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Abstract Topology optimization problems, in general, and satisfies certain conditions, such as an upper limit for the
compliant mechanism design problems, in particular, are eramount of material.
gineering applications that rely on nonlinear programming  The structure under consideration is under the action of
algorithms. Since these problems are usually huge, methodsternal forces, and must be contained into a design domain
that do not require information about second derivatives arQ. Once the domai® is discretized, to each one of its ele-
generally used for their solution. The most widely used ofments we associate a varialf¢hat is set to 1 if the element
such methods are some variants of the method of movingelongs to the structure, or 0 if the element is void. Since it
asymptotes (MMA), proposed by Svanberg (1987), and sds difficult to solve a large nonlinear problem with discrete
quential linear programming (SLP). variables,y is replaced by a continuous variatpes [0,1],
Although showing a good performance in practice, mostalled the element’s “density”.
of the SLP algorithms used in topology optimization lack a  However, in the final structureg is expected to assume
global convergence theory. This paper introduces a glpballonly 0 or 1. In order to eliminate the intermediate values of
convergent SLP method for nonlinear programming. The alp, Bendsge (1989) introduced ti®lid Isotropic Material
gorithm is applied to the solution of classic compliance-min with Penalization metho¢SIMP for short), which replaces
imization problems, as well as to the design of compliantp by the functionpP that controls the distribution of mate-
mechanisms. Our numerical results suggest that the new atal. The role of the penalty parametgr> 1 is to reduce of
gorithm is faster than the globally convergent version ef th the occurrence of intermediate densities.
MMA method. Topology optimization problems gained attention over
the last two decades, due to their applicability in several
engineering areas. One of the most successful applications
of topology optimization is the design of compliant mecha-
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In the next section, we present the formulation adopte@.1 Compliant mechanisms
for the basic topology optimization problem, as well as to
the compliant mechanism design problem. In Section 3, we
introduce a globally convergent sequential linear programA more complex topology optimization problem is the de-
ming algorithm for nonlinear programming. In Section 4, sign of a compliant mechanism. Some interesting formula-
we discuss how to avoid the presence of checkerboard likions for this problem were introduced by Nishiwaki et al.
material distribution in the structure. We devote Sectiaa 5 (1998), Kikuchi et al. (1998), Lima (2002), Sigmund (1997),
our numerical experiments. Finally, Section 6 contains thé®edersen et al. (2001), Min and Kim (2004), and Luo et al.
conclusion and suggestions for future work. (2005), to cite just a few.

No matter the author, each formulation eventually rep-
2 Problem formulation resents the physical structural problem by means of a non-
linear programming problem. The degree of nonlinearity of

The simplest topology optimization problem is the compli-the objective function and of the problem constrains vary
ance minimization of a structure (e.g. Bendsge and Kikuchirom one formulation to another. Besides, each one has its
1988). The objective is to find the stiffest structure that fit own idiosyncrasies that should be taken into account in the

into the domain, satisfies the bOUndary conditions and hqﬁ]p|ementaﬂon of a Specific a|gorithm for So|ving the Opti_
a prescribed volume. After domain discretization, this®ero mjzation problem.

lem becomes
min fTu Therefore, an optimization method that works well with
one formulation may be inefficient when applied to others.
S.t. Iﬁ(p)u =f In this work, we adopt the formulation proposed by Nishi-
zellvi pi <V @ waki et al. (1998), although some encouraging preliminary
= results were also obtained for the formulations of Sigmund
Pmin < pi < 1, i=1,...,Ng, (1997) and Lima (2002).

whereng is the number of elements of the domainjs the
density andv; is the volume of tha-th elementV is the
upper limit for the volume of the structurkis the vector of

nodal forces associated to the external loadskafm) is the and a fictitious load? is applied to the regiorf;z of the

stiffness matrix of the stru<_:ture. . . boundary of the domai®, as shown in Figure 1(a). This

When the SIMP model is used to avoid intermediate den- . . . . .

. . . second load defines the desired direction of deformation of
sities, the global stiffness matrix is given by

the ;> region.

Nishiwaki et al. (1998) suggest to decouple the problem
into two distinct load cases. In the first case, a lbads
applied to the regioii;: of the boundary of the domai€,

Nel

_ P . . .
K(p)= _ZPi Ki, To determine the optimal structure for this problem, we
= should maximize the mutual energy of the mechanism, satis-
whereK; is the stiffness matrix of thieth element. fying the equilibrium and volume constraints. This problem

The parametepmi, > 0 is used to avoid zero density el- represents the kinematic behavior of the compliant mecha-
ements, that would imply in singularity of the stiffness ma-nism.
trix. Thus, forp > pmin, matrixK(p) is invertible, and it is

possible to eliminate the variables replacing = K (p)~f After the mechanism deformation, the region eventu-

in the objective function of problem (1). In this case, theally contacts a workpiece. In this case, the mechanism must

problem reduces to be sufficiently rigid to resist the reaction force exertedHsy

_ workpiece and to keep its shape. This structural behavior of

”})'n fTK(p) f the mechanism is given by the second load case, shown in
Ng| Figure 1(b). The objective is to minimize the mean compli-

S.t. _Zvi p=V (2) ance, supposing that a load is applied;to and that there is
';min <<l i=1..ng no deflection at the regiof:.

This problem has only one linear inequality constraint, The maximization of the mutual energy and the mini-
besides the box constraints. However, the objective fancti mization of the mean compliance are combined into a single
is nonlinear, and its computation requires the solution of aptimization problem. In the discretized form, this prahle
linear systems of equations. is defined by
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Fig. 1 The two load cases considered in the formulation of Nishiwaki

et al. (1998).

3)

iZlVi pi <V

Pmin < pi <1, i=1,...,Ng.

In this problemf, andfy, are the vectors of nodal forces

associated to the loads andty, respectively, whil&K1(p)

This class of methods is well suited for solving large nonlin
ear problems due to the fact that it does not require the com-
putation of second derivatives, so the iterations are cheap
However, for most algorithms presented in the literature,
global convergence results are not fully established.

In this section we describe a new SLP algorithm for the
solution of constrained nonlinear programming problems.
As it will become clear, our algorithm is not only globally
convergent, but can also be easily adapted for solving topol
ogy optimization problems.

3.1 Description of the method

Consider the nonlinear programming problem

min f(x)
st ¢(x) =0, (5)
X| S X S XU7

where the function$ : R" — R andc(x) : R" — R™ have
Lipschitz continuous first derivatives, and vectars x, €
R"define the lower and upper bounds for the components of
X=[X1...%".

One should notice that, using slack variables, any non-
linear programming problem may be written in the form (5).

andK(p) are the stiffness matrices related to the load cases  gjpce f; and ¢ have Lipschitz continuous first deriva-

shown in Figure 1. The mutual energy is given tys,

tives, it is possible to define a linear approximation for the

andf uc represents the mean compliance that is to be minigpiective function and for the equality constraints of ) i

mized.

Since matrice& 1(p) andKz(p) are invertible, it is pos-
sible to eliminate the variables replacing; = Kl(p)‘lfa,
up = K1(p)fp andue = —K »(p)~* in the objective func-
tion of (3). The new problem is

in_ fo Ki(p) fa
P . TI KZ(P)_lfc

iZlVi pi <V

Pmin < pi <1,

(4)

S.t.

i:].,...,ne|

This problem has the same constraints of (2). Howevers.t. A(x)s+c(x) =0

the objective function is very nonlinear, and its compwtati
requires the solution of two linear systems of equations.

Other formulations, such as the one proposed by Sig-

mund (1997), also include constraints on the displacemen{ . ) .
nfar problems in the form (6). At each iteratikrof the al-

at certain points of the domain, so the optimization proble
becomes larger and more nonlinear.

3 Sequential linear programming

the neighborhood of a pointe R", so
f(x+9s) ~ f(x)+0f(x)'s=L(x,s)
and

o(x+8) ~ o(x) +A(X)s

whereA(x) = [Of1(x) ... Ofm(x)]" is the Jacobian matrix
of the constraints. Therefore, given a poin(5) can be ap-
proximated by the linear programming problem

min f(x) + Of(x)"s
(6)

X < X+S<Xy.

A sequential linear programming (SLP) algorithm is an
ferative method that generates and solves a sequence of lin

gorithm, a previously computed poirt® is used to gen-
erate the linear programming problem. After findigg an
approximate solution for (6), the variables of the original
problem (5) are updated according to

WD) — 50 g @)

Sequential linear programming (SLP) algorithms have been

used successfully in structural design (e.g. Kikuchi et al.

Unfortunately, this scheme has some pitfalls. First, prob-

1998; Nishiwaki et al. 1998; Lima 2002; Sigmund 1997).lem (6) may be unlimited even in the case problem (5) has



an optimal solution. Besides, the linear functions useckto d

In such situations, we useraerit functionto decide if

fine (6) may be poor approximations of the actual functionsx*) can be replaced by + s.. In this work, the merit func-

f andc on a pointx + sthat is too far fronk. To avoid these
difficulties, it is an usual practice to require the sgdp sat-
isfy the followingtrust regionconstraint
I8l < 6,

(8)

whered > 0, thetrust region radiusis updated at each itera-

tion of the algorithm, to reflect the size of the neighborhood

of x where the linear programming problem is a good ap
proximation of (5).
Including the trust region in (6), we get the problem

min Of(x)"s
s.t. A(x)s+c¢(x)=0
§<s<s

(9)

wheres = max{ —0,x —x } ands, = min{J,x, — x}.
However, unlesg® satisfies the constraints of (5), it is

tion is defined as

Y(x,8) =6f(x)+(1-6)¢(x),

wheref € (0, 1] is a penalty parameter used to balance the
roles of f and¢. If the merit function is sufficiently reduced
betweerx® andx(¥ + s;, then the step. is accepted.
However, it is not possible to define a fixed reduction for
the merit function. Thus, the step acceptance is based on the
comparison of the actual reduction gfwith the reduction
predicted by the linear model used to compsite

The actual reduction oy betweerx® andx® + s; is

given by
Area = OALG + (1 - 6)Argy

where

(11)

Opt_f

ed = F(X) — f(X+)

still possible that problem (9) has no feasible solution. In

this case, we need not only to impro¥éx + s), but also to

find a point that reduces this infeasibility. This can be done

for example, solving the linear programming problem

min M(x,s) = 3 [|A(x)s+c(x)|[5

st. & <s<g

seQ

(10)

wheres, = max{—0.85,x — x|}, s¢ = min{0.85,x, — x},
and Q is a set suitably chosen to simplify the searchdor
Clearly,M(x, s) is an approximation for the true measure of
the infeasibility, given by the function

6(x) = 3 llcx)I 2

After solving (10),x, f andc are updated, so (9) be-
comes feasible.

is the actual reduction of the objective function, and

f
Aed = 9(X) — §(x+ )
is the reduction of the infeasibility.

The predicted reduction of the merit function is defined
as
F,fct

Pred = BPI%EI+ (1_ 9) red>

where

opt
Pred -

~0f(0) s
is the predicted reduction dfand

P = M(x,0) — M(x, &)

I

One should notice that the trust region used in (10) idS the predicted reduction of the infeasibility.

slightly smaller that the region adopted in (9). This trisk i

used to give (9) a sulfficiently large feasible region, so the
objective function can be improved. As it will become clear

in the next sections, the choice oB0s quite arbitrary. How-

At the k-th iteration of the algorithm, the step is ac-
epted if the merit function is reduced at least by one tenth
of the reduction predicted by the linear model, i.e.

C

Ared > 0. 1Pred-

ever, we prefer to explicitly define a value for this and other

parameters of the algorithm in order to simplify the notatio

Problems (9) and (10) reveal the two conflicting objec-

If this condition is not verifiedd is reduced and the step
is recomputed. On the other hand, the trust region radius

tives we need to deal with at each iteration of the algorithmmay also be increased if the ratgeq/Peq is sufficiently

the reduction off (x) and the reduction af (x).
If f(x0 +5) << f(xM) andp (x¥ +5) << ¢ (x¥),
it is clear thatx + . is a better approximation thad® for

large.
The role of the penalty parameter is crucial for the ac-
ceptance of the step. Unfortunately, computthig also the

the optimal solution of problem (5). However, no straight-trickiest part of the merit function definition. It is easydee
forward conclusion can be drawn if one of these functions igrom (11) that it may be necessary to redécalong the exe-
reduced while the other is increased. cution of the algorithm to ensure feasibility. Howeverhist



penalty parameter decays too quickly in the first iterationsAlgorithm 1 General SLP algorithm.

the steps may become arbitrarily small. 1: while a stopping criterion is not satisfiedo
In this work, we follow a suggestion given by Gomes et 2:  Try to find a point, that satisfies
al. (1999) and define Asp=—C
large Asu §n A
6k = m'n{ek ) 6k p} 3. if sp could not be foundthen
4: dn — —0¢ (x®)
where 5: Determinea, the solution of

large N . min M(X“‘),adn)
6. " = {1+(k+1)1-1} min{1,6o,...,6c 1}, st §n§gdn§$’
a>
SUP — fot 6: # — E{dn
67 = suplO [0, 1]f| Fred = 0.5Feq (12) 7: Determines such thaM (x¥| ) < M(x™, ).
ct .
05 Ped if pOPt ;]_F)fct 8: else _ '
_ . 7Pfct_ opt |’ T Feg = 2 "red 9: Starting froms,, determines, the solution of
red red ) min Df(x)TS
1, otherwise. st As= ¢
large § <s<g

The parameteN > 0, used to computé,”~", can be

adjusted to allow a nonmonotone decreasé.of end if

11:  Determined € [0, Bmay
12:  if Areg > 0.1Peq then

13 xkt1) (k) 4 g
3.2 An SLP algorithm for nonlinear programming 14: if Areq > 0.5Peq, then
15: 1 — MIn{2.58, ||Xy — Xi |0 }
Let us definefy = Bmax= 1, andk = 0, and suppose that 16 else
a starting pointx(¥ € X and an initial trust region radius g eng‘ﬁl‘_ Omin
& > Omin > 0 are available. 19: O — 1
A new SLP method for solving problem (5) is given by 20:  else
Algorithm 1, where we denot& = A(x) and ¢ = c¢(x). 2L 5(%1; 0-2(%”50“00
Steps 2 and 7 of this algorithm were intentionally left gg )émax‘i_gli(

unspecified to make it more flexible. In Section 5, we deo4:  endif
scribe a particular implementation of this SLP method for25: end while
solving the topology optimization problem.
In the next subsections we prove that this algorithm is
well defined and converges to the solution of (5) under mild_emma 1 Suppose that is not ¢-stationary and thas,
conditions. could not be found. Then, after a finite number of step rejec-
tions,x® + s is accepted.

3.3 The algorithm is well defined
Proof If x¥ is not¢-stationary, then
We say that a poimnt € R" is ¢-stationaryif it satisfies the
Karush-Kuhn-Tucker (KKT) conditions of the problem
min ¢ (x)

xeX

dn=—00(x®¥) = —OM(x®, 0) = —ATc £0.

where Besides, defining

X={xeR"x <x<xy}.

In this section, we show that after repeating the steps of drdn
Algorithm 1 a finite number of times, a new iterat&td) 9= dTATAd,’
is obtained. In order to prove this well definiteness propert
we consider three cases. In Lemma 1, we suppose thas
not ¢-stationary and, could not be found. Lemma 2 deals and noticing thas}, < 0 andsy > 0, we get
with the case in whick® is not ¢-stationary, but there ex-
istss,. Finally, in Lemma 3, we suppose thdl is feasible

and _regular for (5), but does not satisfy the KKT conditionsE: min{ &, min {#.}7 min i . (13)
of this problem. dy >0 ( dpy J " dn<0 | dp,



Sincex® is not ¢-stationary,a = Ba, for somep e
(0,1]. Therefore,

M(0) ~M(sh) = M(0) ~M
= Badldn

(Bady )

B G2 PO 4T AT Ay

_ p (did? "5 (@
dTATAd, 2 dTATAd,

- <l3 - ’322) ad]dy

— (1-5) alenit

_ From (13) and the definition of, and s, there exists
d € (0,a] such that, for alb € (0, 8], we have||adp|. < J,
and

aHdnH% = HadnHOOHdnHZ > Hdn||25-
Thus,

Pr% = M(0) — M(s)

> M) - M) > (1-5 ) Idnles: a4)
Now, doing a Taylor expansion, we get
o(x" +s) = o(x) + A(x)sc + O}l 13).
o)
p(xM + ) = *IIC( ')l
- %c<x< DT e(x) 4+ c(x)TAKY)s,
4o AGI) AR+ O( s
= M(x, 5) + O(|scl[3)-
Analogously, we have
x4+ s) = L(xY, ) + O(|c][3)-
Therefore, ford sufficiently small,
Avred(8) = Pred(8) +0O(8%),
o)
lim Aved(0) ; Ped(0)| _ . (15)

Our choice off ensures thaBeq > 0. 5P';i,t Thus, from

(14), we get

0
Bed > (Z_B)HdnHZZ-

Sinceélinsﬁ(é) =0, we havef < 1 for ¢ sufficiently

small, so
o
Ped > ||dn||22~ (16)
From (15) and (16), we obtain
Ared(a) ’

m -1/ =0. 17
50| Pred(0) (17)
Therefore,Aieq > 0.1R¢q for o sufficiently small, and the
step is accepted. [ |

Lemma 2 Suppose that®) is not ¢-stationary and thas,
satisfies the conditions stated in step 2 of Algorithm 1. Then
after a finite number of step rejectiong¥) + s; is accepted.

Proof Let 97" be the solution of

min ]
s.t. As=—-c
g, <s<s

Sincex is not ¢-stationary, s/ > 0. Now, supposing
that the step is rejected times, we getd;; < 0.25'4.
Thus, after[logz 0.8@/\\5{{‘”4 iterations,s, is rejected
and Lemma 1 applies. [ |

Lemma 3 Suppose that¥ is feasible and regular for (5),
but does not satisfy the KKT conditions of this problers, If
always exists, then after a finite number of iteratimfd+ s
is accepted.

Proof If x is regular but not stationary for problem (5),
then we haved; = R (—Of(x))) # 0, whereR, denotes
the orthogonal projection onto the set

)s=0, $<s<$}

Let o be the solution of the auxiliary problem

Y= {SER”|A

min aOf(x)"d,
st adeY
a>0.

(18)

Since (18) is a linear programming probleard belongs
to the boundary o¥. Therefore, iféx < min{xy — X}, then
|ad|le = &, which means thatr = &/||d¢||... Besides,

—0f(x®)Tdy/||d | > 0, SO we have
L(x®,0) —L(x®, ady) = —aOf(x®)Td,
& T
= X Of(x®)Td
T
=no (19)



Combining (19) and the fact thag is the solution of (9), Lemma 7 Suppose that Algorithm 1 generates an infinite

we get sequencéx¥}. Then the sequend is convergent.
PP = L(x®,0) - L(x¥, &) Proof See Lemma 6 of the paper by Gomes et al. (1989).
> L(x®,0)—L(xM, ady) = n & In order to prove the main theorem of this section, we

On the other hand, sinoé¥ is feasible, need an addltlor_lal compactness hypotheS|s, triviallyfieelri
when dealing with bound constrained problems such as (5).
K oy _ K o) —
M(X< >’0) - M<X< )73) =0. Hypothesis H1.The sequencéx(®¥} generated by Algo-

rithm 1 is bounded.

Thus, 6 = min{1, 6%} is not reduced along with, and
Theorem 1 Let{x®} be an infinite sequence generated by
_ g, popt
Ped = kFey = 6N & (20) Algorithm 1. Suppose that H1 holds. Then every limit point

Since (15) also applies in this case, we can combine #f {x*'} is ¢-stationary.
with (20) to obtain (17). Therefore, far sufficiently small,  proof This result can be easily obtained from the proof of

Aved > 0.1Req and the step is accepted. ®  Theorem 1 presented in the paper by Gomes et al. (1999),
replacinglk by f(xx).

3.4 Every limit point of{x¥} is ¢-stationary
3.5 The algorithm finds a critical point

As we have seen, Algorithm 1 stops whel is a station-

ary point for problem (5); or wher™ is ¢-stationary, but In this section, we show that there exists a limit point of

infeasible; or even whex(¥ is feasible but not regular. the sequence of iterates generated by Algorithm 1 that is a
Following the steps adopted by Gomes et al. (1999), wetationary point of (5). Most lemmas presented below are

will now investigate what happens when Algorithm 1 gener-based on the following hypothesis.

ates an infinite sequence of iterates. Our objective is tegpro

that the limit points of this sequence apestationary. Hypothesis H2.Let s, be the step generated by Algorithm

1 to reduce the infeasiblity, which means tBat s, if this
Lemma 4 Suppose that* € X is not a¢-stationary point ~Vector exists, o&, = s (see line 7 of the algorithm) i,

and that Algorithm 1 is applied ta € X satisfying|x —  could not be found. Ther(g|[2 < O([|c(x™)]|2).
X2 < . ;I'hen there exist, &7, c1 > 0 such that Rq > This hypothesis holds if, for examplg, is obtained as
c1min{d, ; }. the solution of the linear programming problem
Proof If there existss,, then65"P = 1 andPeq > PLS =  min M, (z +Z')
IM(0) = 3¢(x), for all 6. Thus defininge, = 3¢ (x) and  sit. Asp—z +zF =—c (21)
o, =1, we get the desired resullt. §<sH<s

If s, cannot be found, then the proof of Lemma 3 from z,z">0

the paper by Gomes et al. (1999) applies, replacing the con-

stant 0.9 by 1. In this case; = 32||D(l>( N2 starting froms,.

Let's, be an optimal basic feasible solution of problem
Lemma 5 Suppose that* € X is not¢-stationary and that  (21). Ifz~ =z" =0, then§, = —B~’c, whereB is a nonsin-
Algorithm 1 is applied tox € X satisfying||x — x*||> < &.  gular matrix formed by a subset of the columnstofThus,
Then there existy, 6, > 0 such that, ifd < &5, then Aeq >  Hypothesis H2 is trivially satisfied.

0.1Peq. On the other hand, # orz" have nonzero components,
we may write§, = B 1(—c+z" —z"), so

Proof See Lemma 4 of the paper by Gomes et al. (19®9). B2 < H|371|| |—c+z 7|
2= 2| — —Z'2

Lemma 6 Suppose that* is not@-stationary and K is an < |\B*1||2 (Icllz+ 1z =z |l2)

infinite set of indices such that < HB—1||2 (Icll2+ 1z~ — 7+ I1).

lim x® = x*. Noting that||z~ + z*||1 is just the objective function of
keKy

problem (21) and thdtz~ — z*||1 = ||c||1 if s, = 0, we may
Then{& |k € K1} is bounded away from zero. Moreover, Write
there exists £> 0 such that, for ke Ky sufficiently large, we |snll2 < |\Bfl||2(HCH2+ llcll2)

have Aed = 2 < (1+ V) B2l 2
Proof See Lemma 5 of the paper by Gomes et al. (1989). so H2 also holds in this case. [ |
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Lemma 8 Letx be a point satisfyingic(x)||2 > 8. In this
case, there existgc> 0 such that

M(x,0) = M(x,5n(x, 8)) = codllc(x) |2

whenever we perform an iteration of Algorithm 1 startingd; =

fromx.

=0, so

285l

Proof If §, = s,, thenM(&,)

M(0) ~ M) = 7 c() 3 >

Therefore, definingo = 3/2, we obtain the desired result.

On the other hand, &, does not exist ang, = s, then
M(0) — M (%) > M(0) — M(s). (22)
Let o be the solution of the unrestricted problem

minM(—a ¢ (x)).

In this case,
 OpTO)
O B TAKTANDP () @3)

From the definition ofsd, we haves! = —yaO¢(x),
wherey € (0, 1]. Thus, from (22) and (23), we get

|wm—M@g>Mm) M(—ya ¢ (x))
:..7f”2D¢ ()TAC)TAX)O¢ (%)
+yac(x)TAX) D¢ (x
- vy (O9(x)T 09 ()2
=v(1-3)5 06 () TA)TA(X) D¢ (X)
_y(1-Y) 08Xl
=¥(1-2) facong e
|

IAK) T2
2v(1-3) A -

Proof Since the subsequen@!e(k)}keK1 converges to a fea-

sible and regular point, there exists > 0 such that, for

x € {x®0 ke Ky, k>ko}, steps, is defined.

Analogously to what was done in Lemma 3, let us define
Pr(—Of(x®)), where

I ={seNAX))|x <X+s+s< Xy},

and N(A(x)) denotes the null space @f(x). Let us also
denotes! the solution of

min L(X,$+S) = f(x) + Of(X)T (s, +9)
s.t. s=tdi, t>0

lsh+ 8w <o

X <X+s+s<xy

(24)

After some algebra, we see t@tz td; is also the solu-
tion of

min (Of(x
t

di)t
st 0<t<t,

)7
<
where
t= min{l,Al,Az},
{6+&im+%—m}

A1 = min

<0l —dy —0
O—Sy Xy —X—Sn
ot

Now, since (24) is a linear programming problem and
Of(x)"d; < 0, we conclude thdt=t. Besidest = 1 satisfies
X <X+ +S< Xy, SO

- O+ L fO0—s
i pnt S s Tet

(25)

Remembering thag; is the solution of (9), we obtain

Let g1 anday, be, respectively, the greatest and smallest

singular values ofA(x), and suppose that this matrix has L(sn) —

full row rank (the extension to the casank(A(x)) < mis
straightforward). In this case,

M(0) ~M) > y(1- ) 2 m||c¢< x)[3
>y(1-2) %’%‘BcSIIC(X)Hz.

Thus, definingso =y (1—
]

Lemma 9 Let {x¥} be an infinite sequence generated by

) G—%B we prove the lemma
2 O'f ! p )

L(s) > L(s) — L(sa+ € = —T0F ()T,

SincePr (—0Of(x)) is a continuous function ox, andx*
is regular and feasible, there exggt ¢, > 0 andk; > ko

(26)

such that, for alk € {x® |k € K1, k > ky },

1dt]|eo < 1 (27)
and

—0f(x)Tdy > ¢ (28)

From (25) and the fact thé|| < 0.8, we have that

Algorithm 1. Suppose thdk(® }ck, is a subsequence that { min{l 0.20 }

converges to the feasible and regular poiiithat is not sta-
tionary for problem (5). Then, there exist,ki,d’ > 0 such
that, forx € {x¥ |k € K1, k> k; }, we have

L(X,5) — L(X,S) > c1min{J,d'}.

thin{l 025} =

"l dtle
Thus, from (27) we obtain

02 . (¢
Cllmln{(lz,5}. (29)

¢



Combining (26), (27), (28) and (29), we get, forak  we get
{x® |k € Ki, k> ko},
Pred Z B[L(X70) - L(XvsC)]

02c, . (¢
L(sn) —L(s) 2 c mln{o 2 5} Thus, from (30), we obtain
_ _ . _ 2 Pred > 8cimin{d, &'} — O(||c(X)]|2)-
The desired results is obtained takiog= OC,C/Z and red Lming } (lleea)l)
c 1 Since0 is not increased if the step is rejected, we can
5 =1 B say that, whilex; is not accepted,
0.2
Lemma 10 Suppose that H2 holds, as well as the hypothePred > 8cimin{3, 8’} — O([|c(x)]|2).- (31)
ses of Lemma 9. Then there exitcy, ko > 0 such that, _ _
whenevex {X(k) Ik € Ky, k> ko) and|[c(x)||2 < Bék, On the other hand, using a Taylor expansion and the fact
thatOf andA are Lipschitz continuous, we obtain
L(x,0) —L(X,S) > comin{J, &'}
Ared — Pred| < O(87).
and ~
Ihus, there existd € (0, 8) C (0, dmin) Such that, i©d €
6°'P(x,0) = 1, (0, 5) andx € {x® |k € Kq, k > ks,

where65UPis given by (12) and’ is defined in Lemma 9. 5

~ 0
. . ) |Ared — Pred| < 901%-
Proof As in Lemma 9, let us suppose ttstis defined. In

this case, we have Let us defineks > k3 such that, for allx € {x¥|k e

K1, k> ka}, the termO(||c(x)||2) of (31) satisfies
Now, from Lemma 9 and Hypothesis H2, we get o(/lc(X)||2) <0 o
- 20

L(0) ~L(s) > cimin{3, &'} —O([c(x) ). (30) |1 this case.

forallx € {x® |k € Ky, k> kp}. 5
Thus, choosing conveniently, we prove the first state- Pgg > fc min{J, &'} — Bc,— >0
ment of the Lemma.
To prove the second part of the lemma, we note thatgesijdes, if5 € [5/10, 5), then
from Hypothesis H2,

o) o) o)
P = M(0) ~M(s) = M(0) ~M() < O(|lc(x) ). Pea > 80175 — 156 = Br 5o,
sup _ - ~
Thus, forg>P=1, we have Therefore, for alld € [5/10, ) and allx € {x¥ |k e
Ped— 0.5P% — PO 0.5p!% > K1, k> ks}, we have
cmin{3, &'} —O(||c(X)|2). |Aved — Predl o5
Therefore, for an appropriate choice Bf we get the Pred o

desired It. 5/10, 8
esired resu which implies that, for somé < [5/10, 8), the step is ac-

Lemma 11 Suppose that H1 and H2 hold, as well as thecepted. Thusé is bounded away from zero fdr € Ky,
hypotheses of Lemma 9. Thém 6, = 0. k> ka, SOPeq is also bounded away from zero.

k—eo SinceAreq > 0.1Pq, the sequencéx} is infinite and
Proof Suppose, for the purpose of obtaining a contradictionthe sequencéti} is convergent, we conclude thgi(x, 6)
that the infinite sequende } does not converge to 0. Since, IS unbouded, which contradicts Hypothesis H1, proving the
from Lemma 7{ 6} converges, there must exist> k, and lemma. u
6 > 0 such thaBy > 6 for k > k.

Now, suppose that € {x<k> Ik €Ki, k > ks}. Once Lemma 12 Suppose that the hypotheses of Lemmas 8 to 10

hold. Then, ifx € {x¥ |k € Ky, k > ko} and |c(x)||2 > B9,
M(x,0) — M(x,s) > 0, the ratio 6/6°"Pis uniformly bounded.
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Proof Observe that, whe@SYP+£ 1,

sup __ Pred
ep_zmx—%m
_ M(0) —M(sn)
2[M(0) =M(sn) —L(0) +L(so)]

From Hypothesis H2 and Lemma 8,xfe {x® |k ¢

K1, k> ky}, we have that

1 L(s) —L(sn)  L(s)—L(0)
7555 = 1 10) —Ma) * MO~ (s
IL(0) — L(sn)]
=1 M)~ M(s)
O(lle)ll2) _
< 14 along, = L0/
Therefore,d/6°Pis bounded. [

Lemma 14 Let {x¥} be an infinite sequence generated by
Algorithm 1. Suppose that all of the limit points{of*) } are
feasible and regular and that Hypotheses H1 and H2 hold.
Then, there exists a limit point ¢k} that is a stationary
point of problem (5).

Proof See Lemma 13 of the paper by Gomes et al. (1999).

Theorem 2 Let{x®} be an infinite sequence generated by
Algorithm 1. Suppose that hypotheses H1 and H2 hold. Then
all of the limit points of{x(¥)} are ¢-stationary. Moreover, if

all of these limit points are feasible and regular, thereséi

a limit point x* that is a stationary point of problem (5). In
particular, if all of the ¢-stationary points are feasible and
regular, there exists a subsequencex#} that converges

to feasible and regular stationary point of (5).

Proof This result follows from Theorem 1 and Lemma 14.

Lemma 13 Suppose that the hypotheses of Lemmas 8 to 1!)

hold. Then there existsk> ko, 6 € (0, 1] such that, ifx €
{xW ke Ky, k>ks},|[c(x)||2> BS andB < B, then Aeg >
0.1Pyg.

Proof From the fact thaflf (x) is Lipschitz continuous, we

may write
Ared = B[F(X) = f(X+5)] + (1= 8)[p(X) — (X + )]
= 6[L(0) ~ L(s) +O(5)]

(L= 0)[cx)|3 ~ l|le(x+sn)[13] /2.
SinceA(x) is also Lipschitz continuous, we have

le() 13— lle(x + ) 13
= ~STA)TA(X)% — 25 A(X)Te(x)
+le(x)[|20(8%) +0(3°)
= 2[M(0) — M(so)] + [[c(x)[|20(8) + O(8°).
Thus,
Aved = O[L(0) — L(sc) +O(8%)] + (1 - 6)[M(0)
~M(s) +[le(x)[|20(8%) +0O(8°)]
= Pea+ 00(8%)+(1-6)[[|c(x)[20(8%)+0O(8°)]-
Now, supposing thdtc(x)||2 > Bd, we have
|Aved — Pred| < ]|c(x)[[20(8) + [|c(x) [ 20(8).

Since our choice oB ensures thaBeq > 0.5[M(0) —

(32)

M(sc)], Lemma 8 implies that, fok € Ky sufficiently large,

Co
Prea > Sc(x)]20,

509||c(X)||2/Pred is uniformly bounded. Then, dividing both

sides of (32) byPeq, we get

A,

oy~ 1 £0(6)+0(8) < 0(8) + O(e(x)2/B). (33)
re

which yields the desired result. [ |

4 Filtering

It is well known that the direct application of the SIMP
method for solving a topology optimization problem may
result in a structure containing a checkerboard-like nieter
distribution (e.g. Daz and Sigmund 1995). To circumvent
this problem, several regularization schemes were prabose
The most commonly used schemes are based on density or
sensitivity filters, due to their simplicity and ease of iyl
mentation (e.g. Bruns and Tortorelli 2003; Sigmund 1997).
However, more elaborate approaches, such as the the Sinh
method of Bruns (2005) and the morphology-based filters
proposed by Sigmund (2007), are also gaining attention.

In this section, we review some of the filters that can be
used in conjunction with our SLP method to solve topology
optimization problems.

4.1 Sensitivity filter

Perhaps, the most widely used method for avoiding checker-
board patterns is the sensitivity filter proposed by Sigmund
(1997/2001). In this filter, each componenht /dp; of the
gradient off (the objective function in (5)) is replaced by

a weighted mean of the derivatives biwvith respect to the
densities of the elements that belong to a fixed neighborhood
B; of element. Mathematicallyg f /dp; is replaced by

~ of
_ Hipj =—
5t % Pap
Fy ~ ) *17"'7ne|a (34)
2pi O H;
JEB;
where
5. ) I'min—Sij, if j € B,
Hy = {0, otherwise, (35)
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is a weight factor and;; is the Euclidean distance between where

the centroids of the elemeritand j. exp(—2 /2(1/3)2 .
Although having a good performance in practice, theg, i (s)) = W ifsj <r, (38)
sensitivity filter has one serious disadvantage: the in@mp 0 ifsj >r,

ibility betweenOf andf prevent us from using to measure
the progress of the algorithm used to solve (5). To circum-
vent this problem, we can replace the objective function

Sij is the Euclidean distance between the centroids of ele-
mentsi andj, and

of the topology optimization problem by W= % wi(sj)- (39)
Nel Ne i
p)=<t(p) +_Zgi )i+ Zh' ))log(p).  (36) The filtered densities must be used both in the objective
1= . . .
function and in the constraints.
where
( (k)) A . af(p™) 4.3 Morphology-based filters
gi(p) = =~ — _
; Hj on Sigmund (2007) also introduced a family of filters based on
15 the dilation and the erosion image morphology operators.
and The idea behind the dilation operator is to replace the
. af(p™) density of an elemeritby the maximum of the densities of
2 _Hj T the elements that belong to a neighborh@&pdTo avoid the
hi(p®) = I€B;, 7 _ op; . discontinuities produced by the max function, Sigmund uses
% H;j a continuous version of the operator, replagmy
J€B;
ex -
and{ > 1 is a penalty factor used to balance the original . 1 ngi PBe;)
function f and the two terms introduced i‘n pi=5lo 1 ’ (40)
It must be noticed that, in (36), bogn(p™) andh;(p™®) i

are updated only at the beginning of iterationf the SLP fori—1..
algorithm, so they are treated as constants during the com- The effect of the erosion operator i opposite to the one

putation ofs.. o o .
. e ok produced by dilation. In its discrete form, the dengityis

itis not difficult to show that, ipp = p®), then replaced by the minimum of the densities of the elements
af(p) 5\f(p(k)) in B;. Again, to allow the use of this operator in conjunction

ap = op with an gradient-based optimization algorithm, a continio

version was proposed by Sigmund (2007) st replaced

Besides, if the sequence of iterap¥ converges t@*, the by
optimal solution of the problem, then

- _ 5 B p)
j€B;

fori=1,...,ne
It is easy to see that

(41)

lim

We also observe that the terf{, hi(p®))log(pi) in
(36) pusheg; down to zero, reducing the occurrence of in-
termediate densities.
lim gy = maxp;, and I|m pI mlnp,
B—o0 J€B;

4.2 Density filter Unfortunately, choosing a largé may result in numeri-

cal instabilities. Thus, Sigmund (2007) suggests to stiint w

a smallf and increase this parameter gradually.

Sigmund also combines these two operators to gener-
ate other filters. The open operator, for example, is obthine
applying erosion after dilation, while the close opera®or i
generated using dilation after erosion.

Wi (Sj)p_ 37) The main inconvenience of these filters is that they turn
: the volume constraint into a nonlinear inequality constrai

Another very simple filter was proposed by Bruns and Tor-
torelli (2003) and works directly on the densitjgsFor each
elementi, this filter replaceg; by a weighted mean of the
densities of the elements belonging to a neighborhgod
The new density is given by
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4.4 Sinh filter On the other hand, when the constraints given in Step 2
are incompatible, we need to compute a painsatisfying
The Sinh method of Bruns (2005) combines the density filv (xK, s.) < M(x®, ) at Step 7. If the solution obtained
ter with a new scheme for avoiding intermediate densitiespy the simplex algorithm at the end of phase 1 satisfies this
replacing the power function of the SIMP model by the hy-condition, it can be defined a@s. Otherwise, we can sim-
perbolic sine function. ply sets; = . Therefore, if the two-phase simplex method
In the Sinh method, two density measures are used. Thig used, the computation effort spent at each iteratiorecorr
first one,ni(p), is employed in the objective function of the sponds to the solution of a single linear programming prob-
topological optimization problem, while the secomgd(p),  lem.
replaces the true density in the constraints. If an interior point method is used as the linear program-
Bruns (2005) has proposed several definitionsfidip)  ming solver instead, then some care must be taken to avoid
andnz(p). The basic Sinh method is obtained combining  solving two linear problems per iteration. A good alterveti
is to try to compute Step 9 directly. In case the algorithm

Mm(p)=p, 1=1,....7%, (42) " fails to obtain a feasible solution, then Steps 5 and 7 need to
and be performed. Fortunately, in the solution of topology opti
. mization, the feasible region of (9) is usually not empty, so
1-— sinh{p[1 (n(p)]}7 i=1,...,Ng, (43) this scheme performs well in practice.

r)2i (p) = Slnf‘(p)

whereq(p) is computed according to (37)—(39), apds a
penalty factor. 5.2 Description of the tests
One disadvantage of this approach is that, due to the
presence of the sinh function in (43), the volume constraintn order to confirm the efficiency and robustness of the new
becomes nonlinear. algorithm, we compare it to the globally convergent version
of the Method of Moving Asymptotes, the so called Conser-
vative Convex Separable Approximations algorithm (CCSA
5 Computational results for short), proposed by Svanberg (2002).
We solve four topology optimization problems. The first
In this section, we present one possible implementation fofyo are compliance minimization problems easily found in
our SLP algorithm, and discuss its numerical behavior whegne Jiterature: the cantilever and the MBB beams. The last
applied to the solution of some standard topology optimizagyg are compliant mechanism design problems: the gripper
tion problems. and the force inverter. All of them were discretized into 4-
node rectangular finite elements, using bilinear interjuda
functions to approximate the displacements.
In our experiments with compliant mechanisms, we use

Steps 2, 5, 7 and 9 constitute the core of the SLP algorithﬂhe Nishiwaki et al. (1998) formulation mentioned in seatio

The implementation of the remaining steps is straightfor-z' Some preliminary results with the formulations of Lima

ward (2002) and Sigmund (1997) gave similar results.

Step 5 is just a one-dimensional quadratic convex opti- We alsq analyz_e the effect of the applicatiqn of the filters
mization problem. The solution of this problem is given by presented in Section 4, to reduce the formation of checker-
board patterns in the structures.

. { c'Adp, _ {#. } {§n }} The SIMP strategy was used in combination with the
a=min min LS. maxq — .

5.1 Algorithm details

~dTATAdp dy >0 Oy J "dn <0 | sensitivity, the density, the dilation and the erosion rfiiite
In all cases, the penalty parametewas set to 1, 2 and 3,
Step 2 of the SLP algorithm corresponds to the standardonsecutively. For the sinh method, the parampigiven in
phase 1 of the two-phase method for linear programming. (43) was set to 1 to 6, consecutively.
If a simplex based linear programming function is avail- ~ The constanf = 100 was used in (36) to define the ob-
able, thers, may be defined as the feasible solution obtainedective function when the sensitivity filter is adopted. Fug
at the end of phase 1, supposing that the algorithm succeed#ation and erosion filters, we appy = 0.2, 0.4, 0.8 and
in finding such a feasible solution. In this case, we can proi.6, consecutively, for each value pf(see equations (40)
ceed to the second phase of the simplex method and soleid (41)).

the linear programming problem stated at Stép 9

routine is necessary to ensure that not only the objective ihmdbut
1 One should note, however, that the bounds on the variablemdefi also the upper and lower bounds on the variables are chanteeddre
at Steps 2 and 9 are not the same. Thus, some control over the simplpRases.
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When the SIMP method is used apd= 1 or 2, the al- Table 1 Results for the cantilever beam
gorithm stops ifA f, the difference between the objective
function of two consecutive iterations, falls below £0For
p= 3, the algorithm is halted i f < 10~3 for three succes- O filter
sive iterations. For the sinh method, we stop the algorithm _SLP 0.10 ~ 70.3013 298 109.27

Method d Objective Iterations Time (s)

wheneverA f falls below 1073 if p= 1 2 or 3, gnd require Rca?iﬁ 0.1:'-3 7%)'3;;4 0.55;221 %éfézs
thatAf < 102 for three successive iterationsgf= 4, 5 or —
6. Besides, we also define a limit of 500 iterations for each Sensiivity flter {min = 1.5)
. SLP 0.05 179.5024 105 49.41
value of the penalty parametgr that is used by both the CCSA 015 178.5657 352 54631
SIMP and the sinh methods. Ratio - 1.005 0.298 0.090
All of the tests were performed on a personal computer, pensity filter ¢min = 2.0)
with an Intel Pentium D 935 processor (3.2GHz, 512 MB SLP _ 0.05 51.6859 381 180.80
RAM), under the Windows XP operating system. The algo- CCSA 0.15  81.6914 947  2171.00
rithms were implemented in Matlab. Ratio - 1.000 0.402 0.083
Dilation filter (rmin = 1.0)
SLP 0.10 87.6386 1058  691.20
5.3 Cantilever beam design CRcast;Q O‘O? 83';322 0.17%(;0 82%Séi’o
The first problem we consider is the cantilever beam pre- Erosion filter {min = 1.0)
sented in Fig. 2. SLP 0.10 85.2952 953  557.08
CCSA 0.05 855921 1416  2168.50
We suppose that the structure’s thickness4slcm the Ratio - 0.997 0.673 0.257
Poisson’s coefficient i = 0.3 and the Young's modulus  sinh filter ¢min = 2.0)
of the material isE = 1N/cn?. The volume of the optimal SIP 005  96.0394 818 46796
structure is limited by 40% of the design domain. A force CcCSA 0.15  96.0574 2216  6019.20
f = 1N is applied downwards in the center of the right edge _ Ratio - 1.000 0.369 0.078
of the beam.

The results presented in Table 1 show a clear superi-
ority of the SLP algorithm. Although both methods suc-
ceeded in obtaining the optimal structure with all of the fil-

alt |30em ters (with minor differences in the objective function val-
l,f ues), the CCSA algorithm spent much more time and took
more iterations to converge.
[ a

60 cm
5.4 MBB beam design
Fig. 2 Design domain for the cantilever beam.
The second problem we consider is the MBB beam pre-
sented in Fig. 4. The structure’s thickness, the Young's-mod
The domain was discretized into 1800 square elemenigjus of the material and the Poisson’s coefficient are the
with Imn? each. The optimal structures for all of the com- same used for the cantilever beam. The volume of the op-
binations of methods and filters are shown in Figure 3. timal structure is limited by 50% of the design domain. A
Table 1 contains the initial trust region radidg)used force f = 1N is applied downwards in the center of the top
to solve this problem, as well as the numerical results obedge of the beam.
tained, including the optimal value of the objective fupati
the total number of iterations and the execution time. I8 thi
table, the rows labeleRatio contain the ratio between the V
values obtained by the SLP and the CCSA algorithms. A ”s l A
cm|

ratio marked in bold indicates the superiority of SLP over
CCSA. The radius of each filtery,,, is given in parenthe-
ses, after the filter's name.

The cantilever beams shown in Figure 3 are quite sim-
ilar, suggesting that all of the filters efficiently reducée t
formation of checkerboard patterns, as expected. Fig. 4 Design domain for the MBB beam.

<

150 cm %
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Fig. 3 The cantilever beams obtained using various filter and methmticmtions. The odd columns present the topologies generatibe ISt P
method, while the even columns present the topologies found@§AC The two columns on the left were obtained using no filter,dénsity,
and the erosion filters. The last two columns present the mechanigaisexbusing the sensitivity, the dilation, and the sinh filters

The domain was discretized into 3750 square elements Again, the structures obtained by both methods are simi-
with 1mn? each. The optimal structures for all of the combi- lar. The same happens to the values of the objective function
nations of methods and filters are shown in Figure 5. Due tas expected. Table 2 shows that the SLP algorithm performs
symmetry, only the right half of the domain is shown. Tablemuch better than the CCSA method for the MBB beam. In
2 contains the numerical results obtained for this problem. fact, the CCSA algorithm fails to converge in 1500 iterasion

Table 2 Results for the MBB beam

Method d Objective Iterations Time (s)
no filter
SLP 0.05 166.6435 313 107.36
CCSA 0.15 166.8490 362 602.39
Ratio - 0.999 0.865 0.178
Sensitivity filter ¢min = 4.0)

SLP 0.05 980.2053 76 45.39
CCSA 0.05 958.5473 573 968.66
Ratio - 1.023 0.133 0.047

Density filter ¢min = 5.0)

SLP 0.05 236.2687 921 1046.00
CCSA 0.10 236.2687 1500 5339.40
Ratio - 1.000 0.614 0.196

Dilation filter (rmin = 2.0)

SLP 0.10 216.7414 1293 1094.20
CCSA 0.05 226.8034 1500 8394.70
Ratio - 0.956 0.862 0.130

Erosion filter ¢min = 2.0)

SLP 0.10 219.2267 1348 971.11
CCSA 0.05 219.5075 1500 2344.60
Ratio - 0.999 0.899 0.414

Sinh filter ¢ min = 3.0)
SLP 0.05 240.3675 1014 673.23
CCSA 0.15 229.2998 2688  7043.90
Ratio - 1.048 0.377 0.096

for three filters (although the solutions found in these sase
are equivalent to those obtained by the SLP method).

5.5 Gripper mechanism design

Our third problem is the design of a gripper, whose domain
is presented in Fig. 6. In this compliant mechanism, a force
f4 is applied to the center of the left side of the domain, and
the objective is to generate a pair of forces with magnitude
fp at the right side. For this problem, we consider that the
structure’s thickness is = 1mm the Young’s modulus of
the material isE = 210000N/mn? and the Poisson’s coef-
ficient is 0 = 0.3. The volume of the optimal structure is
limited by 20% of the design domain. The input and output
forces arefy = f, = 1N. The domain was discretized into
3300 square elements withrin?.

Figure 7 shows the grippers obtained. Due to symmetry,
only the upper half of the domain is shown. Table 3 summa-
rizes the numerical results.

The grippers shown in Figure 7 and the results presented
in Table 3 suggest that there exists a strong correlation be-
tween the length of the vertical bar at the left of the grifgper
mouth (the vertical bar at the bottom right part of the figure)
and the quality of the solution. In fact, the longer the Hae, t
better is the objective function value found. Unfortungatel
it seems that each type of structure obtained corresponds to
a local minimum of the nonlinear programming problem, so
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Fig. 5 The MBB beams obtained using various filter and method combimatibhe odd columns present the topologies generated by the SLP
method, while the even columns present the topologies found@AC The two columns on the left were obtained using no filter,dénsity,
and the erosion filters. The last two columns present the mechanigaisezbusing the sensitivity, the dilation, and the sinh filters

LN A

5
# '

Fig. 7 Grippers obtained using various filter and method combinati®he.odd columns present the topologies generated by the SLRdyeth
while the even columns present the topologies found by CCSA.tiMo columns on the left were obtained using no filter, the dgreitd the
erosion filters. The last two columns present the mechanisms obtasimggithe sensitivity, the dilation, and the sinh filters

F 60 mm
T
15mm
f—
A 20mm
60mm —=
fa
v

Fig. 6 Design domain for the gripper.

in some cases the algorithms are attracted to points that sat
isfy the KKT conditions but are not global minima.

Although the SLP algorithm has obtained the best solu-
tion for only three of the filters, it spent much less time to
obtain the optimal solution in all cases. In fact, the SLR rou
tine always took less than 1/5 of the time spent by the CCSA
method.

5.6 Force inverter design

Our last problem is the design of a compliant mechanism
known as force inverter. The domain is shown in Fig. 8. In
this example, an input forck is applied to the center of the
left side of the domain and the mechanism should generate
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Table 3 Results for the gripper mechanism

Method %) Objective  Iterations  Time (S)
no filter
SLP 0.10 —4.6685x 10° 141 98.32
CCSA 0.05 —2.2525x 1(° 703  2679.70
Ratio - 2.073 0.201 0.037
Sensitivity filter ¢min = 1.5)
SLP  0.05 —7.3034x1C° 52 43.93
CCSA 0.05 -4.1948x10° 1044  7067.50
Ratio - 1.741 0.050 0.006
Density filter ¢min = 2.0)
SLP 0.20 —5.7707x 1C? 683  459.72
CCSA 0.15 —9.0467x 107 1444  5943.40
Ratio - Q638 0.473 0.077
Dilation filter (rmin = 1.0)
SLP 0.15 -—1.3457x1C° 1164 933.41
CCSA 0.05 —1.6534x10° 1500 6258.20
Ratio - Q814 0.776 0.149
Erosion filter ¢min = 1.0)
SLP 0.25 —1.4203x10° 1328 1058.70
CCSA 0.05 -2.6901x 10° 1500 4837.40
Ratio - 0528 0.885 0.219
Sinh filter ¢min = 1.5)
SLP 0.10 —4.2026x 10° 614 382.51
CCSA 0.10 —3.2741x 1° 2389 8224.40
Ratio - 1.284 0.257 0.047

an output force, on the right side of the structure. Note that
both f, and fy, are horizontal, but have opposite directions.

For this problem, we also use= 1mm ¢ = 0.3 and
E = 210000N/mn?. The volume is limited by 20% of the

Figure 9 shows the mechanisms obtained. Again, only
the upper half of the structure is shown, due to its symmetry.
Table 4 contains the numerical results.

Table 4 Results for the force inverter

Method %) Objective  Iterations  Time (S)
no filter
SLP 0.05 —4.8722x1CP 164 93.02
CCSA 0.10 —4.1017x10° 334  773.86
Ratio - 1.188 0.491 0.120
Sensitivity filter min = 1.5)
SLP 0.20 —1.2081x 1C° 51 47.32
CCSA 0.15 -5.6876x 1(° 298 1030.40
Ratio - Q212 0.171 0.046
Density filter ¢min = 3.0)
SLP 0.05 —8.6923x 10" 618 638.91
CCSA 0.10 —7.6925x 10t 1205 4372.00
Ratio - 1.130 0.513 0.146
Dilation filter (rmin = 1.0)
SLP 0.10 —2.3795x 10° 918 845.14
CCSA 0.20 —2.2690x 10° 1463 6160.30
Ratio - 1.049 0.627 0.137
Erosion filter ¢min = 1.0)
SLP 0.05 —4.1110x1C° 902  840.34
CCSA 0.10 —4.0075x 10° 1424  4517.10
Ratio - Q010 0.633 0.186
Sinh filter ¢ min = 1.5)
SLP 0.10 —-4.7174x 1P 663 517.81
CCSA 0.05 —4.7698x 1(° 534 1103.30
Ratio - Q989 1.242 0.469

According to Table 4, both algorithms found the best so-
lution for exactly three types of filter. However, the CCSA

design domain, and the input and output forces are given biynethod attained a much better solution for the erosion filter
fa= fp = 1N. The domain was discretized into 3600 squareCuriously, the structures obtained by the algorithms fa th

elements with nn?.

60mm
Ny
60mm eA B%
fa fb
v

Fig. 8 Design domain for the force inverter.

filter are fairly similar and do not reflect the differenceliet
objective function.

As in the previous examples, the SLP method took much
less time to converge than the CCSA algorithm.

6 Conclusions and future work

In this paper, we have presented a new globally convergent
SLP method. Our algorithm was used to solve some standard
topology optimization problems. The results obtained show
that it is fast and reliable, and can be used in combination
with several filters for removing checkerboards.

The new algorithm seems to be faster than the globally
convergent version of the MMA method, while the struc-
tures obtained by both methods seem to be comparable.

As we can observe, the filters have avoided the occur-
rence of checkerboards. However, some of them allowed
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Fig. 9 Force inverters obtained using various filter and method coatioins. The odd columns present the topologies generated byliRe
algorithm, while the even columns present the topologies filyn@CSA. The two columns on the left were obtained using no fillter density,
and the erosion filters. The last two columns present the mechanigaisexbusing the sensitivity, the dilation, and the sinh filters
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