∣∣
s=t
. (C-2)
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Example 2 Let f ∈ C1 be a time dependent scalar function, then

Lw(fdxk) =

(
d

dt
ψ∗t,sfdxk

) ∣∣∣
s=t

=

(
d

dt
f(ψt,s(x), t)

∂ψkt,s(x)

∂xj
dxj

)∣∣∣
s=t
,

we use bold d when we wish to emphasize that the term is a differential form. In this

last expression every x that appears is in the image of ψs which does not change in time.

Therefore

Lw(f dxk) =

(
∂f

∂t

∂ψkt,s(x)

∂xj
+
∂f

∂xj
wj ◦ ψ−1

s

∂ψkt,s(x)

∂xj
+ f

∂wk

∂xj
◦ ψ−1

s dxj

)∣∣∣
s=t

=
∂f

∂t
dxk +

∂f

∂xj
wj dxk + f

∂wk

∂xj
dxj,

where we have used that (ψt,s)s=t is the identity map.

To interpret the Lie Derivative it helps to seperate it in the following manner. If we hold

t fixed in Tt, we obtain the autonomous Lie derivative:

LwT =

(
d

dt
ψ∗t,sTs

) ∣∣∣
s=t
.

Hence LwT = LwT+∂T/∂t. In the integral equation (C-1), if α = fdv, the volume form,

then the autonomous Lie derivative can be interpreted as how much the integral (C-1)

changes in time because of the motion of the boundary ∂ψt(P). This motivates us to

investigate if a surface integral of the flux is equal to the volume integral of Lw(fdv),∫
∂ψt(P)

fwnda =

∫
ψt(P)

Lw(fdv), (C-3)

where wn is the component of w in the direction of the outward unit normal to the

boundary ∂ψt(P), and using the definition of lie derivative, we have that in coordinates

Lw(fdv) =
∂f

∂t
dv + Lw(fdv) =

∂f

∂t
dv +

(
∂f

∂xm
wm + f

(
dw

dxm

)m)
dv. (C-4)

If we show that the exterior derivative d(fwnda) = Lw(fdv), then by the generalized

Stokes’ theorem equation (C-3) can be established. To see how this is calculated classically

see the section “Classical Transport Theorem” at the end of this appendix. What follows

will be used to demonstrate the equality d(fwnda) = Lw(fdv).
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Definition 7 If w is a vector field on M and α is a k-form, the contraction of w with

the first index of α is called the interior product and is denoted by iwα. Thus iwα is a

(k − 1)-form, given by

(iwα)(v1,v2, ...,vk−1) = α(w,v1,v2, ...,vk−1).

A geometric interpretation for this contraction is given in the following proposition.

Proposition 1 Let n̂ be the unit outward normal to ∂M and w a vector field on M.

Then on ∂M, < w,n > da = iwdv, where da is the area element of ∂M.

Proof: The equation we wish to prove is composed of coordinate independent quantities.

Hence without loss of generality we choose coordinates {xa} for M in which ∂M is the

plane x1 = 0,M is defined by x1 < 0 and n̂ = (1, 0, .., 0) is the unit normal to ∂M. This

way

iwdv = iw
√
gabdx

1 ∧ · · · ∧ dxn =
√
gab(−1)1−iwi dx1 ∧ ... ∧ dxn︸ ︷︷ ︸

missing dxi

,

If we evaluate this expression on the domain of ∂M, x1 = 0, we are left with only the

first term

iwdv =
√
gabw

1dx2 ∧ ... ∧ dxn = < w,n > da

�

Now for the final theorem we need before our main result.

Theorem 6 The theorem is to establish the following identity,

Lv(dv) =
1√

det gab

∂

∂xm
(vm
√

det gab))dv =

(
dv

dxm

)m
dv. (C-5)

Proof: Let γcab be the Christoffel symbols, then the identity is demonstrated by a direct

calculation,

∂

∂xm
(vm
√

det gab)) =
∂vm

∂xm

√
det gab +

vm

2
√

det gab

∂gab
∂xm

(Cofg)ab

=
∂vm

∂xm

√
det gab +

vm

2
√

det gab
(gkbγ

k
adv

d + gakγ
k
bdv

d)(Cofg)ab,
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in the last expression, we shall simplify the term: vmgkbγ
k
adv

d(Cofg)ab, fix a, in other

words looking at the line a, now summing over b results in the determinant of some

matrix. Notice all the lines, except the a-th, of this matrix are equal to the lines of the

matrix (gab)ab. The a-th line has other lines of (gab)ab summed to it, that is, for each k we

sum another line of (gab)ab to the a-th. Summing repeated lines contributes nothing to the

determinant, this implies that setting k = a does not change the value of the determinant.

An analogous argument works for the other term. As a result we have,

vm(gkbγ
k
adv

d + gakγ
k
bdv

d)(Cofg)ab =
∂vm

∂xm

√
det gab + vm(gabγ

a
adv

d + gabγ
b
bdv

d)(Cofg)ab

=vm(γaadv
d + γbbdv

d) det gab = 2vmγaadv
d det gab,

substituting this above results in

∂

∂xm
(vm
√

det gab)) =
∂vm

∂xm

√
det gab + vmγaadv

d
√

det gab =⇒

1√
det gab

∂

∂xm
(vm
√

det gab)) =

(
dv

dxm

)m
.

Theorem 7 The exterior derivative d(fiwdv) is equal to the lie derivative Lw(fdv).

Proof:

d(fiwdv) = d(f
√

det gab(w
1dx2 ∧ dx3 − w2dx1 ∧ dx3 + w3dx1 ∧ dx2))

= (
∂f

∂xm
wm +

1√
det gab

∂

∂xm
(wm

√
det gab))dv = Lw(fdv).

Classical Transport Theorem

We define the divergence as

div v =

(
dv

dxm

)m
,
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then classically Transport Theorem is shown by the following,

d

dt

∫
ψt(W0)

f(x, t)dv =
d

dt

∫
W0

f(ψt(X), t)J(X, t)dV =∫
W0

J(X, t)
d

dt
f(ψt(X), t) + f(ψt(X), t)

d

dt
J(X, t)dV =∫

W0

J
∂f

∂xa
wa + J

∂f

∂t
+ fJ divw dV =

∫
W0

J
∂f

∂t
+ J div(fw)dV =∫

ψt(W0)

∂f

∂t
dv +

∫
∂ψt(W0)

fwnda.
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