
A genetic algorithm for optimization over a simplex

Carlos H. Diasa, Francisco A. M. Gomes∗,a

aDepartamento de Matemática Aplicada, Universidade Estadual de Campinas, Campinas,

SP, Brazil

Abstract

Several combinatorial optimization problems require the minimization of a func-
tion over the standard n-dimensional simplex x1 + x2 + . . . + xn, x ≥ 0. Due to
the high complexity of these problems, it is a common practice to solve them
using metaheuristics, such as evolutionary algorithms. In this paper, we present
a genetic algorithm based on a new chromosome representation that allows the
direct generation of feasible solutions. With this representation, the solution
space is discretized into hypercubes, and each hypercube is associated to an
unique integer number that is stored in binary form to simplify the definition
of the crossover and mutation operators.

As an example, we use our approach to find the efficient frontier of some
cardinality constrained portfolio optimization problems. Our experiments show
that the new representation gives better results than the chromosomes built
using the Cartesian coordinates on R

n.

Key words: genetic algorithms, simplex constraints, portfolio optimization
2000 MSC: 90C59, 65K05

1. Introduction

In this paper we consider optimization problems in which the variables are
restricted to the intersection of an hyperplane in R

n with the nonnegative or-
thant, i.e., the feasible region is given by the (n − 1)-dimensional simplex

Ω =

{

x ∈ R
n|

n∑

i=1

cixi, xi ≥ 0, i = 1, . . . , n

}

, (1)

where c = [c1 c2 . . . cn]T is a constant vector.
Several problems have constraints in the form (1). The application we are

most concerned is the cardinality constrained portfolio optimization. In this
problem, a set of m assets (such as stocks and bonds) is available and one must

∗Corresponding author
Email address: chico@ime.unicamp.br (Francisco A. M. Gomes)

Preprint submitted to Computers and Operations Research March 3, 2010

select some of them to compose a portfolio that gives the highest expected return
with minimum risk. When the Markowitz model [11] is used, the best portfolio
is the solution of the quadratic programming problem

minimize

m∑

i=1

m∑

j=1

σi,jwiwj

subject to

m∑

i=1

riwi = R, (2)

m∑

i=1

wi = 1,

wi ≥ 0, i = 1, . . . ,m,

where wi is the fraction of the portfolio value invested in asset i, σij is the
covariance between assets i and j, ri is the expected return of asset i and R
is the desired level of return for the whole portfolio. Other models and risk
measures can be found in [12]

Model (2) may be unrealistic, since it permits the investor to buy an arbi-
trarily small amount of a large number of different assets. To reduce transaction
costs and allow an accurate control of the invested capital, it is a common prac-
tice to limit the number of assets held in the portfolio, as well as to define a
buy-in threshold, i.e., a lower limit for the amount invested on each asset. Un-
fortunately, introducing these constraints into (2), we get the following mixed
integer quadratic programming problem (MIQP)

minimize

m∑

i=1

m∑

j=1

σi,jwiwj

subject to

m∑

i=1

riwi = R,

m∑

i=1

wi = 1, (3)

m∑

i=1

zi = n,

lizi ≤ wi ≤ uizi, i = 1, . . . ,m,

zi ∈ {0, 1}, i = 1, . . . ,m.

This problem can be slightly simplified if we remove the first constraint and
trade risk against return directly in the objective function. In this case, we
suppose that a trade-off parameter λ ∈ [0, 1] is given and rewrite (3) as

minimize λ

m∑

i=1

m∑

j=1

σi,jwiwj − (1 − λ)

m∑

i=1

riwi

2

subject to

m∑

i=1

wi = 1, (4)

m∑

i=1

zi = n,

lizi ≤ wi ≤ uizi, i = 1, . . . ,m,

zi ∈ {0, 1}, i = 1, . . . ,m.

Since (4) is known to be an NP-hard problem, several metaheuristics were
proposed for solving it, including genetic algorithms [3], simulated annealing [3],
the combination of simulated annealing and evolutionary strategies [10], tabu
search [3], neural networks [7], particle swarm optimization (without the cardi-
nality constraints, but including transaction costs and tax) [18]. The combina-
tion of metaheuristics and quadratic programming was explored in [6] and [13].
Methods based purely on nonlinear programming ideas were also proposed for
solving (3), including some variations of the branch-and-bound method [2, 16, 8]
and DC programming [9]. Finally, in [1] problem (3) was converted into an un-
constrained nonconvex nonlinear programming problem, and solved by a global
optimization procedure.

In this paper, we introduce a new chromosome representation scheme that
improves the efficiency of genetic algorithms applied to solve problem with sim-
plex constraints such as (1). The paper is structured as follows. In the next
section, we present the chromosome representation usually adopted when solv-
ing mixed integer problems with simplex constraints. In Section 3, we introduce
our chromosome representation. A simple genetic algorithm that uses the new
chromosome for solving (3) is presented in Section 4. A simplified version of the
algorithm is given in Section 5. The new algorithm is compared to the one pro-
posed by Chang et al.[3] in Section 6. Finally, some conclusions are presented
in Section 6, along with suggestions for future work.

2. Usual chromosome representation for simplex constrained mixed

integer problems

The first step in the definition of a genetic algorithm is the decision on
how a feasible solution will be coded into a chromosome. For mixed integer
cardinality constrained problems such as (4), usually the chromosome is divided
into two parts (see, for example, [3]). The first is an integer vector I that stores
the indices of the n assets that belong to the portfolio, i.e., the indices of the
components of z that are equal to 1. The second part is a vector W that stores
the values of wi, i ∈ I.

When there are no upper limits for the investment on the assets, i.e., ui = 1,
i = 1, . . . , n, there is a simple way to convert the constraints of (4) into the
feasible region Ω.

To make this conversion, let us define L =
∑

j∈I lj . Once the indices of
assets that belong to the portfolio are stored in vector I, the constraints of (4)

3

reduce to ∑

i∈I

wi = 1, (5)

li ≤ wi ≤ 1 − L + li, i ∈ I. (6)

Now, if we define a new vector x such that

wi = li + (1 − L)xi, i ∈ I,

then (5)–(6) may be rewritten as

∑

i∈I

xi = 1, xi ≥ 0, i ∈ I. (7)

Therefore, if there are no upper limits on w, the only constraint we must
consider when applying a genetic algorithm to solve (3) is (7). However, defining
a chromosome representation well suited for dealing with this constraint may
be tricky.

Most authors use the real part of the chromosome to store a point x that
belongs to the unit hypercube in R

n. Since this point may be unfeasible, a
common practice to map x to a point x′ on ∆n−1 is to project x onto ∆n−1

along the ray that passes through the point and the origin (see, for example,
[3, 15, 14, 4]). Unfortunately, if we take p points uniformly distributed on the
unit hypercube and project them onto the simplex, the generated points will
not be evenly distributed, as shown in Figure 1.

Figure 1: The uneven distribution of points obtained projecting 10,000 points of the unit
hypercube onto the simplex.

4

Naturally, using a cleverer scheme, it is possible to generate an initial pop-
ulation that is uniformly distributed on the simplex1. However, if we use the
Cartesian coordinates to store the real part of a chromosome, the crossover and
the mutation operators will usually destroy the feasibility of the solution, so it
will be necessary to re-project the point onto the simplex after applying these
procedures, increasing the concentration of chromosomes on certain portions of
the simplex. In the next section, we propose a chromosome representation that
avoids this inconvenience.

3. A new chromosome representation

We want to map directly each chromosome to a point of the simplex in such
a way that this mapping allows an uniform distribution of the points over the
simplex.

If d bits are used to represent a real number on a computer, then it would
be necessary to use dn bits to store a vector x ∈ R

n. We intend to use the
same amount of memory to store a point on the standard simplex, associating
a single natural number y between 1 and 2dn to this point.

To do so, we divide the (n − 1)-dimensional simplex ∆n−1 into 2dn hyper-
cubes, each one represented by its center. Although the simplex contains infinite
points that will not be addressed by this representation and the hypercubes may
include points that do not belong to the simplex, the inaccuracy of this scheme
is negligible as long as we use a huge number of hypercubes. In fact, our repre-
sentation is even more precise than the one obtained using the same number of
bits to store the Cartesian coordinates of a point on the simplex.

On the following subsections, we explain how to obtain the coordinates of the
center of a hypercube, once given y ∈ {1, . . . , 2dn}, the index of this hypercube
on ∆n−1. We start presenting a few facts about simplexes. After that, we
discuss how the hypercubes can be accommodated into layers. Then we show
how to compute the layers associated to a single hypercube. Finally, we convert
the layers into Cartesian coordinates.

3.1. Content and height of a regular simplex

The feasible region Ω can be viewed as the convex hull of the linearly inde-
pendent points pi = ciei ∈ R

n, i = 1, . . . , n, where ei is the i-th column of the
n × n identity matrix. If c = α[1 1 . . . 1]T , α ∈ R, the simplex is called regular.
Moreover, if α = 1, we have the standard (or unit) (n−1)-dimensional simplex,
represented by ∆n−1.

The content (or volume) of an (n − 1)-dimensional simplex is given by the
Cayley-Menger determinant (see, for example, [17, p. 363]). If the simplex is

1To generate a point on the (n − 1)-dimensional simplex, one should generate (n − 1)
real numbers in [0, 1], sort them, and compute the difference between each pair of successive
numbers, including the 0 and the 1 as the first and the last numbers of the list. More
information on this strategy for computing points on the simplex can be found in [5].

5

regular, with edges of length s, the formula of its content reduces to

Vn−1(s) =
sn−1

(n − 1)!

√
n

2n−1
. (8)

For the standard simplex, the content is simply

Vn−1 ≡ Vn−1(
√

2) =

√
n

(n − 1)!
. (9)

Let ∆n−1(s) be a regular simplex with edges of length s. We define the height

of this simplex, and denote by Hn−1(s), the Euclidean distance between one of
its vertices and the opposite face. The following lemma provides a formula for
the height of ∆n−1(s).

Lemma 1. The height of a regular (n − 1)-dimensional simplex with edges of

length s is given by

Hn−1(s) = s

√
n

2(n − 1)
. (10)

Proof. Suppose that ∆n−1(s) has one vertex (called the reference vertex) at the
origin, and the opposite face (the basis of the simplex) on a hyperplane that
is orthogonal to the x-axis. Clearly, any cross section of this simplex that is
parallel to its basis is an (n − 2)-dimensional regular simplex. Let ∆̄n−2(s, x)
be the (n− 2)-dimensional simplex obtained sectioning ∆n−1(s) at a distance x
from the reference vertex. The length of the edges of ∆̄n−2(s, x) is given by

s̄ =
x

Hn−1(s)
s.

Besides, the content of ∆̄n−2(s, x) is

Vn−2(s̄) =
[s̄

s

]n−2

Vn−2(s) = xn−2

[
Vn−2(s)

Hn−1(s)n−2

]

.

Therefore, we can write the content of the (n−1)-dimensional simplex ∆n−1(s)
as

Vn−1(s) =

∫ Hn−1(s)

0

xn−2

[
Vn−2(s)

Hn−1(s)n−2

]

dx =
Hn−1(s)

n − 1
Vn−2(s). (11)

Now, from (11) and (8), we obtain

Hn−1(s) = (n − 1)
Vn−1(s)

Vn−2(s)
= s

√
n

2(n − 1)
.

To simplify the notation, let us denote the height of the standard (n − 1)-
dimensional simplex by Hn−1. Using (10), we deduce that

Hn−1 =

√
n

n − 1
. (12)

6

3.2. Simplex layers

Let us divide ∆n−1 into 2dn (n − 1)-dimensional hypercubes in such a way
that the set of hypercubes and the simplex have the same content. In this case,
the edges of each hypercube will have length

a =

(
Vn−1

2dn

)1/(n−1)

. (13)

The computation of the coordinates of a hypercube center is made easier if
the hypercubes are disposed on the simplex into layers that are parallel to the
simplex basis and are numbered according to their distance from the reference
vertex. The number of layers of a simplex with height H is given by

kmax = ⌈H/a⌉ . (14)

For the standard simplex ∆n−1, the i-th layer, identified by ∆i
n−2, is the

regular (n − 2)-dimensional simplex at a distance hi
n−1 = ia from the reference

vertex. Figure 2 shows a 3-dimensional simplex and one of its layers.

Figure 2: The standard (n − 1)-dimensional simplex ∆n−1 and its i-th layer ∆i

n−2
.

The first thing that has to be done to locate an hypercube y ∈ {1, . . . , 2dn}
on ∆n−1 is to to find the index of its support layer, kn−1. After that, it is
necessary to find the position of the hypercube on the layer. This task may be

accomplished dividing ∆
kn−1

n−2 into layers again. These layers are regular (n−3)-

dimensional simplexes represented by ∆j
n−3, where j = 1, . . . ,

⌈

H
kn−1

n−2 /a
⌉

and

H
kn−1

n−2 is the height of ∆
kn−1

n−2 . Each simplex ∆j
n−3 contains a set of (n − 3)-

dimensional hypercubes, obtained by projecting the original hypercubes onto
this lower dimensional layer.

Applying recursively this strategy, we obtain n−1 layer indices that uniquely
determine the coordinates of the center of a hypercube on ∆n−1.

7

3.3. Computing the layer indices

Given a natural number y between 1 and 2dn that represents one of the
hypercubes in which the simplex was divided, we now show how to compute
the n − 1 layer indices used to calculate the coordinates of the center of the
hypercube.

First, we note from (13) that the total number of hypercubes contained in
∆n−1 is Vn−1/an−1. Therefore, the number of hypercubes contained in the first
k layers of the simplex is given by

(
ka

Hn−1

)n−1
Vn−1

an−1
=

(
k

Hn−1

)n−1

Vn−1. (15)

The hypercube given by y will belong to layer k if
(

k − 1

Hn−1

)n−1

Vn−1 < y ≤ kn−1

(
k

Hn−1

)n−1

Vn−1,

or simply

k − 1 < n−1

√
y

Vn−1
Hn−1 ≤ k.

Therefore, the layer of ∆n−1 that contains hypercube y is given by

kn−1 =

⌈

n−1

√
y

Vn−1
Hn−1

⌉

. (16)

Once determined this layer index, we need to find the position of the hyper-

cube y on the regular (n−2)-dimensional simplex ∆
kn−1

n−2 . Naturally, the searched
position depends on the content and the height of this simplex. However, these
values also depend on

hn−1 = kn−1a, (17)

the distance between the layer and the reference vertex of ∆
kn−1

n−2 .

Combining (8) and (9), we can define the content of ∆
kn−1

n−2 as

V
kn−1

n−2 = (cn−2)
n−2Vn−2, (18)

where cn−2 = kn−1/kmax
n−1 and kmax

n−1 is given by (14), using H = Hn−1. In prac-
tice, since we have a huge number of hypercubes, we can use the approximate
value

cn−2 ≈ hn−1/Hn−1. (19)

From (10) and (12), we can also define the height of ∆
kn−1

n−2 as

H
kn−1

n−2 = cn−2Hn−2. (20)

Using (15) to define the number of hypercubes contained in the first kn−1−1

layers of ∆n−1, the index of the hypercube on ∆
kn−1

n−2 is given by

yn−2 = y −
(

kn−1 − 1

Hn−1

)n−1

Vn−1.

8

After determining this index, we may now work with an (n−2)-dimensional
simplex. Applying the same procedure used to obtain (16), we define the layer

of the hypercube yn−2 on ∆
kn−1

n−2 as

kn−2 =

n−2

√
yn−2

V
kn−1

n−2

H
kn−1

n−2

.

Thus, using (18) and (20), we get

kn−2 =

⌈

n−2

√
yn−2

Vn−2
Hn−2

⌉

.

To determine the remaining layers of the hypercube, we can apply

kn−i =

⌈

n−i

√
yn−i

Vn−i
Hn−i

⌉

, i = 3, . . . , n − 1,

where

yn−i = yn−i+1 −
(

kn−i+1 − 1

Hn−i+1

)n−i+1

Vn−i+1.

3.4. Determining the coordinates of the hypercube’s center

Once we have the layer indices k1, . . . , kn−1, let us show how to obtain x =
[x1, x2, . . . , xn]T ∈ ∆n−1, i.e., the vector that contains the Cartesian coordinates
of the center of hypercube y. We will start using the first layer index kn−1 to
compute the last coordinate xn.

The distance between the reference vertex of ∆n−1 and the hyperplane that
contains the bottom faces of the hypercubes on layer kn−1 is given by (17). Thus,
the distance from the reference vertex to the hyperplane that passes through
the center of the hypercubes on this layer is

h̄n−1 = (kn−1 − 1/2)a.

Let us call ∆̄
kn−1

n−2 the (n− 2)-dimensional simplex that is at a distance h̄n−1

from the reference vertex of ∆n−1. This simplex is parallel to ∆
kn−1

n−2 , but passes
through the center of the hypercubes of the kn−1 layer.

The n vertices of ∆n−1 (i.e. the points e1, . . . , en) and the origin define
a n-dimensional non-regular simplex Sn. Besides, a simplex that is similar to

this one can be formed if we take en, the vertices of ∆̄
kn−1

n−2 , and the point
(0, . . . , 0, xn), as shown in Figure 3(a).

Due to the similarity between these n-dimensional simplexes, we obtain

xn = 1 − h̄n−1

Hn−1
.

After determining this last coordinate, we restrict our attention to the non-
regular (n−1)-dimensional simplex Sn−1 whose vertices are xn and the vertices

9

Figure 3: On the left, a schematic representation of an hypercube on ∆n−1 and the distances
h̄n−1 and Hn−1 used to compute the last coordinate of its center. On the right, a hypercube

on ∆̄
kn−1

n−2
and the distances h̄n−2 and H̄n−2 used to compute xn−1.

of ∆̄
kn−1

n−2 . This simplex, marked in medium gray on Figure 3(a), belongs to a
hyperplane that is parallel to the plane defined by e1, . . . , en−1. Therefore, we
can use S̄n−1, the projection Sn−1 onto this plane, to compute the remaining
coordinates of x.

Besides the origin, the vertices of S̄n−1 are the points γe1, . . . , γen−1, where,
γ = h̄n−1/Hn−1. These last n− 1 points define the regular (n− 2)-dimensional

simplex ∆̄
kn−1

n−2 on R
n−1, as depicted in Figure 3(b).

The distance between the reference vertex of ∆̄
kn−1

n−2 and the simplex ∆̄
kn−2

n−3

that passes through the center of the hypercube is given by

h̄n−2 = (kn−2 − 1/2)a.

Besides, from (19) and (20), we can define the height of ∆̄
kn−1

n−2 as

H̄n−2 =
h̄n−1

Hn−1
Hn−2.

Therefore, the (n − 1)-th coordinate of x is given by

xn−1 = γ

(

1 − h̄n−2

H̄n−2

)

=
h̄n−1

Hn−1
− h̄n−2

Hn−2
.

The remaining components of vector x are obtained repeating the procedure
described above for the layer indices kn−3, . . . , k1. Thus, we have

xn−i =
h̄n−i

Hn−i
− h̄n−i−1

Hn−i−1
, i = 1, . . . , n − 2,

10

x1 =
h̄1

H1
,

where h̄j = (kj − 1/2)a.

3.5. Avoiding infeasible points

Depending on the number of hypercubes used to fill the simplex, it is possible
that the center of a hypercube falls off the feasible region. This may happen
because the number of hypercubes on a layer is computed using hi and the
coordinates of a hypercube center is computed using h̄i, distant a/2 from hi.

This problem is only relevant if the number of hypercubes is really small.
In this case, we suggest the use of hyper-cuboids in place of hypercubes. One
possible way to define the edges of these hyper-cuboids is using the recursive
relation

an−i =
(kn−i+1 − 1/2)

kn−i+1
an−i+1. (21)

where an−1 = a. It is not hard to prove that the hypercube centers obtained
using (21) belong to the feasible simplex.

4. A new genetic algorithm for simplex constrained combinatorial

problems

In this section, we describe how to implement a genetic algorithm that uses
the ideas described above to generate the whole efficient (or Pareto) frontier of
the mixed integer portfolio optimization problem (4). It must be pointed out
that this curve is not continuous, although being non decreasing.

One way to obtain points over the Pareto frontier is to choose L values
of the penalty parameter λ, ranging from λ = 0 (which means that only the
return is taken into account) to λ = 1, corresponding to a totally risk aversion
investor. In spite of the fact that there are some criticism about this strategy,
it is frequently used due to its simplicity.

The discretization of the solution space allow us to work directly with a
binary vector to store the real part of the chromosome. Besides, an integer vector
stores the indices of the assets included in the portfolio. With this chromosome
representation scheme, we can use simple and efficient procedures for crossover
and mutation.

A general scheme of the genetic algorithm is given by Algorithm 1 below.
Details on the implementation are presented in the following subsections.

4.1. Initial population

We start from λ = 0, since the optimal solution is easy to obtain in this case.
When λ = 0, only the asset returns are taken into account, and the best policy
is to build up the portfolio with the n assets that have the highest expected
return. Let the set I contain the indices of these assets and let k be the index
of the most profitable asset. In this case, we define xk = 1 − ∑

i∈I, i 6=k li, and
the remaining assets receive li, i ∈ I, i 6= k.

11

Algorithm 1 General GA algorithm.

1: Generate an initial population.
2: Compute the fitness of the chromosomes.
3: repeat

4: Apply the crossover to a portion of the population.
5: Apply the mutation to some chromosomes.
6: Compute the fitness of the new chromosomes.
7: Select the chromosomes that will belong to the next generation.
8: until a stopping criterion is met.

Once this solution is available, we proceed solving the problems related to
the remaining L−1 values of λj taking as the initial population the best solution
obtained for λj−1 along with a set of n − 1 chromosomes with integer and real
parts randomly generated.

4.2. Crossover

We use a standard one-point crossover on the real part and the OX crossover2

on the integer part of the chromosome.
Each pair of parents generates two children. Besides, the chromosomes not

selected for the crossover are duplicated, so the population is doubled in size at
the end of the process.

Two parameters are used to control the crossover. The first, CrossPerc,
defines the percentage of the population that undergo crossover. The second
parameter, CrossProb, is the probability of applying the crossover to the real
part of the chromosome.

4.3. Mutation

When applied to the real part of the chromosome, our mutation operator
just flips one bit (change it from 0 to 1 or vice-versa). For the integer part, it is
possible to swap two assets of the portfolio, or replace an asset by another that
does not belong to the portfolio.

Three parameters are used to control the mutation: MutPerc is the per-
centage of the population that undergo mutation, MutProb is the probability of
applying the mutation to the real part of the chromosome, and MutProb2 is the
probability of replacing an asset when the mutation occurs in the integer part
of the chromosome.

4.4. Selection

A binary tournament scheme is used in the selection step. The last n chromo-
somes available after mutation are randomly reordered and paired with the first
n chromosomes of the population. The best individual of each pair is selected.

2The OX crossover is a one-point crossover where only the non-repeated assets are swapped.

12

A very simple elitist scheme is also employed: at the end of an iteration, the
worst chromosome of the population is replaced by the best individual found so
far.

Notice that the chromosomes are always feasible, so no adjust is required for
satisfying the cardinality or the bound constraints, as well as to return to the
simplex.

5. Using the layer indices to represent the chromosome

The genetic algorithm presented above proved to be very effective for solv-
ing portfolio optimization problems. However, it requires the use of specific
functions for dealing with very large integer numbers. Unfortunately, these
functions may not be available in some environments, such as MATLAB. In
this section, we show how this problem can be circumvented using the layers
indices to represent the chromosomes.

As described in the previous sections, the generation of the vector of portfolio
fractions from the real part of a chromosome can be done in two steps. Firstly,
the hypercube number y is converted into the layer indices k1, . . . , km−1. Then,
these indices are further converted into the coordinates of the hypercube center.

If dealing with large numbers is not allowed, we can suppress the first step of
this scheme, and work directly with the layers indices. In this case, the integer
part of the chromosome is kept unaltered, and the real part is stored in a binary
vector b, that is divided into n − 1 segments of equal length, b1, . . . , bn−1, as
shown below.

b = [0 1 . . . 1 1
︸ ︷︷ ︸

b1

1 0 . . . 1 0
︸ ︷︷ ︸

b2

. . . 1 1 . . . 1 1
︸ ︷︷ ︸

bn−2

0 1 . . . 0 0
︸ ︷︷ ︸

bn−1

]

Each segment bj is the binary representation of a natural number βj that,
on its turn, is used to compute the j-th layer index kj . This index is given by

kj =

⌈
kmax

j

kmax
βj

⌉

,

where kmax
j = ⌈Hj/a⌉ is the largest number of layers in the j-th dimension and

kmax is the number of bits required to store maxj{kmax
j } in binary format.

No change need to be done to Algorithm 1 in order to incorporate this new
chromosome representation. However, since we use segments with equal lengths
to store the indices of layers with different numbers of hypercubes, we may get
a unbalanced distribution of points over the simplex. Fortunately, this problem
may be avoided replacing our uniform random number generator by one that
favors the layers with several hypercubes over the small layers. The new random
number generator should be used to build the initial population as well as to
select the points used in the crossover and mutation operators applied to the
real part of the chromosomes.

13

The generation of an unbiased initial population, for example, is easy if we
observe that the number of hypercubes contained in a layer k of an j-dimensional
simplex in R

j+1 is proportional to kj−1 (this result can be obtained combining
(15) and simple formulas for the difference of powers). Therefore, we can assign
to each natural number βj , in which the vector b is decomposed, a random
variable with the distribution function

F (ν) =

{
νj , 0 ≤ ν ≤ 1,
0, otherwise.

To obtain a random number with this distribution function, we generate a
uniformly distributed random number µ ∈ [0, 1] and compute βj = F−1(µ) =
j
√

µ. Once βj is obtained, it is converted to a binary form and appended to
vector b.

6. Numerical results

In this section, we compare the algorithms presented in Sections 4 and 5 to
the algorithm proposed by Chang et al. [3]. The comparison is based on the five
portfolio optimization problems introduced in [3], that use the stocks from the
capital market indices Hang Seng (Hong Kong, 31 assets), DAX 100 (Germany,
85 assets), FTSE 100 (UK, 89 assets), S&P 100 (USA, 98 assets), and Nikkey
225 (Japan, 225 assets).3

The objective is not only to obtain the solution for a specific value of the
risk or return, but to find the whole efficient frontier. Therefore, we define fifty
equally-spaced values for the trade-off parameter λ ∈ [0, 1], given in (4), and
solve the corresponding problems. For all of the five problems, we require the
portfolio to have exactly n = 10 assets. The lower limit for the investment on
each asset is 0.01 (1% of the value invested on the whole portfolio).

The implementation of the genetic algorithm presented in Section 4 poses
just one difficulty: it requires an efficient binary representation of a huge integer
number. To cope with this problem, we decided to code the algorithm in Math-
ematica 7.0, since this software has many functions that apply binary operators
directly to integer numbers of any size. As an alternative, it could be written
in C or C++, using the GNU Multiple Precision Arithmetic Library (GMP)4

to handle the real part of the chromosomes. On the other hand, the second
version of the algorithm, presented in Section 5, is very easy to implement, and
was built using MATLAB.

We define d = 25, so the chromosome representation of Section 4 requires
less than 2/5 of the number of bits used by other genetic algorithms to store the
real part of the population. The simplex is divided into about 1075 hypercubes

3The files containing these problems were downloaded from the URL http://people.brunel.
ac.uk/∼mastjjb/jeb/orlib/portinfo.html.

4The GMP library is available at http://gmplib.org.

14

with edges of length a ≈ 10−9. The number of layers of the whole simplex is
kmax ≈ 109. The population is formed by 100 chromosomes.

The new algorithm performs 13m iterations, so the number of crossovers
and mutations are comparable to those presented by Chang et al.5 [3]. After
obtaining the portfolio for each value of λ, we keep the integer part of the chro-
mosome and apply a quadratic programming algorithm to refine the real part.
Other parameters used in the experiments are CrossPerc = 60%, CrossProb =
50%, MutPerc = 70%, MutProb = 50%, MutProb2 = 10%. All of the tests were
performed on a DELL Precision 5400 workstation, with a Intel Xeon E5430 pro-
cessor (2,66 GHz, 4 CPUs), under the Windows Vista 64-bits operating system.

For all of the test sets, just a few assets of the optimal portfolio are changed
when λ ranges from 0 to 0.6. Besides, although the amount of money invested on
each asset may vary, most of them are kept at the lower level, suggesting that a
better portfolio would be obtained relaxing the cardinality constraint. For these
values of λ, all of the methods successfully found the optimal solution.

The main differences between the algorithms occur between λ = 0.8 and
λ = 1. In this case, diversification is the key to obtain a good solution, so the
percentage of investment is above the lower limit for most of the assets in the
portfolio. For these high values of λ, the method of Chang et al. has some
difficulty in keeping the solution inside the simplex, and is clearly outperformed
by the new algorithm.

Tables 1 and 2 show the objective function values of the solutions found by
the method of Chang et al. and the algorithm presented in Section 4, for the
last ten values of λ. Results for the Hang Seng index are not shown since both
algorithms arrived at almost the same solutions.

Table 1: Objective function values obtained by the method of Chang et al. and the algorithm
presented in Section 4 for the DAX 100 and FTSE 100 problem sets.

λ DAX 100 FTSE 100
New Chang New Chang

0.816 -1.044E-03 -1.045E-03 -7.685E-04 -6.375E-04
0.837 -8.697E-04 -8.697E-04 -6.298E-04 -6.298E-04
0.857 -6.983E-04 -6.985E-04 -4.971E-04 -4.736E-04
0.878 -5.336E-04 -5.337E-04 -3.701E-04 -3.689E-04
0.898 -3.793E-04 -2.534E-04 -2.484E-04 -1.458E-04
0.918 -2.380E-04 -1.043E-04 -1.328E-04 -7.185E-05
0.939 -1.106E-04 4.895E-05 -2.364E-05 -1.947E-05
0.959 -1.529E-06 7.621E-05 6.767E-05 9.770E-05
0.980 8.770E-05 1.432E-04 1.440E-04 1.900E-04
1.000 1.482E-04 1.989E-04 2.060E-04 2.365E-04

5The algorithm of Chang et al., performs one crossover and one mutation per iteration,
and stops after 1000m iterations.

15

Table 2: Objective function values obtained by the method of Chang et al. and the algorithm
presented in Section 4 for the S&P 100 and Nikkey 225 problem sets.

λ S&P 100 Nikkey 225
New Chang New Chang

0.816 -8.250E-04 -7,949E-04 -1.390E-04 -1.390E-04
0.837 -6.797E-04 -6.513E-04 -6.103E-05 -6.103E-05
0.857 -5.407E-04 -3.848E-04 1.335E-05 1.335E-05
0.878 -4.095E-04 -3.785E-04 8.161E-05 2.153E-04
0.898 -2.857E-04 -2.446E-04 1.420E-04 1.420E-04
0.918 -1.712E-04 -1.208E-04 1.950E-04 1.980E-04
0.939 -6.964E-05 -1.883E-05 2.404E-04 2.830E-04
0.959 1.984E-05 7.593E-05 2.737E-04 2.970E-04
0.980 8.553E-05 1.214E-04 2.935E-04 3.208E-04
1.000 1.345E-04 1.763E-04 3.048E-04 3.075E-04

A graphical comparison of the methods is presented in Figure 4, that shows
the percentage change between the objective function values, ∆f , given by the
formula ∆f = 100(fChang − fNew)/|fNew|.

0.816 0.837 0.857 0.878 0.898 0.981 0.939 0.959 0.980 1.000
0

20

40

60

80

100

λ

∆f
 (

%
)

Figure 4: Percentage change between the objective function values obtained by the new
algorithm and the method of Chang et al..

We observe in Figure 4 that, for 17 problems, the objective function values
obtained by the algorithm of Chang et al are at least 20% worse than those
obtained by the new algoritm. Besides, for 11 problems, the difference is above
40%, and for 4 problems, it exceeds 100%.

Now, let us take a closer look at the the efficient frontiers of the five capital
market indices. Clearly, these curves can be obtained not only from the best
solutions found for the fifty values of λ, but also using some nondominated points

16

0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

x 10
−3

2

3

4

5

6

7

8

9

10

11

x 10
−3

0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

x 10
−3

2

3

4

5

6

7

8

9

10

11

x 10
−3

Figure 5: The efficient frontier for the Hang Seng problem. On the left, the solution obtained
using the Chang et al. algorithm. On the right, the frontier generated by the new algorithm.

0 0.5 1 1.5 2 2.5 3

x 10
−3

1

2

3

4

5

6

7

8

9

10

x 10
−3

0 0.5 1 1.5 2 2.5 3

x 10
−3

1

2

3

4

5

6

7

8

9

10

x 10
−3

Figure 6: The efficient frontier for the DAX problem. On the left, the solution obtained using
the Chang et al. algorithm. On the right, the frontier generated by the new algorithm.

found during the application of the genetic algorithms. Figures 5 to 9 present
the efficient frontiers generated by both the algorithm of Chang et al. and the
genetic algorithm introduced in Section 5. The dots represent the nondominated
points obtained without using the quadratic programming local search strategy,
while the continuous curve is the efficient frontier for the problem without the
cardinality constraint, i.e. the curve obtained for problem (2).

Observing the left part of Figures 6 to 9, we note that the points obtained
using the new algorithm are much closer to the unconstrained efficient frontier
than the points generated by the algorithm of Chang et al.. This result is in
accordance with Figure 4, since the left part of the efficient frontier corresponds
to the higher values of λ. On the other hand, the upper right part of the
frontier is almost the same for both methods, as expected. One may note that
the distance between the frontier of the cardinality constrained problem and the

17

2 4 6 8 10 12 14 16

x 10
−4

2

3

4

5

6

7

8

x 10
−3

2 4 6 8 10 12 14 16

x 10
−4

2

3

4

5

6

7

8

x 10
−3

Figure 7: The efficient frontier for the FTSE problem. On the left, the solution obtained using
the Chang et al. algorithm. On the right, the frontier generated by the new algorithm.

0 0.5 1 1.5 2 2.5 3

x 10
−3

1

2

3

4

5

6

7

8

9

10
x 10

−3

0 0.5 1 1.5 2 2.5 3

x 10
−3

1

2

3

4

5

6

7

8

9

10
x 10

−3

Figure 8: The efficient frontier for the S&P problem. On the left, the solution obtained using
the Chang et al. algorithm. On the right, the frontier generated by the new algorithm.

2 4 6 8 10 12 14 16

x 10
−4

0

0.5

1

1.5

2

2.5

3

3.5

4

x 10
−3

2 4 6 8 10 12 14 16

x 10
−4

0

0.5

1

1.5

2

2.5

3

3.5

4

x 10
−3

Figure 9: The efficient frontier for the Nikkey problem. On the left, the solution obtained
using the Chang et al. algorithm. On the right, the frontier generated by the new algorithm.

18

curve of the uncostrained problem may be large for small values of λ, due to
the existence of lower limits of investment for the assets in the portfolio.

7. Conclusions and future work

In this paper, we propose two new genetic algorithms for minimization over
a simplex. The first algorithm requires the manipulation of very large integer
numbers. The second algorithm uses a simpler scheme, so it may be coded
in any programming language. The main feature of the algorithms is a new
chromosome representation that approximates the simplex by a finite number
of hypercubes.

The algorithms were applied to the solution of standard cardinality con-
strained portfolio problems, and shown a very good behavior when compared
to the method of Chang et al. [3].

In the future, we plan to combine a very low resolution chromosome rep-
resentation with the application of a local search strategy to a few individuals
at the end of each iteration of the algorithm. We believe that this scheme will
result in a efficient heuristic method for solving simplex constrained problems.

We also intend to compare our strategy to other chromosome representation
schemes, such as the one proposed by Chiam et al. [4], and extend the approach
to problems with more nonlinear objective functions.

References

[1] Bartholomew-Biggs, M.C. & Kane, S.J. A global optimization problem in
portfolio selection, 2007. To appear in J. Comput. Manag. Science.

[2] Bertsimas, D. & Shioda, R. Algorithm for cardinality-constrained quadratic
optimization, 2007. To appear in Comput. Optim. Appl.

[3] Chang, T.J.; Meade, N.; Beasley, J.E.; Sharaiha, Y.M. Heuristics for
cardinality constrained portfolio optimization. Comp. Oper. Res., 2000,
27(13):1271-302.

[4] Chiam, S.C.; Tan, K.C.; Al Mamum, A. Evolutionary multi-objective port-
folio optimization in practical context. Int. J. Autom. Comput., 2008, 5(1):
67-80.

[5] Devroye, L. Non-uniform random variate generation. New York: Springer,
1986.

[6] Di Gaspero, L.; di Tollo, G.; Roli, A.; Schaerf, A. Hybrid local search for
constrained financial portfolio selection problems. In: Integration of AI and
OR Techniques in Constraint Programming for Combinatorial Optimiza-
tion Problems, Lecture Notes in Computer Science, 4510. Berlin: Springer,
2007. p. 44-58.

19

[7] Fernandez, A. & Gomez, S. Portfolio selection using neural networks,
Comp. Oper. Res., 2007, 34(4):1177-91.

[8] Jobst, N.J.; Horniman, M.D.; Lucas, C.A.; Mitra, G. Computational as-
pects of alternative portfolio selection models in the presence of discrete
asset choice constraints, Quant. Finance, 2001, 1(1):1-13.

[9] Le Thi, H.A. & Moeini, M. Portfolio selection under buy-in threshold con-
straints using DC programming and DCA. Proc. of Int. Conf. on Serv.
Systems and Serv. Manag., 2006, p. 296 - 300.

[10] Maringer, D. & Kellerer, H. Optimization of cardinality constrained portfo-
lios with a hybrid local search algorithm, 2003, OR Spectrum, 25: 481495.

[11] Markowitz, H. Potfolio Selection. Journal of Finance, 7: 77-91, 1952.

[12] Mitra, G.; Kyriakis, T.; Lucas, C.; Pirbhai, M. A review of portfolio plan-
ning: models and systems. In: Satchell, S.E., Scowcroft, A.E. (Eds.), Ad-
vances in portfolio construction and implementation. Oxford: Butterworth
and Heinmann, 2003, p. 1-39.

[13] Moral-Escudero, R.; Ruiz-Torrubiano, R.; Suárez, A. Selection of opti-
mal investment with cardinality constraints. In: Proceedings of the IEEE
World Congress on Evolutionary Computation, Vancouver, Canada, 2006.
p. 23822388,

[14] Skolpadungket, P.; Dahal, K.; Harnpornchai, N. Portfolio optimization us-
ing multi-objective genetic algorithms. Proc. IEEE Congr. on Evolut. Com-
put., Singapore, Malaysia, 2007, p. 516-23.

[15] Streichert, F.; Ulmer, H; Zell, A. Comparing Discrete and Continuous
Genotypes on the Constrained Portfolio Selection Problem. In: Genetic
and Evolutionary Computation, Lecture Notes in Computer Science, 3103.
Berlin: Springer, 2004. p. 1239-50.

[16] Villela, P.F. An exact algorithm for portifolio optimization with cardi-
nality constraints (in portuguese). MSc dissertation, Departamento de
Matemática Aplicada, Universidade de Campinas, Campinas, Brazil, 2008.

[17] Weisstein, E.W. CRC concise encyclopedia of mathematics. 2.ed. Boca Ra-
ton: CRC, 2003.

[18] Xu, F.; Chen, W.; Yang, L. Improved particle swarm optimization for
realistic portfolio selection. Proc. of 8th ACIS Int. Conf. on Software Eng.,
Artif. Intel., Networking, and Paral./Distr. Comput., 2007, p. 185-90.

20

