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Abstract. This paper addresses the question whether normal forms of smooth

reversible vector fields in R4 at an elliptic equilibrium possess a formal Hamil-

tonian structure. In the non-resonant case we establish a formal conjugacy
between reversible and Hamiltonian normal forms. In the case of non-semi-

simple 1 : 1 resonancewe establish a weaker form of equivalence, namely that

of a formal orbital equivalence to a Hamiltonian normal form that involves an
additional time-reparametrization of orbits.
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1. Introduction and main result

The similarity between certain aspects of the dynamical behaviour of time-
reversible and Hamiltonian dynamical systems, explored already by Poincaré and
Birkhoff, has attracted much attention. Many results that hold for Hamiltonian
sytems, such as KAM theory and Lyapunov center theorems, have been shown to
hold also for time-reversible systems, see for instance [1, 2, 3, 6, 7, 8, 13, 20] and
references therein. At the same time, as should be expected, there are also many
differences between Hamiltonian and reversible systems, see for instance [13, 19].

In this paper, we address the question whether normal forms of reversible vector
fields in R4 at an elliptic equilibrium point formally have a Hamiltonian structure.
That is, given a reversible vector field with equilibrium 0 and linear part with two
pairs of purely imaginary eigenvalues, we investigate whether there exists a change
of coordinates that renders truncations of the Taylor expansion of the vector field
at any given order to be Hamiltonian.
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The question we address here is antipodal to the one addressed before in [14, 18],
concerning the formal reversibility of normal forms at fixed points of symplectic
maps of the plane (which turns out to be almost always true). Some semi-global
obstructions for reversibility of two-dimensional Hamiltonian vector fields and sym-
plectic diffeomorphisms were presented in [12].

Recall that a vector field X : R4 → R4 has a time-reversal symmetry ϕ ∈
Diffeo(R4) if ϕ∗(X) = −X, i.e. if x(t) is a solution of ẋ = X(x) then so is ϕx(−t).
We also say that X is ϕ-reversible, or simply reversible. In this paper we focus on
reversible vector fields without additional symmetries and thus assume that 〈φ〉 '
Z2 (and thus that ϕ2 = id). In the neighbourhood of a ϕ-invariant equilibrium
point, say 0 satisfying X(0) = 0, by Bochner’s Theorem [17] it then follows that
there exist local coordinates in which ϕ is linear and orthogonal. In this paper we
will always assume that we start with such coordinates in the neighbourhood of
the equilibrium. From the assumptions on the eigenvalues of the linear part of the
vector field we then obtain that near an elliptic equilbrium point dim Fix(ϕ) = 2
where Fix(ϕ) := {x ∈ R4 | ϕ(x) = x}.

A vector field X is called Hamiltonian if there exists a non-degenerate skew-
symmetric bilinear form ω and a function H : R4 → R such that ω(X(x), x) =
dH(x). By the Darboux Theorem, locally (for instance near an equilibrium point)
one can always find coordinates such that X(x) = J∇xH(x), where

J =

(
0 −I2
I2 0

)
,

and I2 denotes the 2× 2 unit matrix.
The categories of equivalence that we consider in this paper are formal conjugacy

and formal orbital equivalence. We say that two vector fields are formally conjugate
if there exists a formal change of coordinates transforming one vector field to the
other (to any given order, without concerning the convergence of the transformation
in the limit where the order goes to infinity). Two vector fields X and Y are said
to be formally orbitally equivalent if there is a smooth function f : R4 → R with
no zeros near 0, so that f ·X (X multiplied by f) is formally conjugate to Y . The
multiplication by f has the interpretation of a time-reparametrization of the orbits
of X. Formal conjugacy between two vector fields implies formal orbital equivalence
but not vice versa.

Given a reversible vector field X with equilibrium 0 and derivative DX(0) with
eigenvalues (±αi,±βi), we say that the equilibrium of X has a p : q (p, q ∈ Z)
resonance if qα − pβ = 0. Without loss of generality we may take α, β > 0 and
α ≤ β so that p, q ∈ N with p ≤ q and gcd(p, q) = 1. Throughout this paper we
will assume that vector fields are C∞.

The main results of this paper are summarized in the following theorem:

Theorem 1.1. Let X be a reversible vector field in R4 with equilibrium 0 such that
DX(0) has two pairs of purely imaginary eigenvalues (±αi,±βi), with α, β > 0.
Then,

(i) If α : β 6∈ Q, X is generically formally conjugated to an integrable re-
versible Hamiltonian vector field. Moreover, generically this normal form
is formally orbitally five-jet determined: the vector field can be reduced to
a polynomial of degree five by the combination of a change of coordinates
and rescaling of time.
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(ii) If α : β = 1 : 1 and DX(0) is not semi-simple (non-semi-simple 1 : 1
resonance1) then X is generically not formally conjugate to a Hamiltonian
vector field. But X is always formally orbitally equivalent to an integrable
Hamiltonian vector field.

In Section 3 we state more detailed results in from which one can immediately
deduce the senses of genericity we refer to. The case p : q 6= 1 : 1 will be treated
in a forthcoming paper, as its normal form is much more complicated, due to the
appearance of terms of even power, for some values of p, q.

The non-semi-simple 1 : 1 resonant case was considered previously by Van der
Meer et al. [16]. There, a similarity between the reversible and Hamiltonian cases
was found after reduction by the S1-equivariance of the normal form that is gen-
erated by the semi-simple part of the derivative at 1 : 1 resonance. Our results
provide an alternative point of view, and illustrate that the reversible normal form
is formally orbitally equivalent to a Hamiltonian vector field.

Similarities between the elliptic points in four-dimensional reversible and Hamil-
tonian vector fields have also been observed in the context of local bifurcation
theory. Indeed, when using Lyapunov-Schmidt reduction, it can be shown that the
reduced bifurcation equations for subharmonic branching at p : q resonances in the
reversible, Hamiltonian and reversible Hamiltonian contexts are identical, and thus
give rise to identical branching patterns of periodic solutions [8]. Our results thus
illustrate that the formal equivalence of branching patterns does not imply that the
corresponding vector fields are formally conjugate.

Finally, we note that it is of interest to address the question of this paper also
in the opposite direction, namely if the normal for of an elliptic equilbrium of a
Hamiltonian vector field in R4 is formally reversible. This clearly holds in the non-
resonant case (as in the simpler case in R2), but in the presence of resonances this
problem is still open.

2. Preliminaries

In this section we recall some general results and techniques for the normalization
of vector fields near an equilibrium solution.

Consider a vector field X on Rn with equilibrium 0. We are interested in estab-
lising coordinates in terms of which (finite order truncations of ) Taylor expansions
have special properties. We recall that the existence of a coordinate transformations
between two vector fields is a conjugacy relation between these two vector fields.
We say that two smooth vector fields X and Y are formally conjugate if for each
order k ≥ 1 there exists a coordinate transformation φ such that the vector field X
and vector field φ∗(Y ) (conjugate to Y ) have the same Taylor series expansion up
to degree k. It is well known that a formal conjugacy does not always imply a true
conjugacy, due to the possibility of divergence of the coordinate transformations as
k →∞.

Our starting point will often be the well-established result that coordinates can
always be chosen in such a way that the nonlinear terms of a finite order Taylor
expansion of the vector field commute with the transpose of the linear part of
the vector field. This implies in particular that the resulting Taylor expansion

1 We note that generically , in one-parameter families of reversible vector fields, non-semi-

simple 1 : 1 resonances arise persistenty. The semi-simple 1 : 1 resonance has higher codimension
and is not considered here.
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commutes with the (closure of) the group generated by the semi-simple part (in
the sense of Jordan-Chevalley decomposition) of the linear part of the vector field.

Let L = DX(0) denote the linear part of the vector field X. Then the Jordan-
Chevalley decomposition theorem asserts that J can be written uniquely as the
sum L = S +N where S is semi-simple, N is nilpotent and [S,N ] = 0.

The following normal form theorem is a reversible version of a classical result by
Belitskii [4].

Theorem 2.1 ([11]). Let X be a ϕ-reversible vector field, where ϕ acts linearly
and ϕ2 = Id. Let moreover X have equilibrium 0 and linear part L = DX(0) with
Jordan-Chevalley decomposition L = S + N . Then X is formally conjugate, by a
ϕ-equivarant coordinate transformation, to a ϕ-reversible vector field X̃ with linear
part L, satisfying [(X̃ − L), LT ] = 0, where LT denotes the transpose of L.

Corollary 2.2 (Formal normal form symmetry). The normal form X̃ from The-
orem 2.1 is reversible-equivariant with respect to the group G o Z2(ϕ) with G =

{exp(St) | t ∈ R}.

The proof of Theorem 2.1 relies on the analysis of the effect of coordinate trans-
formations that are derived from the flow of a vector field.

Assume that X and Y are vector fields such that

(2.1) jk[X,Y ] = 0, and j1Y = 0,

where [X,Y ] denotes the Lie bracket of X and Y , and jkX denotes the k-jet of X
(equivalence class of vector fields with the same kth order Taylor expansion as X).

Let φtY denote the time-t flow of Y and X̃ = (φtY )∗X, then we have

(2.2) jk+1(X̃) = jk+1X + tjk+1[X,Y ].

This implies that if X and X̃ are vector fields such that jkX = jkX̃ and

(2.3) jk+1[X,Y ] = jk+1(X̃ −X)

is solvable with respect to a vector field Y such that j1Y = 0, then there is a
diffeomorphism φ such that

(2.4) jk+1φ∗X = jk+1X̃.

For normalization purposes we usually assume that the linear part of the vector
field has been normalized (often to Jordan normal form), and focus on coordinate
transformations with linear part the identity (which are formally identical to the
time-one maps of flows of vector fields).

In this paper we carefully examine how within the above framework we can find
Y so that jk+1X̃ is Hamiltonian, which requires an effort that goes well beyond
the proof of Theorem 2.1, where at each order k it suffices to consider only vector
fields Y that are homogeneous of degree k.

Since there also exists a (reversible-equivariant) Hamiltonian version of Theo-
rem 2.1 we can moreover assume without loss of generality that Y is G o Z2($)
equivariant. Namely, if we would find Y without these properties we could ob-
tain an additional normalization hat preserves the Hamiltonian structure to yield
a G o Z2(ϕ) reversible-equivariant (and Hamiltonian) normal form. It then fol-
lows [11] that such a normal form can also be obtained by a symmetry preserving
(Go Z2($) equivariant) coordinate transformation.
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3. Detailed statement of the results

In this section, we present in more detail the results summarized in Theorem 1.1.
In each individual case we identify explicitly the Hamiltonian structure of the nor-
mal forms. We will often use the identification C2 ∼= R4, in coordinates zj = xj+iyj ,
j = 1, 2. The starting point of our study is usually the normal form of Theorem 2.1,
that is characterized by the fact that the nonlinear terms commute with the trans-
pose of the linear part of the vector field. By Corollary 2.2 this implies that this
normal form is equivariant with respect to the (Lie) group generated by the semi-
simple part of the linear part of the vector field, yielding in the context of this paper
a formal symmetry group of the form S1×S1 (in the non-resonance case) or S1 (in
the case of p : q resonance). Because of this symmetry, it is useful to introduce the
variables A := z1z1, B := z2z2, C := zq1z2

p and D := C (which are invariant under
the relevant group actions).

3.1. Non-resonant case. Let X be a ϕ-reversible vector field, with ϕ(z1, z2) =
(iz̄1,−iz̄2), (z1, z2) ∈ C2, and X(0) = 0, so that DX(0) has eigenvalues (±αi,±βi),
with α : β 6∈ Q. Then our starting point is the reversible-equivariant normal form

(3.1) X =

αiz1 + iz1

∞∑
j+l=1

aj,lA
jBl

 ∂

∂z1
+

βiz2 + iz2

∞∑
j+l=1

bj,lA
jBl

 ∂

∂z2
,

where due to the ϕ-reversibility all parameters aj,l and bj,l are real. It turns out
that the sign of a0,1b1,0 is invariant under changes of coordinates that do not change
the linear part of the vector field.

Theorem 3.1 (Non-resonant formal conjugacy). Let X be ϕ-reversible and non-
resonant, as detailed above. If, with refererence to (3.1), a0,1b1,0 6= 0, then X is
formally conjugate to a ϕ-reversible Hamiltonian vector field with symplectic form
ω(z1, z2) = dz1 ∧ εdz2, with ε := sgn(a0,1b1,0), and Hamiltonian H = αA+ εβB +
h(A,B), where h(0, 0) = ∂Ah(0, 0) = ∂Bh(0, 0) = 0.

In the orbital equivalence setting, the sign of a0,1b1,0 is no longer invariant.
Nevertheless, it turns out that, in terms of (3.1), the inequalities

(3.2) a1,0β − b1,0α 6= 0, a0,1β − b0,1α 6= 0

are invariant.

Theorem 3.2 (Non-resonant orbital equivalence). Let X be a ϕ-reversible vector
field given by (3.1) where α and β satisfy (3.2). Then X is formally orbitally
equivalent to a φ-reversible Hamiltonian vector field with symplectic form ω = dz1∧
dz2 and Hamiltonian H = α

2A + β
2B + aA

2

2 + bB
2

2 + cA
3

6 . where a = ±1, b = ±1,
and c ∈ R.

3.2. Non-semi-simple 1 : 1 resonance. Our starting point is the S1-equivariant
reversible Belitskii normal form

(3.3)
X = (αiz1 + z2 + z1f1(A,B,C,D) + z2f2(A,B,C,D)) ∂

∂z1
+

(αiz2 + z1g1(A,B,C,D) + z2g2(A,B,C,D)) ∂
∂z2

where fj and gj , j = 1, 2, have no constant or linear parts. The functions f and
g moreover satisfy some conditions imposed by the ϕ-reversibility (where without
loss of generality we take ϕ as in the non-resonant case).
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Theorem 3.3. Let X be a 1 : 1 non-semi-simple resonant reversible vector field.
Then its normal form is formally orbitally equivalent to a Hamiltonian vector field
with symplectic form ω and Hamiltonian H = (y21 + y22)/2 + v + f(A, v), where
v = x1y2 − x2y1, A = x21 + x22, and f satisfies f(0, 0) = ∂Af(0, 0) = ∂vf(0, 0) = 0.

However, the normal form is generically not formally conjugate to a Hamiltonian
vector field.

Remark 3.4. To be more precise about the final claim of Theorem 3.3, let us give
a simple computational argument. Consider the 3-jet of equation (3.3), reduced
by the Belitiskii normal form and reversibility. We can write this system in real
coordinates as 

ẋ1 = −x2 + y1 − x2(a1A+ a2v)

ẋ2 = x1 + y2 + x1(a1A+ a2v)

ẏ1 = −y2 − y2(a1A+ a2v) + x1(a3v + a4A)

ẏ2 = y1 + y1(a1A+ a2v) + x2(a3v + a4A),

where A = x21 +x22 and v = x1y2−x2y1. Define H = H2 +H3 +H4 and Y = J∇H,
where Hk is a homogeneous polynomial of degree k and J is the canonical sympletic
matrix. If X is conjugate to some hamiltonian vector field, then there exist such
H and a change of coordinates Ψ = Id+ ψ, with ψ = o(3), such that

(3.4) j3(DΨ(x)X(x)) = j3(Y (Ψ(x)).

In turns out that a solution can be obtained if and only if a3 = −2a1. If this
condition holds, at the next (5th) order a similar condition arises.

4. Proofs

In this section we present the proofs for the results stated in Section 3, and
summarized in Theorem 1.1.

4.1. Non-resonant case.

4.1.1. Formal conjugacy: proof of Theorem 3.1. We only consider the case a01b10 >
0. The proof in case a01b10 < 0 is similar.

To prove the theorem we need to show that for any fixed k ≥ 0,

X(2k+3) =
−x2

∑
i+j=k+1(ai,jA

iBj ∂
∂x1

+ x1
∑
i+j=k+1 ai,jA

iBj ∂
∂x2

+

−y2
∑
i+j=k+1 bi,jA

iBj ∂
∂y1

+ y1
∑
i+j=k+1 bi,jA

iBj ∂
∂y2

can be so normalized that the following compatibility relations hold.

(4.1) (j + 1)ak−j,j+1 = (k − j + 1)bk−j+1,j , j = 0, 1, . . . , k.

Namely, if these compatibility conditions are satisfied then there exists a generating
function of the form Hk =

∑
i+j=k+2 hi,jA

iBj , where hi,j will be choosen in an
adequate way.

We prove things order-by-order. As the lowest order of resonant terms, X(3) can
be normalized to satisfy (4.1). Namely, in terms of (3.1), we can put a0,1 = b1,0
by applying linear scalings of z1 and z2, recalling the assumption that a0,1b1,0 > 0.
Moreover, one can scale variables so that a0,1 = b1,0 = ±1.
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Next we show that the normalization of X(2k+3) can be done for any k > 0.
Following the methodology of Section 2 we have to show the solvability of Y from
the following homological equation

(4.2) [X(3), Y ] = X̃(2k+3) −X(2k+3),

where X̃ = J∇Hk for some polynomial Hamiltonian Hk : R4 → R of degree 2k+ 4.
Note that

X̃(2k+3) =
−x2

∑
i+j=k+1(i+ 1)hi+1,jA

iBj ∂
∂x1

+ x1
∑
i+j=k+1(i+ 1)hi+1,jA

iBj ∂
∂x2

+

−y2
∑
i+j=k+1(j + 1)hi,j+1A

iBj ∂
∂y1

+ y1
∑
i+j=k+1(j + 1)hi,j+1A

iBj ∂
∂y2

Writing Y in the form

Y =


x1
(
αk,0A

k + αk−1,1A
k−1B + . . .+ α1,k−1AB

k−1 + α0,kB
k
)

x2
(
αk,0A

k + αk−1,1A
k−1B + . . .+ α1,k−1AB

k−1 + α0,kB
k
)

y1
(
βk,0A

k + βk−1,1A
k−1B + . . .+ β1,k−1AB

k−1 + β0,kB
k
)

y2
(
βk,0A

k + βk−1,1A
k−1B + . . .+ β1,k−1AB

k−1 + β0,kB
k
)


the left side of (4.2) can be calculated explicitly:

(4.3) [X(3), Y ] =


−2x2

(
γ0A

k+1 + γ1A
kB + . . .+ γkAB

k + γk+1B
k+1
)

2x1
(
γ0A

k+1 + γ1A
kB + . . .+ γkAB

k + γk+1B
k+1
)

−2y2
(
δ0A

k+1 + δ1A
kB + . . .+ δkAB

k + δk+1B
k+1
)

2y1
(
δ0A

k+1 + δ1A
kB + . . .+ δkAB

k + δk+1B
k+1
)
 ,

where γ0 = αk,0a1,0, γk+1 = βk,0a0,1, δ0 = αk,0a0,1, δk+1 = β0,kb0,1 and γj =
αk−j,ja1,0 + βk−j+1,j−1a0,1, δj = αk−j,ja0,1 + βk−j+1,j−1b0,1 for j = 1, . . . , k.

The right side of (4.2) is:

(4.4) X̃(2k+3) −X(2k+3) =


−x2

(∑
i+j=k+1[(i+ 1)hi+1,j − ai,j ]AiBj

)
x1

(∑
i+j=k+1[(i+ 1)hi+1,j − ai,j ]AiBj

)
−y2

(∑
i+j=k+1[(j + 1)hi,j+1 − bi,j ]AiBj

)
y1

(∑
i+j=k+1[(j + 1)hi,j+1 − bi,j ]AiBj

)


Now comparing (4.3) and (4.4), we see that to solve [X(3), Y ] = X̃(2k+3)−X(2k+3)

is equivalent to solve, for α’s, β’s and h’s, the following system of equations:

2αk,0a1,0 = (k + 2)hk+2,0 − ak+1,0

2βk,0a0,1 = h1,k+1 − a0,k+1

2αk,0a0,1 = hk+1,1 − bk+1,0

2β0,kb0,1 = (k + 2)h0,k+2 − b0,k+1

2[αk−1,1a1,0 + βk,0a0,1] = (k + 1)hk+1,1 − ak,1
...

2[α0,ka1,0 + β1,k−1a0,1] = 2h2,k − a1,k
2[αk−1,1a0,1 + βk,0b0,1] = 2hk,2 − b1,k

...
2[α0,ka0,1 + β1,k−1b0,1] = (k + 1)hk−1,2 − bk,1
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We rewrite this system as

2αk,0a1,0 = (k + 2)hk+2,0 − ak+1,0

2αk,0a0,1 = hk+1,1 − bk+1,0

2βk,0a0,1 = h1,k+1 − a0,k+1

2β0,kb0,1 = (k + 2)h0,k+2 − b0,k+1

2[αk−1,1a1,0 + βk,0a0,1] = (k + 1)hk+1,1 − ak,1
2[αk−1,1a0,1 + βk,0b0,1] = 2hk,2 − b1,k

...
2[α0,ka1,0 + β1,k−1a0,1] = 2h2,k − a1,k
2[α0,ka0,1 + β1,k−1b0,1] = (k + 1)hk−1,2 − bk,1

As a0,1 6= 0, the above system has solution. For k = 1, one solution is:

α1,0 = 1/4 (−2 b2,0a0,1 + a1,1a0,1 − a1,0b1,1 + 2 a1,0a0,2)/a20,1,

α0,1 = 1/2 (2 a0,2 − b1,1)/a0,1,

h3,0 = 1/12 (−2 a1,0b2,0a0,1 + a1,0a1,1a0,1 − a21,0b1,1 + 2 a21,0a0,2 + 2 a2,0a
2
0,1)/a20,1,

h2,1 = 1/4 (a1,1a0,1 − a1,0b1,1 + 2 a1,0a0,2)/a0,1,

h1,2 = 1/2 a0,2,

h0,3 = 1/6 b0,2.

4.1.2. Formal orbital equivalence: Theorem 3.2. Formal conjugacy, as established in
the previous section, implies formal orbital equivalence. It remains to be shown that
in the formal orbital equivalence setting the resulting Hamiltonian can generically
be chosen to be polynomial . The aim is to show that by a combination of a
coordinate transformation and multiplication of the vector field by a formal power
series with no zeros near 0, (3.1) can be normalized to a Hamiltonian vector field,
with H given in the statement of Theorem 3.2 and XH given by

(4.5)


ẋ1 = −αx2 − ax2∆1 − cx2∆2

1

ẋ2 = −αx1 − ax1∆1 − cx1∆2
1

ẏ1 = −βy2 − by2∆2

ẏ2 = βy1 + by1∆2,

,

where a = ±1, b = ± and c ∈ R.
We proceed order by order. We start multiplying the 3-jet j3X of X by the

function

h1 = 1− b1,0
β
A− a0,1

α
B

yielding

j3(h1 ·X) = (−αx2 − x2ã1,0A)
∂

∂x1
+ (αx1 + x1ã1,0A)

∂

∂x2

+
(
−βy2 − y2b̃0,1B

) ∂

∂y1
+
(
βy1 + y1b̃0,1B

) ∂

∂y1

where ã1,0 =
(
βa1,0−b1,0α

β

)
and b̃0,1 =

(
αb0,1−a0,1β

α

)
.
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Moreover, due to the genericity conditions (3.2), we can scale ã1,0 and b̃0,1 to
±1. We thus may normalize j3X to
(4.6)

(−αx2 − x2ε1A)
∂

∂x1
+(αx1 + x1ε1A)

∂

∂x2
+(−βy2 − y2ε2B)

∂

∂y1
+(βy1 + y1ε2B)

∂

∂y1

where ε1 = ±1, ε2 = ±1. We note that the signs of ε1 and ε2 are independent.
Having normalized j3X to (4.6), next we consider the normalization of the ho-

mogenous terms of degree 5. Let X(5) denote these terms, as obtained after the
previous normalization step. We may write

X(5) = −x2
(
a2,0A

2 + a1,1AB + a0,2B
2
) ∂

∂x1
+ x1

(
a2,0A

2 + a1,1AB + a0,2B
2
) ∂

∂x2

− y2
(
b2,0A

2 + b1,1AB + b0,2B
2
) ∂

∂y1
+ y1

(
b2,0A

2 + b1,1AB + b0,2B
2
) ∂

∂y1

We now multiply the vector field X by a function h2 = 1 + θ1A
2 + θ2AB+ θ3B

2,
where θ’s are parameters that will be specified further below.

The third jet of the resulting vector field h2 ·X is the same of X, and the terms
of h2 ·X of homogeneous degree 5 are

X̃(5) = −x2
(
(a2,0 + θ1)A2 + (a1,1 + θ2)AB + (a0,2 + θ3)B2

) ∂

∂x1

+ x1
(
(a2,0 + θ1)A2 + (a1,1 + θ2)AB + (a0,2 + θ3)B2

) ∂

∂x2

− y2
(
(b2,0 + θ1)A2 + (b1,1 + θ2)AB + (b0,2 + θ3)B2

) ∂

∂y1

+ y1
(
(b2,0 + θ1)A2 + (b1,1 + θ2)AB + (b0,2 + θ3)B2

) ∂

∂y1

We have to pass X̃(5) to

X
(5)
H = −cx2A2 ∂

∂x1
− cx1A2 ∂

∂x2
,

so we we perform a change of coordinates generated by

Y2 = x1(γ1,0A+ γ0,1B) ∂
∂x1

+ x2(γ1,0A+ γ0,1B) ∂
∂x2

y1(δ1,0A+ δ0,1B) ∂
∂y1

+ y2(δ1,0A+ δ0,1B) ∂
∂y2

where γ’s and δ’s are real parameters. Now, just like in the previous case, we have

to solve [X̃(3), Y ] = X(5) − X(5)
H . One can check that a solution of this system is

given by

θ1 = −b2,0
θ2 =

1

6

−2γ1,0a1,0 + 2γ1,0b1,0α− b2,0β + a2,0β

β
θ3 = −a0,2
δ1,0 = −1

2

α(2γ0,1b1,0α+ a1,1β − 2γ0,1a1,0β − b1,1β)

β(b0,1α− a0,1β)

δ0,1 = −1

2

α(−b0,2 + a0,2)

b0,1α− a0,1β

,
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with γ1,0, γ0,1 free variables.
Let us now fix the (Hamiltonian) polynomial vector field j5X as obtained by the

above normalization procedure. We proceed to show that all higher order terms can
be eliminated. In order to normalize X(2k+1), k ≥ 3, we first multiply the vector
field by a function of the form

(4.7) hk = 1 +

k∑
j=0

θk−j,jA
(k−j)Bj ,

with parameters θk−j,j and subsequently perform a change of coordinates, generated
by a vector field of the form

(4.8) Yk =

k−1∑
j=0

Ak−1−jBj(αk−1−j,jz1
∂

∂z1
+ βk−1−j,jz2

∂

∂z2
)

where α’s and β’s are parameters. Then (Yk)∗(hkX) takes the form

iz1

1 + ε1A+ cA2 +

k−1∑
j=0

(ak−j,jθk−j,j − 2ε1αk−1−j,j)A
k−jBj + (a0,k + θ0,k)Bk

 ∂

∂z1

+iz2

λ+ ε2B +

k∑
j=1

(bk−j,j + λθk−j,j − 2ε1βk−1−j,j−1)Ak−jBj + (bk,0 + λθk,0)Ak

 ∂

∂z2

.

The elimination of all terms is equivalent to the solvability, with respect to the
parameters θi,j , αi,j and βi,j , of the following system of equations:

ak−j,j + θk−j,j − 2ε1αk−1−j,j = 0, j = 0, . . . , k − 1
bk−j,j + λθk−j,j − 2ε2βk−j,j−1 = 0, j = 1, . . . , k,

a0,k + θ0,k = 0,
bk,0 + λθk,0 = 0,

where ai,j , bi,j ∈ R are constants whose values depend on the details of X(2k+1).
Due to the upper triangular form of this system of the equations, its solvability is
evident.

We remark that we do not need the coefficients β’s (in the same way we did not
used the coefficients γ’s in the normalization of 5-jet). The explanation for that is
easy: while the reparametrization function hk eliminate the monomials in the first
two coordinates, the change of coordinate eliminate the monomials in the last two
equations. �

4.2. Non-semi-simple 1 : 1 resonance. Without loss of generality, we assume
that the eigenvalues of the vector fields are equal to ±i. We start from the reversible
Belitskii normal form (which has its nonlinear terms commuting with the transpose
of the linear part)

X = (−x2 + y1 − x2(a1A+ a2v) + · · · ) ∂
∂x1

+ (x1 + y2 + x1(a1A+ a2v) + · · · ) ∂
∂x2

+ (−y2 − y2(a1A+ a2v) + x1(a3v + a4A) + · · · ) ∂
∂y1

+ (y1 + y1(a1A+ a2v) + x2(a3v + a4A) + · · · ) ∂
∂y2

,

where the dots denote the higher order terms and the a’s denote parameters. The
3-jet of the vector field is Hamiltonian with respect to the standard symplectic form
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if and only if a3 = −2a1, with Hamiltonian function H4 = (y21 +y22)/2 +v+a1Av+
a2v

2/2− a4A2/4.
The condition a3 = −2a1 can be achieved by a re-scaling of time. After multi-

plication of X by f = 1 + αA where α is a parameter, we get:

(4.9) (fX) =
(
−x2 + y1 − x2((a1 + α)A+ a2v) + y1(αA) · · ·

)
∂
∂x1

+
(
x1 + y2 + x1((a1 + α)A+ a2v) + y2(αA) + · · ·

)
∂
∂x2

+ (−y2 − y2((a1 + α)A+ a2v) + x1(a3v + a4A) + · · · ) ∂
∂y1

+ (y1 + y1((a1 + α)A+ a2v) + x2(a3v + a4A) + · · · ) ∂
∂y2

Using in turn another coordinate transformation to the Belitskii normal form, the
underlined terms of (4.9) may be eliminated. Moreover, the remaining terms of
(4.9) are not affected because they belong to the complement of the image of the
homological operator; the change of coordinate

Id+


x1((1/2)α∆2) + y2(−αv)
x2((1/2)α∆2)− y1(−αv)

0
0


realize this. So the desired Hamiltonian form is obtained if α ∈ R is chosen such
that a3 = −2(a1 + α).

Starting with the (2k − 3)-jet in Hamiltonian form, with k ≥ 2, we proceed to
normalize the (2k − 1)-jet

X(2k−1) =
(
−x2

∑k
j=1 bjA

k−jvj−1
)

∂
∂x1

+
(
x1
∑k
j=1 bjA

k−jvj−1
)

∂
∂x2

+(
−y2

∑k
j=1 bjA

k−jvj−1 + x1
∑k
j=1 cjA

k−vj−1
)

∂
∂y1

+(
y1
∑k
j=1 bjA

k−jvj−1 + x2
∑k
j=1 cjA

k−jvj−1
)

∂
∂y2

as follows. We first multiply by a function f of the form f = 1 +
∑k−1
j=1 θjA

k−jvj−1

to obtain

X̃(2k−1) =
(
−x2

∑k
j=1(bj + θj)A

k−jvj−1 + y1
∑k−1
j=1 θjA

k−jvj−1
)

∂
∂x1

+(
x1
∑k
j=1(bj + θj)A

k−jvj−1 + y2
∑k−1
j=1 θjA

k−jvj−1
)

∂
∂x2

+(
−y2

∑k
j=1(bj + θj)A

k−jvj−1 + x1
∑k
j=1 cjA

k−vj−1
)

∂
∂y1

+(
y1
∑k
j=1(bj + θj)A

k−jvj−1 + x2
∑k
j=1 cjA

k−jvj−1
)

∂
∂y2

.

As above the underlined terms can be killed, without changing the other terms,
by the change of coordinate

Id+


x1f(v,A,B)− y2g(v,A)
x2f(v,A,B) + y1g(v,A)

0
0

 ,

with g(v,A) =
∑k−2
j=0 θk−j−1v

k−j−1Aj and f(v,A,B) = B
∑k−2
j=0 θ1+jA

k−jvj .
So and we may choose θj , j = 1, . . . , k such that

jcj+1 = −2(k − j)(bj + θj), j = 1, . . . , k.

�.
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