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Abstract Topology optimization problems, in general, and
compliant mechanism design problems, in particular, are en-
gineering applications that rely on nonlinear programming
algorithms. Since these problems are usually huge, methods
that do not require information about second derivatives are
generally used for their solution. The most widely used of
such methods are some variants of the method of moving
asymptotes (MMA), proposed by Svanberg (1987), and se-
quential linear programming (SLP).

Although showing a good performance in practice, most
of the SLP algorithms used in topology optimization lack a
global convergence theory. This paper introduces a globally
convergent SLP method for nonlinear programming. The al-
gorithm is applied to the solution of classic compliance min-
imization problems, as well as to the design of compliant
mechanisms. Our numerical results suggest that the new al-
gorithm is faster than the globally convergent version of the
MMA method.

Keywords Topology optimization· Compliant mecha-
nisms·Sequential linear programming·Global convergence
theory
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1 Introduction

Topology optimization is a computational method originally
developed with the aim of finding the stiffest structure that
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satisfies certain conditions, such as an upper limit for the
amount of material.

The structure under consideration is under the action of
external forces, and must be contained into a design domain
Ω . Once the domainΩ is discretized, to each one of its ele-
ments we associate a variableχ that is set to 1 if the element
belongs to the structure, or 0 if the element is void. Since it
is difficult to solve a large nonlinear problem with discrete
variables,χ is replaced by a continuous variableρ ∈ [0,1],
called the element’s “density”.

However, in the final structure,ρ is expected to assume
only 0 or 1. In order to eliminate the intermediate values of
ρ , Bendsøe (1989) introduced theSolid Isotropic Material
with Penalization method(SIMP for short), which replaces
ρ by the functionρ p that controls the distribution of mate-
rial. The role of the penalty parameterp > 1 is to reduce of
the occurrence of intermediate densities.

Topology optimization problems gained attention over
the last two decades, due to their applicability in several
engineering areas. One of the most successful applications
of topology optimization is the design of compliant mecha-
nisms. A compliant mechanism is a structure that is flexible
enough to produce a maximum deflection at a certain point
and direction, but is also sufficiently stiff as to support a set
of external forces. Such mechanisms are used, for example,
to build micro-eletrical-mechanical systems (MEMS).

Topology optimization problems are usually converted
into nonlinear programming problems. Since the problems
are huge, the iterations of the mathematical method used in
its solution must be cheap. Therefore, methods that require
the computation of second derivatives must be avoided. In
this paper, we propose a new sequential linear programming
algorithm for solving constrained nonlinear programming
problems, and apply this method to the solution of topology
optimization problems, including compliant mechanism de-
sign.
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In the next section, we present the formulation adopted
for the basic topology optimization problem, as well as to
the compliant mechanism design problem. In Section 3, we
introduce a globally convergent sequential linear program-
ming algorithm for nonlinear programming. In Section 4,
we discuss how to avoid the presence of checkerboard like
material distribution in the structure. We devote Section 5to
our numerical experiments. Finally, Section 6 contains the
conclusion and suggestions for future work.

2 Problem formulation

The simplest topology optimization problem is the compli-
ance minimization of a structure (e.g. Bendsøe and Kikuchi
1988). The objective is to find the stiffest structure that fits
into the domain, satisfies the boundary conditions and has
a prescribed volume. After domain discretization, this prob-
lem becomes

min
ρ

fTu

s.t. K(ρ)u = f
nel

∑
i=1

vi ρi ≤V

ρmin≤ ρi ≤ 1, i = 1, . . . ,nel,

(1)

wherenel is the number of elements of the domain,ρi is the
density andvi is the volume of thei-th element,V is the
upper limit for the volume of the structure,f is the vector of
nodal forces associated to the external loads andK(ρ) is the
stiffness matrix of the structure.

When the SIMP model is used to avoid intermediate den-
sities, the global stiffness matrix is given by

K(ρ) =
nel

∑
i=1

ρ p
i K i ,

whereK i is the stiffness matrix of thei-th element.
The parameterρmin > 0 is used to avoid zero density el-

ements, that would imply in singularity of the stiffness ma-
trix. Thus, forρ ≥ ρmin, matrix K(ρ) is invertible, and it is
possible to eliminate theu variables replacingu = K(ρ)−1f
in the objective function of problem (1). In this case, the
problem reduces to

min
ρ

fT K(ρ)−1 f

s.t.
nel

∑
i=1

vi ρi ≤V

ρmin≤ ρi ≤ 1, i = 1, . . . ,nel

(2)

This problem has only one linear inequality constraint,
besides the box constraints. However, the objective function
is nonlinear, and its computation requires the solution of a
linear systems of equations.

2.1 Compliant mechanisms

A more complex topology optimization problem is the de-
sign of a compliant mechanism. Some interesting formula-
tions for this problem were introduced by Nishiwaki et al.
(1998), Kikuchi et al. (1998), Lima (2002), Sigmund (1997),
Pedersen et al. (2001), Min and Kim (2004), and Luo et al.
(2005), to cite just a few.

No matter the author, each formulation eventually rep-
resents the physical structural problem by means of a non-
linear programming problem. The degree of nonlinearity of
the objective function and of the problem constrains vary
from one formulation to another. Besides, each one has its
own idiosyncrasies that should be taken into account in the
implementation of a specific algorithm for solving the opti-
mization problem.

Therefore, an optimization method that works well with
one formulation may be inefficient when applied to others.
In this work, we adopt the formulation proposed by Nishi-
waki et al. (1998), although some encouraging preliminary
results were also obtained for the formulations of Sigmund
(1997) and Lima (2002).

Nishiwaki et al. (1998) suggest to decouple the problem
into two distinct load cases. In the first case, a loadt1 is
applied to the regionΓt1 of the boundary of the domainΩ ,
and a fictitious loadt2 is applied to the regionΓt2 of the
boundary of the domainΩ , as shown in Figure 1(a). This
second load defines the desired direction of deformation of
theΓt2 region.

To determine the optimal structure for this problem, we
should maximize the mutual energy of the mechanism, satis-
fying the equilibrium and volume constraints. This problem
represents the kinematic behavior of the compliant mecha-
nism.

After the mechanism deformation, theΓt2 region eventu-
ally contacts a workpiece. In this case, the mechanism must
be sufficiently rigid to resist the reaction force exerted bythe
workpiece and to keep its shape. This structural behavior of
the mechanism is given by the second load case, shown in
Figure 1(b). The objective is to minimize the mean compli-
ance, supposing that a load is applied toΓt2, and that there is
no deflection at the regionΓt1.

The maximization of the mutual energy and the mini-
mization of the mean compliance are combined into a single
optimization problem. In the discretized form, this problem
is defined by
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Fig. 1 The two load cases considered in the formulation of Nishiwaki
et al. (1998).

min
ρ
− fT

b ua

fT
c uc

s.t. K1(ρ)ua = fa

K1(ρ)ub = fb

K2(ρ)uc =−fb
nel

∑
i=1

vi ρi ≤V

ρmin≤ ρi ≤ 1, i = 1, . . . ,nel.

(3)

In this problem,fa andfb are the vectors of nodal forces
associated to the loadst1 andt2, respectively, whileK1(ρ)

andK2(ρ) are the stiffness matrices related to the load cases
shown in Figure 1. The mutual energy is given byfT

b ua,
andfT

c uc represents the mean compliance that is to be mini-
mized.

Since matricesK1(ρ) andK2(ρ) are invertible, it is pos-
sible to eliminate theu variables replacingua = K1(ρ)−1fa,
ub = K1(ρ)−1fb anduc =−K2(ρ)−1fc in the objective func-
tion of (3). The new problem is

min
ρ
− fT

b K1(ρ)−1 fa

fT
c K2(ρ)−1 fc

s.t.
nel

∑
i=1

vi ρi ≤V

ρmin≤ ρi ≤ 1, i = 1, . . . ,nel

(4)

This problem has the same constraints of (2). However,
the objective function is very nonlinear, and its computation
requires the solution of two linear systems of equations.

Other formulations, such as the one proposed by Sig-
mund (1997), also include constraints on the displacements
at certain points of the domain, so the optimization problem
becomes larger and more nonlinear.

3 Sequential linear programming

Sequential linear programming (SLP) algorithms have been
used successfully in structural design (e.g. Kikuchi et al.
1998; Nishiwaki et al. 1998; Lima 2002; Sigmund 1997).

This class of methods is well suited for solving large nonlin-
ear problems due to the fact that it does not require the com-
putation of second derivatives, so the iterations are cheap.
However, for most algorithms presented in the literature,
global convergence results are not fully established.

In this section we describe a new SLP algorithm for the
solution of constrained nonlinear programming problems.
As it will become clear, our algorithm is not only globally
convergent, but can also be easily adapted for solving topol-
ogy optimization problems.

3.1 Description of the method

Consider the nonlinear programming problem

min f (x)
s.t. c(x) = 0,

xl ≤ x≤ xu,

(5)

where the functionsf : R
n→ R andc(x) : R

n→ R
m have

Lipschitz continuous first derivatives, and vectorsxl , xu ∈
R

ndefine the lower and upper bounds for the components of
x = [x1 . . . xn]

T .
One should notice that, using slack variables, any non-

linear programming problem may be written in the form (5).
Since fi and c have Lipschitz continuous first deriva-

tives, it is possible to define a linear approximation for the
objective function and for the equality constraints of (5) in
the neighborhood of a pointx ∈ R

n, so

f (x+s)≈ f (x)+∇ f (x)Ts≡ L(x, s)

and

c(x+s)≈ c(x)+A(x)s,

whereA(x) = [∇ f1(x) . . . ∇ fm(x)]T is the Jacobian matrix
of the constraints. Therefore, given a pointx, (5) can be ap-
proximated by the linear programming problem

min
s

f (x)+∇ f (x)Ts

s.t. A(x)s+c(x) = 0
xl ≤ x+s≤ xu.

(6)

A sequential linear programming (SLP) algorithm is an
iterative method that generates and solves a sequence of lin-
ear problems in the form (6). At each iterationk of the al-
gorithm, a previously computed pointx(k) is used to gen-
erate the linear programming problem. After findingsc, an
approximate solution for (6), the variables of the original
problem (5) are updated according to

x(k+1) = x(k) +sc. (7)

Unfortunately, this scheme has some pitfalls. First, prob-
lem (6) may be unlimited even in the case problem (5) has
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an optimal solution. Besides, the linear functions used to de-
fine (6) may be poor approximations of the actual functions
f andc on a pointx+s that is too far fromx. To avoid these
difficulties, it is an usual practice to require the steps to sat-
isfy the followingtrust regionconstraint

‖s‖∞ ≤ δ , (8)

whereδ > 0, thetrust region radius, is updated at each itera-
tion of the algorithm, to reflect the size of the neighborhood
of x where the linear programming problem is a good ap-
proximation of (5).

Including the trust region in (6), we get the problem

min ∇ f (x)Ts
s.t. A(x)s+c(x) = 0

sl ≤ s≤ su

(9)

wheresl = max{−δ ,x−xl} andsu = min{δ ,xu−x}.
However, unlessx(k) satisfies the constraints of (5), it is

still possible that problem (9) has no feasible solution. In
this case, we need not only to improvef (x+s), but also to
find a point that reduces this infeasibility. This can be done,
for example, solving the linear programming problem

min M(x,s) = 1
2 ||A(x)s+c(x)||22

s.t. sl
n≤ s≤ su

n
s∈Ω

(10)

wheresl
n = max{−0.8δ ,x− xl}, su

n = min{0.8δ ,xu− x},
andΩ is a set suitably chosen to simplify the search fors.
Clearly,M(x,s) is an approximation for the true measure of
the infeasibility, given by the function

ϕ(x) =
1
2
||c(x)||22 .

After solving (10),x, f and c are updated, so (9) be-
comes feasible.

One should notice that the trust region used in (10) is
slightly smaller that the region adopted in (9). This trick is
used to give (9) a sufficiently large feasible region, so the
objective function can be improved. As it will become clear
in the next sections, the choice of 0.8 is quite arbitrary. How-
ever, we prefer to explicitly define a value for this and other
parameters of the algorithm in order to simplify the notation.

Problems (9) and (10) reveal the two conflicting objec-
tives we need to deal with at each iteration of the algorithm:
the reduction off (x) and the reduction ofϕ(x).

If f (x(k) +sc) << f (x(k)) andϕ(x(k) +sc) << ϕ(x(k)),
it is clear thatx + sc is a better approximation thanx(k) for
the optimal solution of problem (5). However, no straight-
forward conclusion can be drawn if one of these functions is
reduced while the other is increased.

In such situations, we use amerit functionto decide if
x(k) can be replaced byx(k)+sc. In this work, the merit func-
tion is defined as

ψ(x,θ) = θ f (x)+(1−θ)ϕ(x), (11)

whereθ ∈ (0, 1] is a penalty parameter used to balance the
roles of f andϕ. If the merit function is sufficiently reduced
betweenx(k) andx(k) +sc, then the stepsc is accepted.

However, it is not possible to define a fixed reduction for
the merit function. Thus, the step acceptance is based on the
comparison of the actual reduction ofψ with the reduction
predicted by the linear model used to computesc.

The actual reduction ofψ betweenx(k) andx(k) + sc is
given by

Ared = θAopt
red +(1−θ)Af ct

red,

where

Aopt
red = f (x)− f (x+sc)

is the actual reduction of the objective function, and

Af ct
red = ϕ(x)−ϕ(x+sc)

is the reduction of the infeasibility.
The predicted reduction of the merit function is defined

as

Pred = θPopt
red +(1−θ)Pf ct

red ,

where

Popt
red =−∇ f (x)Tsc

is the predicted reduction off and

Pf ct
red = M(x,0)−M(x, sc)

=
1
2
||c(x)||22−

1
2
||A(x)sc +c(x)||22

is the predicted reduction of the infeasibility.
At the k-th iteration of the algorithm, the stepsc is ac-

cepted if the merit function is reduced at least by one tenth
of the reduction predicted by the linear model, i.e.

Ared≥ 0.1Pred.

If this condition is not verified,δ is reduced and the step
is recomputed. On the other hand, the trust region radius
may also be increased if the ratioAred/Pred is sufficiently
large.

The role of the penalty parameter is crucial for the ac-
ceptance of the step. Unfortunately, computingθ is also the
trickiest part of the merit function definition. It is easy tosee
from (11) that it may be necessary to reduceθ along the exe-
cution of the algorithm to ensure feasibility. However, if this
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penalty parameter decays too quickly in the first iterations,
the steps may become arbitrarily small.

In this work, we follow a suggestion given by Gomes et
al. (1999) and define

θk = min{θ large
k ,θ sup

k }.

where

θ large
k =

[
1+

N
(k+1)1.1

]
min{1,θ0, . . . ,θk−1} ,

θ sup
k = sup{θ ∈ [0,1] |Pred≥ 0.5Pf ct

red} (12)

=





0.5

(
Pf ct

red

Pf ct
red −Popt

red

)
, if Popt

red ≤
1
2

Pf ct
red

1, otherwise.

The parameterN ≥ 0, used to computeθ large
k , can be

adjusted to allow a nonmonotone decrease ofθ .

3.2 An SLP algorithm for nonlinear programming

Let us defineθ0 = θmax = 1, andk = 0, and suppose that
a starting pointx(0) ∈ X and an initial trust region radius
δ0≥ δmin > 0 are available.

A new SLP method for solving problem (5) is given by
Algorithm 1, where we denoteA ≡ A(x) and c≡ c(x).

Steps 2 and 7 of this algorithm were intentionally left
unspecified to make it more flexible. In Section 5, we de-
scribe a particular implementation of this SLP method for
solving the topology optimization problem.

In the next subsections we prove that this algorithm is
well defined and converges to the solution of (5) under mild
conditions.

3.3 The algorithm is well defined

We say that a pointx ∈ R
n is ϕ-stationaryif it satisfies the

Karush-Kuhn-Tucker (KKT) conditions of the problem

min
x∈X

ϕ(x)

where

X = {x ∈ R
n |xl ≤ x≤ xu} .

In this section, we show that after repeating the steps of
Algorithm 1 a finite number of times, a new iteratex(k+1)

is obtained. In order to prove this well definiteness property,
we consider three cases. In Lemma 1, we suppose thatx(k) is
not ϕ-stationary andsn could not be found. Lemma 2 deals
with the case in whichx(k) is notϕ-stationary, but there ex-
istssn. Finally, in Lemma 3, we suppose thatx(k) is feasible
and regular for (5), but does not satisfy the KKT conditions
of this problem.

Algorithm 1 General SLP algorithm.
1: while a stopping criterion is not satisfied,do
2: Try to find a pointsn that satisfies

Asn =−c
sl
n ≤ sn ≤ su

n

3: if sn could not be found,then
4: dn←−∇ϕ(x(k))
5: Determineᾱ, the solution of

min M(x(k),αdn)
s.t. sl

n ≤ αdn ≤ su
n

α ≥ 0

6: sd
n← ᾱdn

7: Determinesc such thatM(x(k), sc)≤M(x(k), sd
n).

8: else
9: Starting fromsn, determinesc, the solution of

min ∇ f (x)Ts
s.t. As =−c

sl ≤ s≤ su

10: end if
11: Determineθk ∈ [0, θmax]
12: if Ared ≥ 0.1Pred then
13: x(k+1)← x(k) +sc

14: if Ared ≥ 0.5Pred, then
15: δk+1←min{2.5δk,‖xu−xl‖∞}
16: else
17: δk+1← δmin

18: end if
19: θmax← 1
20: else
21: δk+1← 0.25‖sc‖∞
22: x(k+1)← x(k)

23: θmax← θk
24: end if
25: end while

Lemma 1 Suppose thatx(k) is notϕ-stationary and thatsn

could not be found. Then, after a finite number of step rejec-
tions,x(k) +sc is accepted.

Proof If x(k) is notϕ-stationary, then

dn =−∇ϕ(x(k)) =−∇M(x(k), 0) =−ATc 6= 0.

Besides, defining

α̃ =
dT

n dn

dT
n ATAdn

,

and noticing thatsl
n≤ 0 andsu

n≥ 0, we get

ᾱ = min

{
α̃ , min

dni >0

{
su
ni

dni

}
, min

dni <0

{
sl
ni

dni

}}
. (13)
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Sincex(k) is not ϕ-stationary,ᾱ = βα̃, for someβ ∈
(0,1]. Therefore,

M(0)−M(sd
n) = M(0)−M(βα̃dn)

= βα̃dT
n dn−

β 2α̃2

2
dT

n ATAdn

= β
(dT

n dn)
2

dT
n ATAdn

− β 2

2
(dT

n dn)
2

dT
n ATAdn

=

(
β − β 2

2

)
α̃dT

n dn

=

(
1− β

2

)
ᾱ‖dn‖22.

From (13) and the definition ofsl
n and su

n, there exists
δ̄ ∈ (0, α̃] such that, for allδ ∈ (0, δ̄ ], we have‖ᾱdn‖∞ ≤ δ ,
and

ᾱ‖dn‖22≥ ‖ᾱdn‖∞‖dn‖2≥ ‖dn‖2δ .

Thus,

Pf ct
red = M(0)−M(sc)

≥ M(0)−M(sd
n)≥

(
1− β

2

)
‖dn‖2δ . (14)

Now, doing a Taylor expansion, we get

c(x(k) +sc) = c(x(k))+A(x(k))sc +O(‖sc‖22),

so

ϕ(x(k) +sc) =
1
2
‖c(x(k) +sc)‖22

=
1
2

c(x(k))Tc(x(k))+c(x(k))TA(x(k))sc

+
1
2

sT
c A(x(k))TA(x(k))sc +O(‖sc‖22)

= M(x(k),sc)+O(‖sc‖22).

Analogously, we have

f (x(k) +sc) = L(x(k),sc)+O(‖sc‖22).

Therefore, forδ sufficiently small,

Ared(δ ) = Pred(δ )+O(δ 2),

so

lim
δ→0

|Ared(δ )−Pred(δ )|
δ

= 0. (15)

Our choice ofθ ensures thatPred ≥ 0.5Pf ct
red . Thus, from

(14), we get

Pred≥ (2−β )‖dn‖2
δ
4

.

Since lim
δ→0

β (δ ) = 0, we haveβ < 1 for δ sufficiently

small, so

Pred≥ ‖dn‖2
δ
4

. (16)

From (15) and (16), we obtain

lim
δ→0

∣∣∣∣
Ared(δ )

Pred(δ )
−1

∣∣∣∣= 0. (17)

Therefore,Ared ≥ 0.1Pred for δ sufficiently small, and the
step is accepted.

Lemma 2 Suppose thatx(k) is notϕ-stationary and thatsn

satisfies the conditions stated in step 2 of Algorithm 1. Then,
after a finite number of step rejections,x(k) + sc is accepted.

Proof Let sm
n be the solution of

min ‖s‖∞
s.t. As =−c

sl
n≤ s≤ su

n

Sincex(k) is not ϕ-stationary,‖sm
n ‖∞ > 0. Now, supposing

that the step is rejectedj times, we getδk+ j ≤ 0.25jδk.

Thus, after
⌈
log2

√
0.8δk/‖sm

n ‖∞

⌉
iterations,sn is rejected

and Lemma 1 applies.

Lemma 3 Suppose thatx(k) is feasible and regular for (5),
but does not satisfy the KKT conditions of this problem. Ifsn

always exists, then after a finite number of iterationsx(k)+sc

is accepted.

Proof If x(k) is regular but not stationary for problem (5),
then we havedt = Pϒ (−∇ f (x(k))) 6= 0, wherePϒ denotes
the orthogonal projection onto the set

ϒ =
{

s∈ R
n | A(x(k))s= 0, sl

n≤ s≤ su
n

}
.

Let ᾱ be the solution of the auxiliary problem

min α∇ f (x)Tdt

s.t. αd ∈ϒ
α > 0.

(18)

Since (18) is a linear programming problem,ᾱd belongs
to the boundary ofϒ . Therefore, ifδk < min{xu−xl}, then
‖ᾱdt‖∞ = δk, which means that̄α = δk/‖dt‖∞. Besides,
−∇ f (x(k))Tdt/‖dt‖∞ > 0, so we have

L(x(k),0)−L(x(k), ᾱdt) = −ᾱ∇ f (x(k))Tdt

= − δk

‖dt‖∞
∇ f (x(k))Tdt

= η δk. (19)
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Combining (19) and the fact thatsc is the solution of (9),
we get

Popt
red = L(x(k),0)−L(x(k),sc)

≥ L(x(k),0)−L(x(k), ᾱdt) = η δk.

On the other hand, sincex(k) is feasible,

M(x(k),0) = M(x(k),s) = 0.

Thus,θk = min{1,θ large
k } is not reduced along withδ , and

Pred = θkP
opt
red ≥ θkη δk. (20)

Since (15) also applies in this case, we can combine it
with (20) to obtain (17). Therefore, forδ sufficiently small,
Ared≥ 0.1Pred and the step is accepted.

3.4 Every limit point of{x(k)} is ϕ-stationary

As we have seen, Algorithm 1 stops whenx(k) is a station-
ary point for problem (5); or whenx(k) is ϕ-stationary, but
infeasible; or even whenx(k) is feasible but not regular.

Following the steps adopted by Gomes et al. (1999), we
will now investigate what happens when Algorithm 1 gener-
ates an infinite sequence of iterates. Our objective is to prove
that the limit points of this sequence areϕ-stationary.

Lemma 4 Suppose thatx∗ ∈ X is not aϕ-stationary point
and that Algorithm 1 is applied tox ∈ X satisfying‖x−
x∗‖2 ≤ ε1. Then there existε1, δ ′1, c1 > 0 such that Pred ≥
c1min{δ ,δ ′1}.

Proof If there existssn, thenθ sup
k = 1 andPred ≥ 1

2Pf ct
red =

1
2M(0) = 1

2ϕ(x), for all θk. Thus, definingc1 = 1
2ϕ(x) and

δ ′1 = 1, we get the desired result.
If sn cannot be found, then the proof of Lemma 3 from

the paper by Gomes et al. (1999) applies, replacing the con-
stant 0.9 by 1. In this case,c1 = 1

32‖∇ϕ(x∗)‖2.

Lemma 5 Suppose thatx∗ ∈ X is notϕ-stationary and that
Algorithm 1 is applied tox ∈ X satisfying‖x− x∗‖2 ≤ ε2.
Then there existε2, δ ′2 > 0 such that, ifδ ≤ δ ′2, then Ared ≥
0.1Pred.

Proof See Lemma 4 of the paper by Gomes et al. (1999).

Lemma 6 Suppose thatx∗ is notϕ-stationary and K1 is an
infinite set of indices such that

lim
k∈K1

x(k) = x∗.

Then{δk |k ∈ K1} is bounded away from zero. Moreover,
there exists c2 > 0 such that, for k∈K1 sufficiently large, we
have Ared≥ c2.

Proof See Lemma 5 of the paper by Gomes et al. (1999).

Lemma 7 Suppose that Algorithm 1 generates an infinite
sequence{x(k)}. Then the sequenceθk is convergent.

Proof See Lemma 6 of the paper by Gomes et al. (1999).

In order to prove the main theorem of this section, we
need an additional compactness hypothesis, trivially verified
when dealing with bound constrained problems such as (5).

Hypothesis H1. The sequence{x(k)} generated by Algo-
rithm 1 is bounded.

Theorem 1 Let{x(k)} be an infinite sequence generated by
Algorithm 1. Suppose that H1 holds. Then every limit point
of {x(k)} is ϕ-stationary.

Proof This result can be easily obtained from the proof of
Theorem 1 presented in the paper by Gomes et al. (1999),
replacinglk by f (xk).

3.5 The algorithm finds a critical point

In this section, we show that there exists a limit point of
the sequence of iterates generated by Algorithm 1 that is a
stationary point of (5). Most lemmas presented below are
based on the following hypothesis.

Hypothesis H2.Let s̃n be the step generated by Algorithm
1 to reduce the infeasiblity, which means thats̃n = sn if this
vector exists, or̃sn = sc (see line 7 of the algorithm) ifsn

could not be found. Then,‖̃sn‖2≤O(‖c(x(k))‖2).
This hypothesis holds if, for example,s̃n is obtained as

the solution of the linear programming problem

min ∑m
i=1(z

−
i + z+

i )

s.t. Asn−z−+z+ =−c
sl
n≤ sn≤ su

n
z−,z+ ≥ 0

(21)

starting fromsd
n.

Let s̃n be an optimal basic feasible solution of problem
(21). If z− = z+ = 0, theñsn =−B−1c, whereB is a nonsin-
gular matrix formed by a subset of the columns ofA. Thus,
Hypothesis H2 is trivially satisfied.

On the other hand, ifz− or z+ have nonzero components,
we may writẽsn = B−1(−c+z−−z+), so

‖̃sn‖2 ≤ ‖B−1‖2‖−c+z−−z+‖2
≤ ‖B−1‖2 (‖c‖2 +‖z−−z+‖2)
≤ ‖B−1‖2 (‖c‖2 +‖z−−z+‖1).

Noting that‖z−+ z+‖1 is just the objective function of
problem (21) and that‖z−−z+‖1 = ‖c‖1 if sn = 0, we may
write

‖sn‖2 ≤ ‖B−1‖2(‖c‖2 +‖c‖1)
≤ (1+

√
m)‖B−1‖2‖c‖2,

so H2 also holds in this case.
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Lemma 8 Let x be a point satisfying‖c(x)‖2 ≥ βδ . In this
case, there exists c0 > 0 such that

M(x,0)−M(x, s̃n(x,δ ))≥ c0δ‖c(x)‖2
whenever we perform an iteration of Algorithm 1 starting
from x.

Proof If s̃n = sn, thenM(̃sn) = 0, so

M(0)−M(̃sn) =
1
2
‖c(x)‖22≥

1
2

βδ‖c(x)‖2 .

Therefore, definingc0 = β/2, we obtain the desired result.
On the other hand, ifsn does not exist and̃sn = sc, then

M(0)−M(̃sn)≥M(0)−M(sd
n). (22)

Let α̃ be the solution of the unrestricted problem

minM(−α∇ϕ(x)).

In this case,

α̃ =
∇ϕ(x)T∇ϕ(x)

∇ϕ(x)TA(x)TA(x)∇ϕ(x)
. (23)

From the definition ofsd
n, we havesd

n = −γα̃∇ϕ(x),
whereγ ∈ (0, 1]. Thus, from (22) and (23), we get

M(0)−M(̃sn) ≥ M(0)−M(−γα̃∇ϕ(x))

= −1
2

γ2α̃2∇ϕ(x)TA(x)TA(x)∇ϕ(x)

+γα̃c(x)TA(x)∇ϕ(x)

= γ
(

1− γ
2

) (∇ϕ(x)T∇ϕ(x))2

∇ϕ(x)TA(x)TA(x)∇ϕ(x)

= γ
(

1− γ
2

) ‖∇ϕ(x)‖42
‖A(x)∇ϕ(x)‖22

≥ γ
(

1− γ
2

)‖A(x)Tc(x)‖22
‖A(x)‖22

.

Let σ1 andσm be, respectively, the greatest and smallest
singular values ofA(x), and suppose that this matrix has
full row rank (the extension to the caserank(A(x)) < m is
straightforward). In this case,

M(0)−M(̃sn) ≥ γ
(

1− γ
2

) σ2
m

σ2
1

‖cϕ(x)‖22

≥ γ
(

1− γ
2

) σ2
m

σ2
1

βδ‖c(x)‖2.

Thus, definingc0 = γ
(
1− γ

2

) σ2
m

σ2
1

β , we prove the lemma.

Lemma 9 Let {x(k)} be an infinite sequence generated by
Algorithm 1. Suppose that{x(k)}k∈K1 is a subsequence that
converges to the feasible and regular pointx∗ that is not sta-
tionary for problem (5). Then, there exist c1,k1,δ ′ > 0 such
that, forx ∈ {x(k) |k∈ K1, k≥ k1}, we have

L(x,sn)−L(x,sc)≥ c1min{δ ,δ ′}.

Proof Since the subsequence{x(k)}k∈K1 converges to a fea-
sible and regular point, there existsk0 > 0 such that, for
x ∈ {x(k) |k∈ K1, k≥ k0}, stepsn is defined.

Analogously to what was done in Lemma 3, let us define
dt = PΓ (−∇ f (x(k))), where

Γ = {s∈ N(A(x)) |xl ≤ x+sn +s≤ xu},

and N(A(x)) denotes the null space ofA(x). Let us also
denotesd

t the solution of

min L(x,sn +s) = f (x)+∇ f (x)T(sn +s)
s.t. s= tdt , t ≥ 0
‖sn +s‖∞ ≤ δ
xl ≤ x+sn +s≤ xu

(24)

After some algebra, we see thatsd
t = t̃dt is also the solu-

tion of

min (∇ f (x)Tdt)t
s.t. 0≤ t ≤ t̄,

where

t̄ = min{1,∆1,∆2} ,

∆1 = min
dti <0

{
δ +sni

−dti
,
xi +sni −xl i

−dti

}
,

∆2 = min
dti >0

{
δ −sni

dti
,
xui −xi−sni

dti

}
.

Now, since (24) is a linear programming problem and
∇ f (x)Tdt < 0, we conclude that̃t = t̄. Besides,t = 1 satisfies
xl ≤ x+sn +s≤ xu, so

t̄ ≥min

{
1, min

dti <0

{
δ +sni

−dti

}
, min

dti >0

{
δ −sni

dti

}}
. (25)

Remembering thatsc is the solution of (9), we obtain

L(sn)−L(sc)≥ L(sn)−L(sn +sd
t ) =−t̄∇ f (x)Tdt . (26)

SincePΓ (−∇ f (x)) is a continuous function onx, andx∗

is regular and feasible, there existc′1, c′2 > 0 and k1 ≥ k0

such that, for allx ∈ {x(k) |k∈ K1, k≥ k1},

‖dt‖∞ ≤ c′1 (27)

and

−∇ f (x)Tdt ≥ c′2. (28)

From (25) and the fact that‖sn‖∞ ≤ 0.8δk, we have that

t ≥min

{
1,

0.2δ
‖dt‖∞

}
.

Thus, from (27) we obtain

t ≥min

{
1,

0.2δ
c′1

}
=

0.2
c′1

min

{
c′1
0.2

, δ
}

. (29)
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Combining (26), (27), (28) and (29), we get, for allx∈
{x(k) |k∈ K1, k≥ k0},

L(sn)−L(sc)≥
0.2c′2

c′1
min

{
c′1
0.2

, δ
}

.

The desired results is obtained takingc1 =
0.2c′2

c′1
and

δ ′ =
c′1
0.2

.

Lemma 10 Suppose that H2 holds, as well as the hypothe-
ses of Lemma 9. Then there existβ , c2, k2 > 0 such that,
wheneverx ∈ {x(k) |k∈ K1, k≥ k2} and‖c(x)‖2≤ βδk,

L(x,0)−L(x,sc)≥ c2min{δ , δ ′}

and

θ sup(x,δ ) = 1,

whereθ sup is given by (12) andδ ′ is defined in Lemma 9.

Proof As in Lemma 9, let us suppose thatsn is defined. In
this case, we have

L(0)−L(sc)≥ (L(sn)−L(sc))−|L(0)−L(sn)|.

Now, from Lemma 9 and Hypothesis H2, we get

L(0)−L(sc)≥ c1min{δ , δ ′}−O(‖c(x)‖2), (30)

for all x ∈ {x(k) |k∈ K1, k≥ k2}.
Thus, choosingβ conveniently, we prove the first state-

ment of the Lemma.
To prove the second part of the lemma, we note that,

from Hypothesis H2,

Pf ct
red = M(0)−M(sc) = M(0)−M(̃sn)≤O(‖c(x)‖2).

Thus, forθ sup= 1, we have

Pred−0.5Pf ct
red = Popt

red −0.5Pf ct
red ≥

c1min{δ , δ ′}−O(‖c(x)‖2).

Therefore, for an appropriate choice ofβ , we get the
desired result.

Lemma 11 Suppose that H1 and H2 hold, as well as the
hypotheses of Lemma 9. Thenlim

k→∞
θk = 0.

Proof Suppose, for the purpose of obtaining a contradiction,
that the infinite sequence{θk} does not converge to 0. Since,
from Lemma 7,{θk} converges, there must existk3≥ k2 and
θ̂ > 0 such thatθk ≥ θ̂ for k≥ k3.

Now, suppose thatx ∈ {x(k) |k∈ K1, k≥ k3}. Once

M(x,0)−M(x,sc)≥ 0,

we get

Pred≥ θ [L(x,0)−L(x,sc)].

Thus, from (30), we obtain

Pred≥ θc1min{δ , δ ′}−O(‖c(x)‖2).

Sinceθ is not increased if the step is rejected, we can
say that, whilesc is not accepted,

Pred≥ θ̂c1min{δ , δ ′}−O(‖c(x)‖2). (31)

On the other hand, using a Taylor expansion and the fact
that∇ f andA are Lipschitz continuous, we obtain

|Ared−Pred| ≤O(δ 2).

Thus, there exists̃δ ∈ (0, δ )⊂ (0, δmin) such that, ifδ ∈
(0, δ̃ ) andx ∈ {x(k) |k∈ K1, k≥ k3},

|Ared−Pred| ≤ θ̂c1
δ̃
40

.

Let us definek4 ≥ k3 such that, for allx ∈ {x(k)|k ∈
K1, k≥ k4}, the termO(‖c(x)‖2) of (31) satisfies

O(‖c(x)‖2)≤ θ̂c1
δ̃
20

.

In this case,

Pred≥ θ̂c1min{δ , δ ′}− θ̂c1
δ̃
20

.

Besides, ifδ ∈ [δ̃/10, δ̃ ), then

Pred≥ θ̂c1
δ̃
10
− θ̂c1

δ̃
20

= θ̂c1
δ̃
20

.

Therefore, for allδ ∈ [δ̃/10, δ̃ ) and all x ∈ {x(k) |k ∈
K1, k≥ k4}, we have

|Ared−Pred|
Pred

≤ 0.5,

which implies that, for someδ ∈ [δ̃/10, δ̃ ), the step is ac-
cepted. Thus,δk is bounded away from zero fork ∈ K1,
k≥ k4, soPred is also bounded away from zero.

SinceAred ≥ 0.1Pred, the sequence{x(k)} is infinite and
the sequence{θk} is convergent, we conclude thatψ(x,θ)

is unbouded, which contradicts Hypothesis H1, proving the
lemma.

Lemma 12 Suppose that the hypotheses of Lemmas 8 to 10
hold. Then, ifx ∈ {x(k) |k∈ K1, k≥ k2} and‖c(x)‖2 ≥ βδ ,
the ratioδ/θ sup is uniformly bounded.
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Proof Observe that, whenθ sup 6= 1,

θ sup =
Pred

2(Pf ct
red −Popt

red )

=
M(0)−M(sn)

2[M(0)−M(sn)−L(0)+L(sc)]
.

From Hypothesis H2 and Lemma 8, ifx ∈ {x(k) |k ∈
K1, k≥ k2}, we have that

1
2θ sup = 1+

L(sc)−L(sn)

M(0)−M(sn)
+

L(sn)−L(0)

M(0)−M(sn)

≤ 1+
|L(0)−L(sn)|
M(0)−M(sn)

≤ 1+
O(‖c(x)‖2)
c0δ‖c(x)‖2

≤ 1+O(1/δ ).

Therefore,δ/θ sup is bounded.

Lemma 13 Suppose that the hypotheses of Lemmas 8 to 10
hold. Then there exist k5 ≥ k2, θ̃ ∈ (0, 1] such that, ifx ∈
{x(k) |k∈K1, k≥ k5},‖c(x)‖2≥ βδ andθ ≤ θ̃ , then Ared≥
0.1Pred.

Proof From the fact that∇ f (x) is Lipschitz continuous, we
may write

Ared = θ [ f (x)− f (x+sc)]+(1−θ)[ϕ(x)−ϕ(x+sc)]

= θ [L(0)−L(sc)+O(δ 2)]

+(1−θ)[‖c(x)‖22−‖c(x+sn)‖22]/2.

SinceA(x) is also Lipschitz continuous, we have

‖c(x)‖22−‖c(x+sn)‖22
= −sT

c A(x)TA(x)sc−2sT
c A(x)Tc(x)

+‖c(x)‖2O(δ 2)+O(δ 3)

= 2[M(0)−M(sc)]+‖c(x)‖2O(δ 2)+O(δ 3).

Thus,

Ared = θ [L(0)−L(sc)+O(δ 2)]+(1−θ)[M(0)

−M(sc)+‖c(x)‖2O(δ 2)+O(δ 3)]

= Pred +θO(δ 2)+(1−θ)[‖c(x)‖2O(δ 2)+O(δ 3)].

Now, supposing that‖c(x)‖2≥ βδ , we have

|Ared−Pred| ≤ θ‖c(x)‖2O(δ )+‖c(x)‖2O(δ 2). (32)

Since our choice ofθ ensures thatPred ≥ 0.5[M(0)−
M(sc)], Lemma 8 implies that, fork∈ K1 sufficiently large,

Pred≥
c0

2
‖c(x)‖2δ ,

soδ‖c(x)‖2/Pred is uniformly bounded. Then, dividing both
sides of (32) byPred, we get
∣∣∣∣
Ared

Pred
−1

∣∣∣∣≤O(θ)+O(δ )≤O(θ)+O(‖c(x)‖2/β ), (33)

which yields the desired result.

Lemma 14 Let{x(k)} be an infinite sequence generated by
Algorithm 1. Suppose that all of the limit points of{x(k)} are
feasible and regular and that Hypotheses H1 and H2 hold.
Then, there exists a limit point of{x(k)} that is a stationary
point of problem (5).

Proof See Lemma 13 of the paper by Gomes et al. (1999).

Theorem 2 Let{x(k)} be an infinite sequence generated by
Algorithm 1. Suppose that hypotheses H1 and H2 hold. Then
all of the limit points of{x(k)} areϕ-stationary. Moreover, if
all of these limit points are feasible and regular, there exists
a limit point x∗ that is a stationary point of problem (5). In
particular, if all of theϕ-stationary points are feasible and
regular, there exists a subsequence of{x(k)} that converges
to feasible and regular stationary point of (5).

Proof This result follows from Theorem 1 and Lemma 14.

4 Filtering

It is well known that the direct application of the SIMP
method for solving a topology optimization problem may
result in a structure containing a checkerboard-like material
distribution (e.g. D́ıaz and Sigmund 1995). To circumvent
this problem, several regularization schemes were proposed.
The most commonly used schemes are based on density or
sensitivity filters, due to their simplicity and ease of imple-
mentation (e.g. Bruns and Tortorelli 2003; Sigmund 1997).
However, more elaborate approaches, such as the the Sinh
method of Bruns (2005) and the morphology-based filters
proposed by Sigmund (2007), are also gaining attention.

In this section, we review some of the filters that can be
used in conjunction with our SLP method to solve topology
optimization problems.

4.1 Sensitivity filter

Perhaps, the most widely used method for avoiding checker-
board patterns is the sensitivity filter proposed by Sigmund
(1997/2001). In this filter, each component∂ f/∂ρi of the
gradient of f (the objective function in (5)) is replaced by
a weighted mean of the derivatives off with respect to the
densities of the elements that belong to a fixed neighborhood
Bi of elementi. Mathematically,∂ f/∂ρi is replaced by

∂̂ f
∂ρi

=

∑
j∈Bi

Ĥ j ρ j
∂ f
∂ρ j

ρi ∑
j∈Bi

Ĥ j
, i = 1, . . . ,nel, (34)

where

Ĥ j =

{
rmin−si j , if j ∈ Bi ,

0, otherwise,
(35)
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is a weight factor andsi j is the Euclidean distance between
the centroids of the elementsi and j.

Although having a good performance in practice, the
sensitivity filter has one serious disadvantage: the incompat-
ibility between∇ f and f prevent us from usingf to measure
the progress of the algorithm used to solve (5). To circum-
vent this problem, we can replace the objective functionf
of the topology optimization problem by

f̃ (ρ) = ζ f (ρ)+
nel

∑
i=1

gi(ρ(k))ρi +
nel

∑
i=1

hi(ρ(k)) log(ρi), (36)

where

gi(ρ(k)) =




Ĥi

∑
j∈Bi

Ĥ j
−ζ




∂ f (ρ(k))

∂ρi

and

hi(ρ(k)) =

∑
j∈Bi , j 6=i

Ĥ jρ
(k)
j

∂ f (ρ(k))

∂ρ(k)
j

∑
j∈Bi

Ĥ j
.

and ζ ≥ 1 is a penalty factor used to balance the original
function f and the two terms introduced iñf .

It must be noticed that, in (36), bothgi(ρ(k)) andhi(ρ(k))

are updated only at the beginning of iterationk of the SLP
algorithm, so they are treated as constants during the com-
putation ofsc.

It is not difficult to show that, ifρ = ρ(k), then

∂ f̃ (ρ(k))

∂ρi
=

∂̂ f (ρ(k))

∂ρi
.

Besides, if the sequence of iteratesρ(k) converges toρ∗, the
optimal solution of the problem, then

lim
k→∞

∂ f̃ (ρ(k))

∂ρi
=

∂̂ f (ρ∗)
∂ρi

, i = 1, . . . , nel.

We also observe that the term∑nel
i=1hi(ρ(k)) log(ρi) in

(36) pushesρi down to zero, reducing the occurrence of in-
termediate densities.

4.2 Density filter

Another very simple filter was proposed by Bruns and Tor-
torelli (2003) and works directly on the densitiesρ . For each
elementi, this filter replacesρi by a weighted mean of the
densities of the elements belonging to a neighborhoodBi .
The new density is given by

φi ≡ φi(ρ) = ∑
j∈Bi

ω j(si j )

ωi
ρ j , (37)

where

ω j(si j ) =

{
exp(−s2

i j /2(r/3)2)

2π(r/3) if si j ≤ r,

0 if si j > r,
(38)

si j is the Euclidean distance between the centroids of ele-
mentsi and j, and

ωi = ∑
j∈Bi

ω j(si j ). (39)

The filtered densities must be used both in the objective
function and in the constraints.

4.3 Morphology-based filters

Sigmund (2007) also introduced a family of filters based on
the dilation and the erosion image morphology operators.

The idea behind the dilation operator is to replace the
density of an elementi by the maximum of the densities of
the elements that belong to a neighborhoodBi . To avoid the
discontinuities produced by the max function, Sigmund uses
a continuous version of the operator, replacingρi by

ρ̃i =
1
β

log




∑
j∈Bi

exp(βρ j)

∑
j∈Bi

1


 , (40)

for i = 1, . . . ,nel.
The effect of the erosion operator is opposite to the one

produced by dilation. In its discrete form, the densityρi is
replaced by the minimum of the densities of the elements
in Bi . Again, to allow the use of this operator in conjunction
with an gradient-based optimization algorithm, a continuous
version was proposed by Sigmund (2007), soρi is replaced
by

ρ̄i = 1− 1
β

log




∑
j∈Bi

exp(β (1−ρ j))

∑
j∈Bi

1


 , (41)

for i = 1, . . . ,nel.
It is easy to see that

lim
β→∞

ρ̃i = max
j∈Bi

ρ j , and lim
β→∞

ρ̄i = min
j∈Bi

ρ j .

Unfortunately, choosing a largeβ may result in numeri-
cal instabilities. Thus, Sigmund (2007) suggests to start with
a smallβ and increase this parameter gradually.

Sigmund also combines these two operators to gener-
ate other filters. The open operator, for example, is obtained
applying erosion after dilation, while the close operator is
generated using dilation after erosion.

The main inconvenience of these filters is that they turn
the volume constraint into a nonlinear inequality constraint.
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4.4 Sinh filter

The Sinh method of Bruns (2005) combines the density fil-
ter with a new scheme for avoiding intermediate densities,
replacing the power function of the SIMP model by the hy-
perbolic sine function.

In the Sinh method, two density measures are used. The
first one,η1(ρ), is employed in the objective function of the
topological optimization problem, while the second,η2(ρ),
replaces the true density in the constraints.

Bruns (2005) has proposed several definitions forη1(ρ)
andη2(ρ). The basic Sinh method is obtained combining

η1i (ρ) = ρi , i = 1, . . . ,nel, (42)

and

η2i (ρ) = 1− sinh{p[1−φi(ρ)]}
sinh(p)

, i = 1, . . . ,nel, (43)

whereφi(ρ) is computed according to (37)–(39), andp is a
penalty factor.

One disadvantage of this approach is that, due to the
presence of the sinh function in (43), the volume constraint
becomes nonlinear.

5 Computational results

In this section, we present one possible implementation for
our SLP algorithm, and discuss its numerical behavior when
applied to the solution of some standard topology optimiza-
tion problems.

5.1 Algorithm details

Steps 2, 5, 7 and 9 constitute the core of the SLP algorithm.
The implementation of the remaining steps is straightfor-
ward.

Step 5 is just a one-dimensional quadratic convex opti-
mization problem. The solution of this problem is given by

ᾱ =min

{
− cTAdn

dT
n ATAdn

, min
dni >0

{
su
ni

dni

}
, max
dni <0

{
sl
ni

dni

}}
.

Step 2 of the SLP algorithm corresponds to the standard
phase 1 of the two-phase method for linear programming.

If a simplex based linear programming function is avail-
able, thensn may be defined as the feasible solution obtained
at the end of phase 1, supposing that the algorithm succeeds
in finding such a feasible solution. In this case, we can pro-
ceed to the second phase of the simplex method and solve
the linear programming problem stated at Step 91.

1 One should note, however, that the bounds on the variables defined
at Steps 2 and 9 are not the same. Thus, some control over the simplex

On the other hand, when the constraints given in Step 2
are incompatible, we need to compute a pointsc satisfying
M(x(k),sc) ≤ M(x(k),sd

n) at Step 7. If the solution obtained
by the simplex algorithm at the end of phase 1 satisfies this
condition, it can be defined assc. Otherwise, we can sim-
ply setsc = sd

n. Therefore, if the two-phase simplex method
is used, the computation effort spent at each iteration corre-
sponds to the solution of a single linear programming prob-
lem.

If an interior point method is used as the linear program-
ming solver instead, then some care must be taken to avoid
solving two linear problems per iteration. A good alternative
is to try to compute Step 9 directly. In case the algorithm
fails to obtain a feasible solution, then Steps 5 and 7 need to
be performed. Fortunately, in the solution of topology opti-
mization, the feasible region of (9) is usually not empty, so
this scheme performs well in practice.

5.2 Description of the tests

In order to confirm the efficiency and robustness of the new
algorithm, we compare it to the globally convergent version
of the Method of Moving Asymptotes, the so called Conser-
vative Convex Separable Approximations algorithm (CCSA
for short), proposed by Svanberg (2002).

We solve four topology optimization problems. The first
two are compliance minimization problems easily found in
the literature: the cantilever and the MBB beams. The last
two are compliant mechanism design problems: the gripper
and the force inverter. All of them were discretized into 4-
node rectangular finite elements, using bilinear interpolating
functions to approximate the displacements.

In our experiments with compliant mechanisms, we use
the Nishiwaki et al. (1998) formulation mentioned in section
2. Some preliminary results with the formulations of Lima
(2002) and Sigmund (1997) gave similar results.

We also analyze the effect of the application of the filters
presented in Section 4, to reduce the formation of checker-
board patterns in the structures.

The SIMP strategy was used in combination with the
sensitivity, the density, the dilation and the erosion filters.
In all cases, the penalty parameterp was set to 1, 2 and 3,
consecutively. For the sinh method, the parameterp given in
(43) was set to 1 to 6, consecutively.

The constantζ = 100 was used in (36) to define the ob-
jective function when the sensitivity filter is adopted. Forthe
dilation and erosion filters, we applyβ = 0.2, 0.4, 0.8 and
1.6, consecutively, for each value ofp (see equations (40)
and (41)).

routine is necessary to ensure that not only the objective function, but
also the upper and lower bounds on the variables are changed between
phases.
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When the SIMP method is used andp = 1 or 2, the al-
gorithm stops if∆ f , the difference between the objective
function of two consecutive iterations, falls below 10−3. For
p= 3, the algorithm is halted if∆ f < 10−3 for three succes-
sive iterations. For the sinh method, we stop the algorithm
whenever∆ f falls below 10−3 if p = 1, 2 or 3, and require
that∆ f < 10−3 for three successive iterations ifp = 4, 5 or
6. Besides, we also define a limit of 500 iterations for each
value of the penalty parameterp, that is used by both the
SIMP and the sinh methods.

All of the tests were performed on a personal computer,
with an Intel Pentium D 935 processor (3.2GHz, 512 MB
RAM), under the Windows XP operating system. The algo-
rithms were implemented in Matlab.

5.3 Cantilever beam design

The first problem we consider is the cantilever beam pre-
sented in Fig. 2.

We suppose that the structure’s thickness ise= 1cm, the
Poisson’s coefficient isσ = 0.3 and the Young’s modulus
of the material isE = 1N/cm2. The volume of the optimal
structure is limited by 40% of the design domain. A force
f = 1N is applied downwards in the center of the right edge
of the beam.

A
f

60

30

cm

cm

Fig. 2 Design domain for the cantilever beam.

The domain was discretized into 1800 square elements
with 1mm2 each. The optimal structures for all of the com-
binations of methods and filters are shown in Figure 3.

Table 1 contains the initial trust region radius (δ0) used
to solve this problem, as well as the numerical results ob-
tained, including the optimal value of the objective function,
the total number of iterations and the execution time. In this
table, the rows labeledRatio contain the ratio between the
values obtained by the SLP and the CCSA algorithms. A
ratio marked in bold indicates the superiority of SLP over
CCSA. The radius of each filter,rmin, is given in parenthe-
ses, after the filter’s name.

The cantilever beams shown in Figure 3 are quite sim-
ilar, suggesting that all of the filters efficiently reduced the
formation of checkerboard patterns, as expected.

Table 1 Results for the cantilever beam

Method δ0 Objective Iterations Time (s)

no filter

SLP 0.10 70.3013 298 109.27
CCSA 0.15 71.8734 521 866.65
Ratio - 0.978 0.572 0.126

Sensitivity filter (rmin = 1.5)

SLP 0.05 179.5024 105 49.41
CCSA 0.15 178.5657 352 546.31
Ratio - 1.005 0.298 0.090

Density filter (rmin = 2.0)

SLP 0.05 81.6859 381 180.80
CCSA 0.15 81.6914 947 2171.00
Ratio - 1.000 0.402 0.083

Dilation filter (rmin = 1.0)

SLP 0.10 87.6386 1058 691.20
CCSA 0.05 87.7092 1500 8533.30
Ratio - 0.999 0.705 0.081

Erosion filter (rmin = 1.0)

SLP 0.10 85.2952 953 557.08
CCSA 0.05 85.5921 1416 2168.50
Ratio - 0.997 0.673 0.257

Sinh filter (rmin = 2.0)

SLP 0.05 96.0394 818 467.96
CCSA 0.15 96.0574 2216 6019.20
Ratio - 1.000 0.369 0.078

The results presented in Table 1 show a clear superi-
ority of the SLP algorithm. Although both methods suc-
ceeded in obtaining the optimal structure with all of the fil-
ters (with minor differences in the objective function val-
ues), the CCSA algorithm spent much more time and took
more iterations to converge.

5.4 MBB beam design

The second problem we consider is the MBB beam pre-
sented in Fig. 4. The structure’s thickness, the Young’s mod-
ulus of the material and the Poisson’s coefficient are the
same used for the cantilever beam. The volume of the op-
timal structure is limited by 50% of the design domain. A
force f = 1N is applied downwards in the center of the top
edge of the beam.

cm
A

f

150 cm

25

Fig. 4 Design domain for the MBB beam.
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Fig. 3 The cantilever beams obtained using various filter and method combinations. The odd columns present the topologies generated bythe SLP
method, while the even columns present the topologies found by CCSA. The two columns on the left were obtained using no filter, the density,
and the erosion filters. The last two columns present the mechanisms obtained using the sensitivity, the dilation, and the sinh filters

The domain was discretized into 3750 square elements
with 1mm2 each. The optimal structures for all of the combi-
nations of methods and filters are shown in Figure 5. Due to
symmetry, only the right half of the domain is shown. Table
2 contains the numerical results obtained for this problem.

Table 2 Results for the MBB beam

Method δ0 Objective Iterations Time (s)

no filter

SLP 0.05 166.6435 313 107.36
CCSA 0.15 166.8490 362 602.39
Ratio - 0.999 0.865 0.178

Sensitivity filter (rmin = 4.0)

SLP 0.05 980.2053 76 45.39
CCSA 0.05 958.5473 573 968.66
Ratio - 1.023 0.133 0.047

Density filter (rmin = 5.0)

SLP 0.05 236.2687 921 1046.00
CCSA 0.10 236.2687 1500 5339.40
Ratio - 1.000 0.614 0.196

Dilation filter (rmin = 2.0)

SLP 0.10 216.7414 1293 1094.20
CCSA 0.05 226.8034 1500 8394.70
Ratio - 0.956 0.862 0.130

Erosion filter (rmin = 2.0)

SLP 0.10 219.2267 1348 971.11
CCSA 0.05 219.5075 1500 2344.60
Ratio - 0.999 0.899 0.414

Sinh filter (rmin = 3.0)

SLP 0.05 240.3675 1014 673.23
CCSA 0.15 229.2998 2688 7043.90
Ratio - 1.048 0.377 0.096

Again, the structures obtained by both methods are simi-
lar. The same happens to the values of the objective function,
as expected. Table 2 shows that the SLP algorithm performs
much better than the CCSA method for the MBB beam. In
fact, the CCSA algorithm fails to converge in 1500 iterations
for three filters (although the solutions found in these cases
are equivalent to those obtained by the SLP method).

5.5 Gripper mechanism design

Our third problem is the design of a gripper, whose domain
is presented in Fig. 6. In this compliant mechanism, a force
fa is applied to the center of the left side of the domain, and
the objective is to generate a pair of forces with magnitude
fb at the right side. For this problem, we consider that the
structure’s thickness ise = 1mm, the Young’s modulus of
the material isE = 210000N/mm2 and the Poisson’s coef-
ficient is σ = 0.3. The volume of the optimal structure is
limited by 20% of the design domain. The input and output
forces arefa = fb = 1N. The domain was discretized into
3300 square elements with 1mm2.

Figure 7 shows the grippers obtained. Due to symmetry,
only the upper half of the domain is shown. Table 3 summa-
rizes the numerical results.

The grippers shown in Figure 7 and the results presented
in Table 3 suggest that there exists a strong correlation be-
tween the length of the vertical bar at the left of the gripper’s
mouth (the vertical bar at the bottom right part of the figure)
and the quality of the solution. In fact, the longer the bar, the
better is the objective function value found. Unfortunately,
it seems that each type of structure obtained corresponds to
a local minimum of the nonlinear programming problem, so
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Fig. 5 The MBB beams obtained using various filter and method combinations. The odd columns present the topologies generated by the SLP
method, while the even columns present the topologies found by CCSA. The two columns on the left were obtained using no filter, the density,
and the erosion filters. The last two columns present the mechanisms obtained using the sensitivity, the dilation, and the sinh filters

Fig. 7 Grippers obtained using various filter and method combinations.The odd columns present the topologies generated by the SLP method,
while the even columns present the topologies found by CCSA. The two columns on the left were obtained using no filter, the density, and the
erosion filters. The last two columns present the mechanisms obtainedusing the sensitivity, the dilation, and the sinh filters

A

B

fa

fb

60 mm

15mm

60mm mm20

−fb
C

Fig. 6 Design domain for the gripper.

in some cases the algorithms are attracted to points that sat-
isfy the KKT conditions but are not global minima.

Although the SLP algorithm has obtained the best solu-
tion for only three of the filters, it spent much less time to
obtain the optimal solution in all cases. In fact, the SLP rou-
tine always took less than 1/5 of the time spent by the CCSA
method.

5.6 Force inverter design

Our last problem is the design of a compliant mechanism
known as force inverter. The domain is shown in Fig. 8. In
this example, an input forcefa is applied to the center of the
left side of the domain and the mechanism should generate
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Table 3 Results for the gripper mechanism

Method δ0 Objective Iterations Time (s)

no filter

SLP 0.10 −4.6685×106 141 98.32
CCSA 0.05 −2.2525×106 703 2679.70
Ratio - 2.073 0.201 0.037

Sensitivity filter (rmin = 1.5)

SLP 0.05 −7.3034×105 52 43.93
CCSA 0.05 −4.1948×105 1044 7067.50
Ratio - 1.741 0.050 0.006

Density filter (rmin = 2.0)

SLP 0.20 −5.7707×102 683 459.72
CCSA 0.15 −9.0467×102 1444 5943.40
Ratio - 0.638 0.473 0.077

Dilation filter (rmin = 1.0)

SLP 0.15 −1.3457×103 1164 933.41
CCSA 0.05 −1.6534×103 1500 6258.20
Ratio - 0.814 0.776 0.149

Erosion filter (rmin = 1.0)

SLP 0.25 −1.4203×103 1328 1058.70
CCSA 0.05 −2.6901×103 1500 4837.40
Ratio - 0.528 0.885 0.219

Sinh filter (rmin = 1.5)

SLP 0.10 −4.2026×100 614 382.51
CCSA 0.10 −3.2741×100 2389 8224.40
Ratio - 1.284 0.257 0.047

an output forcefb on the right side of the structure. Note that
both fa and fb are horizontal, but have opposite directions.

For this problem, we also usee = 1mm, σ = 0.3 and
E = 210000N/mm2. The volume is limited by 20% of the
design domain, and the input and output forces are given by
fa = fb = 1N. The domain was discretized into 3600 square
elements with 1mm2.

A

fb

B

60mm

fa
60mm

Fig. 8 Design domain for the force inverter.

Figure 9 shows the mechanisms obtained. Again, only
the upper half of the structure is shown, due to its symmetry.
Table 4 contains the numerical results.

Table 4 Results for the force inverter

Method δ0 Objective Iterations Time (s)

no filter

SLP 0.05 −4.8722×106 164 93.02
CCSA 0.10 −4.1017×106 334 773.86
Ratio - 1.188 0.491 0.120

Sensitivity filter (rmin = 1.5)

SLP 0.20 −1.2081×108 51 47.32
CCSA 0.15 −5.6876×108 298 1030.40
Ratio - 0.212 0.171 0.046

Density filter (rmin = 3.0)

SLP 0.05 −8.6923×101 618 638.91
CCSA 0.10 −7.6925×101 1205 4372.00
Ratio - 1.130 0.513 0.146

Dilation filter (rmin = 1.0)

SLP 0.10 −2.3795×105 918 845.14
CCSA 0.20 −2.2690×105 1463 6160.30
Ratio - 1.049 0.627 0.137

Erosion filter (rmin = 1.0)

SLP 0.05 −4.1110×103 902 840.34
CCSA 0.10 −4.0075×105 1424 4517.10
Ratio - 0.010 0.633 0.186

Sinh filter (rmin = 1.5)

SLP 0.10 −4.7174×100 663 517.81
CCSA 0.05 −4.7698×100 534 1103.30
Ratio - 0.989 1.242 0.469

According to Table 4, both algorithms found the best so-
lution for exactly three types of filter. However, the CCSA
method attained a much better solution for the erosion filter.
Curiously, the structures obtained by the algorithms for this
filter are fairly similar and do not reflect the difference in the
objective function.

As in the previous examples, the SLP method took much
less time to converge than the CCSA algorithm.

6 Conclusions and future work

In this paper, we have presented a new globally convergent
SLP method. Our algorithm was used to solve some standard
topology optimization problems. The results obtained show
that it is fast and reliable, and can be used in combination
with several filters for removing checkerboards.

The new algorithm seems to be faster than the globally
convergent version of the MMA method, while the struc-
tures obtained by both methods seem to be comparable.

As we can observe, the filters have avoided the occur-
rence of checkerboards. However, some of them allowed
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Fig. 9 Force inverters obtained using various filter and method combinations. The odd columns present the topologies generated by theSLP
algorithm, while the even columns present the topologies foundby CCSA. The two columns on the left were obtained using no filter, the density,
and the erosion filters. The last two columns present the mechanisms obtained using the sensitivity, the dilation, and the sinh filters

the formation of one node hinges. The implementation of
hinge elimination strategies, following the suggestions of
Silva (2007), is one possible extension of this work.

We also plan to analyze the behavior of the SLP algo-
rithm in combination with other compliant mechanism for-
mulations, such as those proposed by Pedersen et al. (2001),
Min and Kim (2004), and Luo et al. (2005).
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