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Abstract
The zero-in�ated negative binomial model is used to account for overdispersion detected in data

that are initially analyzed under the zero-in�ated Poisson model. We consider a frequentist analysis,
a jackknife estimator and non-parametric bootstrap for parameter estimation of zero-in�ated negative
binomial regression models. In addition, an EM-type algorithm is developed to perform maximum
likelihood estimation. Then, we derive the appropriate matrices for assessing local in�uence on the
parameter estimates under di�erent perturbation schemes and present some ways to perform global
in�uence analysis. In order to study departures from the error assumption as well as the presence
of outliers, we perform residual analysis based on the standardized Pearson residuals. The relevance
of the approach is illustrated with a real data set, where it is shown that, by removing the most
in�uential observations, the decision about which model best �ts the data changes.

Keywords: binomial negative distribution, EM-algorithm, bootstrap, global in�uence, local in�uence,
zero-in�ated models.

1 Introduction
Count data with many zeros (or zero-in�ation) are commonly encountered in many disciplines, including
medicine (Bohning et al., 1999), public health (Zhou and Tu, 2000), environmental sciences (Agarwal
et al., 2002), agriculture (Hall, 2000) and manufacturing applications (Lambert, 1992). Zero-in�ation,
a frequent manifestation of overdispersion, means that the incidence of zero counts is greater than ex-
pected. This is of interest because zero counts frequently have special status. For example, in counting
the number of responses to an exposure, an individual may have no disease response because of his/her
immunity or resistance to the disease. If overdispersion in raw data is caused by the zero in�ation, then
the zero-in�ated Poisson (ZIP) model, described in Lambert (1992) seminal work, provides a standard
framework to �t the data. The basic idea behind the derivation of the ZIP model is to mix a distribu-
tion degenerate at zero with a Poisson distribution. Since one could theoretically mix the degenerate
distribution with any count distribution, we refer to the latter (nondegenerate) distribution/model as the
baseline model.

Having accounted for zero in�ation, if the data continue to suggest additional overdispersion, we
should consider the zero in�ated negative binomial (ZINB) model, mixing a distribution degenerate at
zero with a baseline negative binomial distribution, over the zero-in�ated Poisson model. Without con-
fusion, overdispersion can be the result of excess zeros or some other cause. In any case, the result is
excess variability. In some cases, the ZIP model may be not appropriate for such data, since the baseline
(Poisson) model does not accommodate the remaining overdispersion not accounted for through zero
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in�ation and it is well known that negative binomial (NB) models are more �exible than their simpler
Poisson counterparts in accommodation of overdispersion (Lawless, 1987). The ZINB model was dis-
cussed in Ridout et al. (2001), where a a score test is provided for testing ZIP regression models against
ZINB alternatives. More recently, Mwalili et al. (2008) illustrated how the ZINB regression model can
be corrected for misclassi�cation.

In�uence diagnostics is an important aspect in the analysis of a data set following parameter es-
timation, as it provides an indication of lack of �t or in�uential observations. Cook (1986) proposed
a diagnostic approach, named local in�uence, to assess the e�ect of small perturbations in the model
and/or data on the parameter estimates. Several authors have applied the local in�uence methodology
in more general regression models than the normal regression model (see for instance, Galea et al., 2004;
Zeller et al., 2009). Moreover, some authors have investigated the assessment of local in�uence in survival
analysis models: for instance, Carrasco et al. (2008) derived the appropriate matrices for assessing local
in�uence in log-modi�ed Weibull regression models and Silva et al. (2008) adapted global and local in�u-
ence methods in log-Burr XII regression models with censored data. In�uence diagnostics for NB models
can be found, for instance, in Svetliza and Paula (2003) and for ZIP models, the recent works by Xie et al.
(2008) and Xie and Wei (2009) can be cited. However, to the best of our knowledge there are neither
studies on ZINB models related to in�uence diagnostics nor on local in�uence. Thus, the main objective
of this work is to develop estimation methods and diagnostics analysis, based on case-deletion and the
local in�uence approach, for ZINB regression models. In the presence of zero in�ation, we expect that
the techniques developed here will enable practitioners to make correct conclusions and valid inferences
from zero-in�ated regression models.

The paper is organized as follows. In Section 2 we give a brief sketch of ZINB regression models,
and consider maximum likelihood (ML) estimation, jackknife and non-parametric bootstrap estimators
for the model parameters, including an EM-type algorithm for ML estimation. In addition, the observed
information matrix is derived analytically. In Section 3, we study the local in�uence and illustrate the
curvature calculations for four perturbation schemes. Furthermore, we present some ways to perform
global in�uence and residual analysis based on the standardized Pearson residuals. The methodology is
illustrated in Section 4, in which we compare ZINB and ZIP models according to the robustness aspects
of the ML estimates. Finally, we make some concluding remarks and suggestions for further research in
Section 5.

2 The ZINB regression model
The NB and Poisson regression model is a popular tool for modeling count data and is applied in a wide
range of applications in the social and physical sciences. Real data, however, are often overdispersed
(zero-in�ated), and are thus not appropriate for NB and Poisson regression. We study a regression model
based on the NB distribution to address this problem. We consider a ZINB regression model in which
the response variable Yi, (i = 1, . . . , n) has a probability mass function (p.m.f.) given by

Pr(Yi = yi) =





pi + (1− pi)
(

φ
µi+φ

)φ

, yi = 0;

(1− pi)
Γ(φ + yi)

Γ(yi + 1)Γ(φ)

( µi

µi + φ

)yi
( φ

µi + φ

)φ

, yi = 1, 2, . . . ,

(1)

where 0 ≤ pi ≤ 1, µi ≥ 0, φ−1 is the dispersion parameter with φ > 0 and Γ(.) is the gamma function.
The mean and the variance of the model de�ned in (1) are E(Yi) = (1− pi)µi, V ar(Yi) = (1− pi)µi(1 +
µiφ

−1 + piµi). When pi = 0, the random variable Yi has a binomial negative distribution with mean µi

and dispersion parameter φ, i.e, Yi ∼ NB(µi, φ) in the usual notation.
In many practical applications it is common to assume that the parameters pi and µi depend on
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vectors of explanatory variables xi and zi, respectively. In this work, we assume the speci�c models

log(µi) = xT
i β and log

(
pi

1− pi

)
= zT

i γ, i = 1, . . . , n, (2)

where β = (β1, . . . , βp)T and γ = (γ1, . . . , γq)T are unknown parameters. However, similar results could
be derived for other link functions.

Now, consider an observed sample (y1,x1, z1), . . . , (yn,xn, zn) of n independent observations, where
each observed response is denoted by yi. Then, the log-likelihood function for the vector of parameters
θ = (φ, βT ,γT )T , given the observed sample, has the form

l(θ) =
∑

i:yi=0

l1(φ,xT
i β, zT

i γ) +
∑

i:yi>0

l2(φ,xT
i β, zT

i γ), (3)

where

l1(φ,xT
i β, zT

i γ) = − log
[
1 + exp(zT

i γ)
]
+ log

{
exp(xT

i β) +
[

φ

φ + exp(xT
i β)

]φ
}

and

l2(φ,xT
i β, zT

i γ) = − log
[
1 + exp(zT

i γ)
]
+ log[Γ(φ + yi)]− log[Γ(yi + 1)]− log[Γ(φ)] +

+yi log
[

exp(xT
i β)

φ + exp(xT
i β)

]
+ φ log

[
φ

φ + exp(xT
i β)

]
.

The ML estimate θ̂ of the vector of unknown parameters can be calculated by maximizing the log-
likelihood given in (3). There are many optimization procedures available in standard programs, such as
the MaxBFGS routine in the matrix programming language Ox (see, Doornik, 2007), which need only
the original estimator function rather than their derivatives. Hypothesis testing and standard errors of
the resulting estimators θ̂ can be based on the asymptotic normal approximation

(φ̂, β̂
T
, γ̂T )T ∼ N(p+q+1)

{
(φ, βT , γT )T ,−L̈−1(θ)

}
,

where −L̈(θ) =
{

∂2l(θ)

∂θ∂θT

}
is the (2p + 1)× (2p + 1) observed information matrix, which has the form

L̈(θ) =




Lφφ Lφβj Lφγj

. Lβjβk
Lβjγk

. . Lγjγk




(the corresponding sub-matrices are given in Appendix A).
A disadvantage of direct maximization of the log-likelihood function is that it may not converge unless

good starting values are used. Thus, we also use the EM algorithm, which is stable and straightforward to
implement since the iterations converge monotonically and no second derivatives are required. Moreover,
the EM-estimates are quite insensitive to the stating values.

2.1 The EM-algorithm
As in Hall (2000), the missing element/factor in this problem is a vector of indicator variables w =
(w1, . . . , wn)>, where wi = 1, when Yi is from the zero state and wi = 0 when Yi is from the NB state.
The complete-data log-likelihood associate with Yc = (y,w) is then

`c(θ|Yc) =
n∑

i=1

{
wiziγ − log[1 + exp(ziγ)] + (1− wi) log[g(yi;β, φ)]

}
,

where g(yi; β, φ) =
Γ(φ + yi)

Γ(yi + 1)Γ(φ)

( µi

µi + φ

)yi
( φ

µi + φ

)φ

, with µi = exp(x>i β ). Notice that `c(θ|y, z)

has a particularly convenient form for the EM algorithm; i.e., `c(θ|y, z) is linear in w, so that at iteration
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(k) of the algorithm, the E- step consists of replacing w by its conditional expectation given y, β̂
(k) and

γ̂(k). This conditional expectation is easily calculated as

ŵ
(k)
i =






1 + exp(−ziγ̂

(k))

[
φ̂(k)

exp(xiβ̂
(k)

) + φ̂(k)

]φ̂(k)

−1

, if yi = 0,

0 , if yi > 0,

so that
Q(θ|θ̂(k)

) = E(`c(θ|Yc)|y, θ̂
(k)

) =
n∑

i=1

Q1i(γ|θ̂
(k)

) +
n∑

i=1

Q2i(β, φ|θ̂(k)
),

where
Q1i(γ|θ̂

(k)
) = ŵ

(k)
i ziγ − log[1 + exp(ziγ)]

and

Q2i(β, φ|θ̂(k)
) = (1− ŵ

(k)
i ) log

{
Γ(φ + yi)

Γ(φ)Γ(1 + yi)

[
exp(x>i β )

exp(x>i β ) + φ

]yi
[

φ

exp(x>i β ) + φ

]φ
}

.

Note that Q(θ|θ̂(k)
) is easily maximized (M-step) with respect a γ and (β, φ), because

n∑
i=1

Q1i(γ|θ̂
(k)

)

it is equal to the log-likelihood for an unweighted binomial logistic regression of ŵ(k) on z (a term not
involving β ) and

n∑
i=1

Q2i(β, φ|θ̂(k)
) is the log-likelihood for a weighted NB log-linear regression of y on β

and φ (a term not involving γ). These optimization procedures can be easily accomplished, for instance,
in the R software through the e�cient routine glm().

The iterations are repeated until a suitable convergence rule is satis�ed, e.g., if
∣∣∣∣θ̂(k+1) − θ̂

(k)∣∣∣∣ is
su�ciently small, k = 0, 1, ...

2.2 Jackknife estimator
Jackkni�ng involves transforming the problem of estimating a population parameter into the problem of
estimating a population mean. According to this method, a mean value is �rst estimated, although the
approach estimation is unusual. A framework for implementing the jackknife method is given by Lipsitz
et al. (1990), who suggest an alternative robust estimator of the covariance matrix based on jackkni�ng in
order to analyze data from repeated measures studies. In this paper, we use this method as an alternative
to estimate the population parameters.

Suppose that Y1, . . . , Yn is a random sample of n values and that Ȳ =
n∑

i=1

Yi

n is the sample mean used
to estimate the mean of the population. The sample mean calculated with the lth observation missing is

Ȳ−l =

n∑
i=1

Yi − Yl

n− 1
,

for which

Yl = nŶ − (n− 1)T̄−l. (4)

Using a general example, let θ be a parameter estimated by Ê(Y1, . . . , Yn). For ease of notation, we
drop (Y1, . . . , Yn). Finally, Ê−l is calculated, which is obtained with the Yl observation missing. It follows
from equation (4) that pseudo-values can be calculated as follows:

Ê∗
l = nÊ − (n− 1)Ê−l, l = 1, . . . , n.
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The average of the pseudo-values is the jackknife estimate of θ, given by

Ê∗ =

n∑
l=1

Ê∗
l

n
.

Manly (2006) suggested that an approximate 100(1− α)% con�dence interval for θ is given by Ê∗ ±
tα/2,n−1s/

√
n, where s is the standard deviation of the pseudo-values; and tα/2,n−1 is the upper (1−α/2)

point of the t-distribution with (n− 1) degrees of freedom, which has the e�ect of removing bias of order
1/n. The jackknife estimation calculations for the ZINB regression model are performed for φ, βj and γj

(j = 1, . . . , p), and con�dence intervals are calculated separately for each parameter.

2.3 Bootstrap re-sampling method
The bootstrap re-sampling method was proposed by Efron (1979). The method treats the observed
sample as if it represented the population. From the information obtained from such a sample, B
bootstrap samples of similar size to that of the observed sample are generated, from which it is possible
to estimate various characteristics of the population, such as mean, variance, percentiles and so on.

According to the literature, the re-sampling method may be non-parametric or parametric. In this
study, the non-parametric bootstrap method is addressed, according to which the distribution function
F can be estimated by empirical distribution F̂ .

Let T=(T1, . . . , Tn) be an observed random sample and F̂ be the empirical distribution of T. Thus, a
bootstrap sample T∗ is constructed by re-sampling with replacement of n elements of the sample T. For
the B bootstrap samples generated, T ∗1 , . . . , T ∗B , the bootstrap replication of the parameter of interest for
the b-th sample is given by:

θ̂
∗
b = s(T ∗b ),

that is, the value of θ̂ for sample T ∗b , b = 1, . . . , B.
The bootstrap estimator of the standard error (Efron and Tibshirani, 1993) is the standard deviation

of these bootstrap samples; it is denoted by ÊPB and obtained by the following expression:

ÊPB =

[
1

(B − 1)

B∑

b=1

(
θ̂∗b − θ̄B

)2
]1/2

,

in which θ̄B = 1
B

∑B
b=1 θ̂∗b . Note that B is the number of bootstrap samples generated. According to

Efron and Tibshirani (1993) , assuming B ≥ 200, it is generally su�cient to present good results to de-
termine the bootstrap estimations. However, to achieve greater accuracy, a reasonably high B value must
be considered. In this study, we consider B = 3000 bootstrap samples. We describe the bias corrected
and accelerated (BCa) method for constructing approximated con�dence intervals based on the bootstrap
re-sampling method. For further details on bootstrap intervals, see for example, Efron and Tibshirani
(1993), DiCiccio and Efron (1996) and Davison and Hinkley (1997).

BCa bootstrap interval

The bootstrap interval based on the BCa method assumes that the percentiles used in delimitating
the bootstrap con�dence intervals depend on the corrections for tendency â and acceleration ẑ0.

The bias correction value ẑ0 is generated based on the proportion of estimations of bootstrap samples
that are smaller than the original estimation θ̂. The expression of ẑ0 is given by

ẑ0 = Φ−1

(
](θ̂

∗
b < θ̂)
B

)
, b = 1, . . . , B.
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Note that Φ−1(·) is the inverse of the accumulated standard normal distribution; B is the number
of generated bootstrap samples; θ̂ is the MLE of the observed sample; and θ̂

∗
b is the MLE of the b-th

bootstrap sample.
Let θ̂(i) be the MLE of the sample without the i-th observation. Then â is given by

â =

n∑
i=1

[
θ̂(·) − θ̂(i)

]3

6
{

n∑
i=1

[
θ̂(·) − θ̂(i)

]2
}3/2

.

Note that θ̂(·) =
n∑

i=1

θ̂(i)/n and n is the sample size.
Hence, the BCa bootstrap interval of coverage 100(1− 2α)% is given by

[
θ̂
∗
(Bα1), θ̂

∗
(Bα2)

]
,

in which

α1 = Φ

{
ẑ0 +

ẑ0 + Φ−1(α)
1− â

[
ẑ0 + Φ−1(α)

]
}

and α2 = Φ

{
ẑ0 +

ẑ0 + Φ−1(1− α)
1− â

[
ẑ0 + Φ−1(1− α)

]
}

.

Note that α1 and α2 are corrections to the bootstrap percentiles; Φ(·) is an accumulated distribution
function of the standard normal distribution; and Φ−1(·) is the inverse of the accumulated distribution
function of the standard normal distribution (Efron and Tibshirani, 1993).

3 Sensitivity analysis
3.1 Global in�uence
A �rst tool to perform sensitivity analysis, as stated before, is by means of global in�uence starting from
case deletion. Case deletion is a common approach to study the e�ect of dropping the i-th case from the
data set. The case deletion model for (1) is given by

Pr(Y(i) = y(i)) =





p(i) + (1− p(i))
(

φ
µ(i)+φ

)φ

, y(i) = 0;

(1− p(i))
Γ(φ+y(i))

Γ(y(i)+1)Γ(φ)

(
µ(i)

µ(i)+φ

)y(i)
(

φ
µ(i)+φ

)φ

, y(i) = 1, 2, . . . ,

(5)

where µ(i) = exp(xT
(i)β), p(i) =

exp(zT
(i)γ)

1+exp(zT
(i)γ)

and i = 1, . . . , n. In the following, a quantity with subscript
“(i)” means the original quantity with the i-th case deleted. For model (5), the log-likelihood function
of θ is denoted by l(i)(θ).

Let θ̂(i) = (φ̂(i), β̂
T

(i), γ̂
T
(i))

T be the ML estimate of θ without the ith observation in the sample. To
assess the in�uence of the i-th case on the ML estimate θ̂ = (φ̂, β̂T , γ̂T )T , the basic idea is to compare the
di�erence between θ̂(i) and θ̂. If deletion of a case seriously in�uences the estimates, more attention should
be paid to that case. Hence, if θ̂(i) is far from θ̂, then i-th case is regarded as an in�uential observation.
A �rst measure of global in�uence is de�ned as the standardized norm of θ̂(i) − θ̂ (generalized Cook's
distance)

GDi(θ) = (θ̂(i) − θ̂)T
[− L̈(θ)

]
(θ̂(i) − θ̂).
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Another alternative is to assess GDi(φ), GDi(β) or GDi(γ), whose values reveal the impact of the i-th
case on the estimates of φ, β and γ, respectively. Another popular measure of the di�erence between θ̂(i)

and θ̂ is the likelihood distance
LDi(θ) = 2

{
l(θ̂)− l(θ̂(i))

}
.

Besides, this one can also compute β̂j − β̂j(i)(j = 1, . . . , p) to assess the di�erence between β̂ and β̂(i).
Alternative global in�uence measures are possible. One could think of the behavior of test statistics, such
as those of the Wald test for explanatory variables or censoring e�ect, under a case-deletion scheme.

As θ̂(i) is needed for every case, a very heavy total computational burden may be involved. In this
case, the following one-step approximation for θ̂(i) can be used to reduce the burden

θ̂(i)
∼= θ̂ + L̈(θ̂)−1 l̇i(θ̂),

where l̇i(θ̂) = ∂li(θ)

∂θ
is evaluated at θ = θ̂ (Cook and Weisberg, 1982, for instance)

We can also apply the techniques developed by Wang et al. (1996) to evaluate how the i-th observation
a�ects a set of parameter estimates. We de�ne the following quantity as the in�uential estimate (IE) for
individual i and for parameters vector θ, γ and β, which has the form

IE(θ)i =
1

(2p + 1)

2p+1∑

k=1

|θ̂k − θ̂(i)k|
SE(θ̂k)

, IE(γ)i =
1
p

p∑

k=1

|γ̂k − γ̂(i)k|
SE(γ̂k)

,

IE(β)i =
1
p

p∑

k=1

|β̂k − β̂(i)k|
SE(β̂k)

, (6)

where θ̂k, θ̂(i)k, γ̂k, γ̂(i)k, β̂k and β̂(i)k are the MLEs of the ZINB regression model. The IE(.)i calculated
for individual i can be interpreted as the average relative coe�cient changes for a set of estimates. It is
useful for assessing the e�ect of parameter estimates by exclusion of the ith observation. Therefore, a
relatively large value of IE(.)i indicates a potentially in�uential observation that might cause instability
in model �tting.

3.2 Local in�uence
Our interest focuses on the in�uence of the subjects on the parameter estimates in the ZINB regression
model. Another approach is suggested by Cook (1986), where instead of removing observations, weights
are given to them. Local in�uence calculation can be carried out for model (1). If likelihood displacement
LD(ω) = 2{l(θ̂) − l(θ̂ω)} is used, where θ̂ω denotes MLE under the perturbed model, the normal
curvature for θ in the direction d, ‖ d ‖= 1, is given by Cd(θ) = 2|dT ∆T

[
L̈(θ)

]−1
∆d|, where ∆ is

a (p + q + 1)×n matrix that depends on the perturbation scheme, and whose elements are given by
∆vi = ∂2l(θ|ω)/∂αv∂ωi, i = 1, . . . , n and v = 1, . . . , p + q + 1 evaluated at θ̂ and ω0, where ω0 is the no
perturbation vector (see Cook, 1986). For the ZINB regression model, the elements of L̈(θ) are given in
Appendix A. We can also calculate normal curvatures Cd(φ), Cd(β) and Cd(γ) to perform various index
plots, for instance, the index plot of dmax, the eigenvector corresponding to Cdmax , the largest eigenvalue
of the matrix B = −∆T

[
L̈(θ)

]−1
∆ and the index plots of Cdi(φ), Cdi(β) and Cdi(γ), named total local

in�uence, where di denotes an n× 1 vector of zeros with one at the i-th position. Thus, the curvature in
direction di assumes the form Ci = 2|∆T

i

[
L̈(θ)

]−1
∆i|, where ∆T

i denotes the i-th row of ∆. It is usual
to point out those cases such that Ci ≥ 2C̄, where C̄ = 1

n

∑n
i=1 Ci.

3.3 Curvature calculations
Next, we calculate for three perturbation schemes the matrix

∆ = (∆vi)[
(p+q+1)×n

] =

(
∂2l(θ|ω)
∂αvωi

)

[
(p+q+1)×n

], (7)
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where v = 1, . . . , p+q+1 and i = 1, . . . , n. We will consider the model de�ned in (1) and its log-likelihood
function given by (3).

3.3.1 Case-weight perturbation
First, we consider an arbitrary attribution of weights for the log-likelihood function, which may capture
departures in general directions, represented by writing

l(θ|ω) =
∑

i:yi=0

ωil1(φ,xT
i β, zT

i γ) +
∑

i:yi>0

ωil2(φ,xT
i β, zT

i γ), (8)

where 0 ≤ ωi ≤ 1, ω0 = (1, . . . , 1)T and lu(.) is de�ned in equation (3), u = 1, 2. The elements of the
matrix ∆ = (∆T

φ ,∆T
β ,∆T

γ)T are given in Appendix B.

3.3.2 Explanatory variables perturbation
In this section, we consider the in�uence that perturbation in the explanatory variables may produce on
the parameter estimates for three cases (i) zero-in�ation portion, (ii) NB portion, and (iii) zero-in�ation
and NB portion in the ZINB model.

• zero-in�ation portion
Consider an additive perturbation on the explanatory variable related to the zero-in�ation portion,
namely zi, by making zitω = zit + ωiSz, where Sz is a scaled factor, ωi ∈ R. This perturbation
scheme leads to the following expressions for the perturbed log-likelihood function:

l(θ|ω) =
∑

i:yi=0

l1(φ,xT
i β, z∗Ti γ) +

∑

i:yi>0

l2(φ,xT
i β, z∗Ti γ) (9)

where z∗Ti γ = γ0 + γ1zi1 + . . . + γt

(
zit + ωiSz

)
+ . . . + γqziq, ω0 = (0, . . . , 0)T , and lu(.) is de�ned

in equation (3), u = 1, 2. Matrix ∆ = (∆T
φ ,∆T

β ,∆T
γ)T is given in Appendix C.

• NB portion
Now the additive perturbation is introduced in the explanatory variables related to the baseline
distribution, namely xi, by making xitω = xit + ωiSx, where Sx is a scaled factor, ωi ∈ R. This
perturbation scheme leads to the following expressions for the perturbed log-likelihood function:

l(θ|ω) =
∑

i:yi=0

l1(φ,x∗Ti β, zT
i γ) +

∑

i:yi>0

l2(φ,x∗Ti β, zT
i γ), (10)

where x∗Ti β = β0 +β1xi1 +β2xi2 + · · ·+βt(xit +ωiSx)+ · · ·+βpxip, and lu(.) is de�ned in equation
(3), u = 1, 2. Matrix ∆ = (∆T

φ ,∆T
β ,∆T

γ)T is given in Appendix D.

• Zero-in�ation and NB portion
Finally, additive perturbations are introduced simultaneously in the explanatory variables related
to the baseline and degenerated distributions by making zitω = zit + ωiSz e xitω = xit + ωiSx,
where Sx e Sz are scaled factors. This perturbation scheme leads to the following expressions for
the perturbed log-likelihood function:

l(θ|ω) =
∑

i:yi=0

l1(φ,x∗Ti β, z∗Ti γ) +
∑

i:yi>0

l2(φ,x∗Ti β, z∗Ti γ), (11)

where z∗Ti γ = γ0 + γ1zi1 + . . . + γt

(
zit + ωiSz

)
+ . . . + γqziq, x∗Ti β = β0 + β1xi1 + β2xi2 + · · · +

βt(xit + ωiSx) + · · ·+ βpxip, ω0 = (0, . . . , 0)T and lu(.) is de�ned in equation (3), u = 1, 2. Matrix
∆ = (∆T

φ ,∆T
β ,∆T

γ)T is given in Appendix E.
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3.4 Goodness-of-�t and analysis residuals
The assessment of the �tted model is an important part of the data analysis, particularly in regression
models, and residual analysis is a helpful tool for validation of the �tted model. Examination of residuals
may be used, for instance, to detect the presence of outlying observations, model misspeci�cation and/or
the absence of components in the systematic part of the model and departures from the error and
variance assumptions. However, �nding appropriate residuals in non-normal regression models has been
an important topic of research, particularly in overdispersed (zero-in�ated) models. Most residuals are
based on the di�erences between the observed responses and the �tted conditional mean (yi − Ê(Yi)).
We consider the standardized ordinary residual (Pearson residual) to perform residual analysis, which is
de�ned as:

r̂i =
yi − Ê(Yi)√

̂V ar(Yi)
, i = 1, . . . , n,

where Ê(Yi) = (1− p̂i)µ̂i, ̂V ar(Yi) = (1− p̂i)µ̂i(1+ µ̂iφ̂
−1+ p̂iµ̂i), µ̂i = exp(x>i β̂) and p̂i =

exp(z>i γ̂)
1 + exp(z>i γ̂)

,

with β̂, γ̂ and φ̂ denoting the ML estimates of β, γ and φ, respectively. We also generate envelopes,
as suggested by Atkinson (1981), to detect incorrect speci�cation of the error distribution as well as the
presence of outlying observations.

4 Application
To demonstrate the proposed methodology, we use the data set of apple cultivar reported by Ridout et al.
(2001), referring to the number of roots produced by 270 micropropagated shoots of the columnar apple
cultivar Trajan. The shoots had been produced under an 8- or 16-hour photoperiod in culture systems
that utilized one of four di�erent concentrations of the cytokinin BAP in the culture medium. There were
30 or 40 shoots of each of these eight treatment combinations. Of the 140 shoots produced under the
8-hour photoperiod, only 2 failed to produce roots, but 62 of the 130 shoots produced under the 16-hour
photoperiod failed to root. The study of the in�uence of BAP concentration on two photoperiods on
rooting of apple cultivars. The sample size was of n = 270 and the percentage of zeros observed was
23.7%. Thus, the explanatory variables are:

• yi : count of roots;

• xi1: photoperiod(0=8-hour, 1=16-hour);

• xi2: concentrations of the cytokinin BAP,

where i = 1, 2, . . . , 270.

Following Ridout et al. (2001) we �t a ZINB model as de�ned in equation (1), with

µi = exp(β0 + β1xi1 + β2xi2) and pi =
exp(γ0 + γ1xi1 + γ2xi2)

1 + exp(γ0 + γ1xi1 + γ2xi2)
, i = 1, . . . , 270.

4.1 Estimation
To obtain the MLEs of the parameters in the ZINB regression model, we used the subroutine MAXBFGS
in Ox, whose results are given in Table 1. Additionally, in Table 1 we report the EM estimates.
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Table 1: Maximum likelihood estimates and EM estimates from the ZINB regression model �tted to
apple shoots data.

MLEs EM
θ Estimate S.E. p-value 95% C.I. Estimate S.E. 95% C.I.
φ 12.350 3.980 - (4.550, 20.149) 12.349 4.122 (4.270, 20.428 )
β0 1.977 0.065 0.000 (1.850, 2.104) 1.977 0.065 (1.850, 2.104)
β1 -0.283 0.075 0.000 (-0.430, -0.135) -0.282 0.075 (-0.430, -0.135)
β2 -0.001 0.006 0.903 (-0.012, 0.011) -0.001 0.005 (-0.012, 0.011)
γ0 -4.523 0.975 <0.001 (-6.433, -2.612) -4.523 0.975 (-6.433, -2.612)
γ1 4.407 0.981 <0.001 (2.484, 6.331) 4.407 0.981 (2.484, 6.330)
γ2 -0.000 0.029 0.998 (-0.056, 0.056) -0.000 0.029 (-0.056, 0.056)

From Table 1, we can observe that the explanatory variable x1 is signi�cant at the 5% level, while the
variable x2, related to concentrations of the cytokinin BAP, is statistically non-signi�cant for the count
of roots (p− value ≈ 1). These results indicate that the proposed EM-algorithm works very well and can
be used reliably for ML estimation in ZINB models.

Now, by using the non-parametric bootstrap method with B = 3000, we �nd the bootstrap estimated
and the BCa con�dence intervals as described in Section 2.3. The results are presented in Table 2, along
with the jackknife estimates. Note that estimatives from the four methods taken for illustration are very
similar, as expected. However, since the developed methods are based on the likelihood, and asymptotic
normality is expected for this sample size (n = 270), we will continue the analysis by using the ML
estimates based on the EM-algorithm.

Table 2: Non-parametric bootstrap estimates and jackknife estimates from the ZINB regression model
�tted to apple shoots data.

Non-parametric bootstrap Jackknife estimates
θ Estimate S.E. 95% C.I. Estimate S.E. 95% C.I.
φ 15.108 6.615 (7.319, 19.948) 10.691 4.224 (2.375, 19.007)
β0 1.975 0.065 (1.870, 2.082) 1.980 0.067 (1.848, 2.112)
β1 -0.288 0.083 (-0.417, -0.145) -0.281 0.083 (-0.444, -0.118)
β2 -0.000 0.005 (-0.010, 0.008) -0.001 0.006 (-0.013, 0.011)
γ0 -4.500 0.650 (-5.670, -3.575) -3.507 1.581 (-6.620, -0.394)
γ1 4.329 0.687 (2.353, 5.561) 3.385 1.674 (0.089, 6.681)
γ2 -0.005 0.028 (-0.049, 0.043) 0.001 0.031 (-0.060, 0.062)

4.2 Sensitivity analysis
In this section, we use the matrix programming language Ox to compute the case-deletion measures
GDi(θ), LDi(θ), IE(θ)i, IE(γ)i and IE(β)i presented in Section 3.1. The results of such in�uence
measures on the index plots are displayed in Figure 1 and Figure 2. From this �gure we note that cases
]191 and ]192 are possibly in�uential observations, speci�cally in the ML estimates of γ related with the
zero-in�ation portion.

10



(a) (b)

0 50 100 150 200 250

0.
0

0.
5

1.
0

1.
5

Index

|G
en

er
al

iz
ed

 C
oo

k 
D

is
ta

nc
e|

191 192

0 50 100 150 200 250

2
4

6
8

10

Index

|L
ik

el
ih

oo
d 

D
is

ta
nc

e|

Figure 1: Index plot of global in�uence from the ZINB regression model �tted to apple shoots data. (a)
Generalized Cook's distance. (b) Likelihood distance.
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Figure 2: (a) Index plot of IE(θ)i (b) Index plot of IE(β)i (c) Index plot of IE(γ)i from the ZINB
regression model �tted to apple shoots data.

By applying the local in�uence theory developed in Section 3.2, where case-weight perturbation is
used, the value Cdmax = 1.527 was obtained as a maximum curvature. Now, considering the explana-
tory variables, the value for the maximum curvature calculated is Cdmax = 0.248, Cdmax = 0.256 and
Cdmax = 0.258 for the zero-in�ation portion, NB portion and zero-in�ation and NB portion, respectively.
Once again, we note that cases ]191 and ]192 are possibly in�uential observations under case-weight
perturbation.
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Figure 3: Index plot of dmax for θ from the ZINB regression model �tted to apple shoots data. (a) Case-
weight perturbation. (b) Explanatory variables perturbation: zero-in�ation portion. (c) Explanatory
variables perturbation: NB portion. (d) Explanatory variables perturbation: zero-in�ation and NB
portion.
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Figure 4: Index plot of local total Ci for θ from the ZINB regression model �tted to apple shoots
data. (a) Case-weight perturbation. (b) Explanatory variables perturbation: zero-in�ation portion. (c)
Explanatory variables perturbation: NB portion. (d) Explanatory variables perturbation: zero-in�ation
and NB portion.

4.3 Impact of the detected in�uential observations
Hence, the diagnostic analysis (global in�uence, local in�uence and residual analysis) indicated the two
observations (]191 and ]192) as potentially in�uential. These observations represent the only apple shoots
that were exposed to sunlight within 8 hours, in which there were observed no roots. In order to reveal
the impact of these two observations on the parameter estimates, we re�tted the model under some
situations. First, we individually eliminated each of these two cases. Next, we removed all of potentially
in�uential observations from the set �A" (original data set). In Table 3 we show the relative changes (in
percentage) of each parameter estimate, de�ned by RCθj =

[
(θ̂j − θ̂j(I))/θ̂j

]
× 100, parameter estimates

and the corresponding p-values, where α̂j(I) denotes the MLE of θj after the set “I” of observations was
removed. From Table 3, we note that the relative changes after the set I of observations was removed
were computed as well as the new p-values (see Table 3). Note that large variations are only present for
the parameters γ0 and γ1. This result agrees with the graphical analysis depicted in Figure 2.
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Table 3: Relative changes [-RC-in %], estimates and the corresponding p-values in parentheses for the
regression coe�cients to explain the number of apple root shoots produced.

Set{I} φ β0 β1 β2 γ0 γ1 γ2

A - - - - - - -
12.350 1.977 -0.283 -0.001 -4.523 4.407 0.000
(-) (0.000) (0.000) (0.903) (0.000) (0.000) (0.998)

A-{]191} [0] [0] [0] [0] [-24] [-27] [-24]
12.298 1.978 -0.283 -0.001 -5.632 5.582 -0.007
(-) (0.000) (0.000) (0.893) (0.012) (0.014) (0.801)

A-{]192} [0] [0] [0] [0] [-24] [-27] [-24]
12.298 1.978 -0.283 -0.001 -5.632 5.582 -0.007
(-) (0.000) (0.000) (0.893) (0.012) (0.014) (0.801)

A-{]191 and ]192} [-6] [0] [-1] [100] [-445] [-459] [-24]
13.055 1.975 -0.286 0.000 -24.672 24.653 -0.011
(-) (0.000) (0.000) (0.987) (0.967) (0.967) ( 0.709)

Table 4: Comparison between ZINB and ZIP models by using di�erent information criteria.

Model AIC BIC CAIC
ZINB 1257.9 1283.1 1290.1
ZIP 1273.0 1295.0 1301.0

4.4 Model checking
Ridout et al. (2001) �tted various models to these data, based on the Poisson and negative binomial
distributions and their zero-in�ated counterparts. Based on a score test, they note that the ZINB regres-
sion model performed better than the ZIP model. Here we compute some information criteria and the
standardized Pearson residuals to model comparison and/or check whether there is evidence of model
misspeci�cation.

The QQ-plots and simulated envelopes for the Pearson residuals are shown in Figure 5. The lines in
these �gures represent the 5th percentile, the mean, and the 95th percentile of 100 simulated points for
each observation. These �gures show that the ZINB regression model provides a better �t to the data
set than the ZIP regression model. Moreover, there is no evidence of lack of �t for the ZINB model.

For model selection, we considered the Akaike information criterion (AIC), the Bayesian information
criterion (BIC) and the consistent Akaike information criterion (CAIC). A summary of these values is
given in Table 4. Clearly, the ZINB regression model outperforms the ZIP model in all the criteria and
thus, the ZINB model can be used e�ectively in the analysis of these data. This conclusion agrees with
Ridout et al. (2001), where also the ZIP model as found unsuitable for these data.

Finally, we �tted a ZINB model without the covariate xi2 (non-signi�cant), i.e.,

µi = exp(β0 + β1xi1) and pi =
exp(γ0 + γ1xi1)

1 + exp(γ0 + γ1xi1)
,

for i = 1, . . . , 270. The ML estimates for the parameters of this model are given in Table 5. Notice that
the photoperiod has a negative in�uence in the root count, i.e., we could say that when the shoots are
produced under a 16-hour photoperiod, the predicted root count is reduced by 25.6%.
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Figure 5: Plots of the Pearson residuals against the order statistics of the normal distribution from the ZIP and
ZINB regression models �tted to apple shoots data.

On the other hand, related with the estimative of proportion of zeros (p), we obtain

p̂ =
1

270

270∑

i=1

p̂i = 0.232.

Table 5: Maximum likelihood estimates from the ZINB regression model �tted to the �nal apple shoot
data.

MLEs
θ Estimate S.E. p-value 95% C.I.
φ 12.377 3.981 - (4.547,20.179)
β0 1.971 0.040 0.000 (1.892,2.050)
β1 -0.283 0.075 0.000 (-0.430,-0.136)
γ0 -4.513 0.947 <0.001 (-6.370,-2.656)
γ1 4.397 0.973 <0.001 (2.509,6.285)

5 Concluding remarks
In this paper, we presented extensions of some estimation and in�uence diagnostics methods to ZINB
regression models. We used the Quasi-Newton and EM-algorithm to obtain the maximum likelihood
estimates and performed asymptotic tests for the parameters based on the asymptotic distribution of the
ML estimates. The EM algorithm for �tting ZINB regression models is straightforward to implement in
any statistical package that includes facilities for �tting weighted generalized linear models for Poisson
and binomial data. On the other hand, as an alternative analysis, we discussed use of the jackknife
estimator and parametric bootstrap for the ZINB regression model. We also discussed the in�uence diag-
nostics and model checking analysis in the ZINB regression models and the sensitivity of the maximum
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likelihood estimates via Pearson residuals and sensitivity analysis. We demonstrated through one appli-
cation that the ZINB regression model can produce better �t than the ZIP regression models. The results
derived in this work agree with the considerations that in this respect are presented in Ridout et al. (2001).

Due to recent advances in computational technology, it is worthwhile to carry out Bayesian treatments
via Markov chain Monte Carlo (MCMC) sampling methods in the context of ZINB models. Bayesian
in�uence diagnostics can be treated via the Kullback-Leibler divergence, as proposed by Cho et al. (2009).
Other extensions of the current work include, for example, diagnostics analysis in zero-in�ated negative
binomial mixed models.

Appendix A: Matrix of second derivatives L̈(θ)

Here we derive the necessary formulas to obtain the second-order partial derivatives of the log-likelihood
function. After some algebraic manipulations, we obtain

Lφφ =
∑

i:yi>0

{
[g1(xi)]φ [log[g1(xi)] + g2(xi)]

2 +
[g1(xi)]g2(xi)φ

h(zi,xi)

[
φ−1 − 1

φ + exp(xT
i β)

]

−
{

[g1(xi)]φ[log[g1(xi)] + g2(xi)]
h(zi,xi)

}2
}

+
∑

i:yi>0

{
ψ
′
(yi + φ)− ψ

′
(φ) +

yi

[φ + exp(xT
i β)]2

+ g2(xi)[φ−1 − 1
φ + exp(xT

i β)
]
}

,

Lφβj =
∑

i:yi=0

{
φxij [g1(xi)]φg2(xi)[log(g1(xi)) + g2(xi)]

h(zi,xi)

{
[g1(xi)]φ

h(zi,xi)
− 1

}

−xij [g1(xi)]φg2(xi)
h(zi,xi)

{2[1− g1(xi)] + g2(xi)}
}

+
∑

i:yi>0

{
yixijg2(xi)

φ + exp(xT
i β)

− xijg2(xi){2[1− g1(xi)] + g2(xi)}
}

,

Lφγj = −
∑

i:yi=0

{
zij exp(zT

i γ)[g1(xi)]φ

[h(zi,xi)]2
{log[g1(xi)]− g2(xi)}

}
,

Lβjβk
=

∑

i:yi=0

{
φxijxik[g1(xi)]φ[g2(xi)]2

h(zi,xi)

[
φ + 1− 1

h(zi,xi)

]
− φxijxik

[g1(xi)]φg2(xi)
h(zi,xi)

}

+
∑

i:yi>0

{yixijxik{1− g1(xi)− g2(xi)[3− 2g2(xi)]}+ xijxikg1(xi)g2(xi)(yi − φ)} ,

Lβjγk
=

∑

i:yi=0

{
φxijzik[g1(xi)]φg2(xi) exp(zT

i γ

[h(zi,xi)]2

}

Lγjγk
=

∑

i:yi=0

{
zijzik exp(zT

i γ)
h(zi,xi)

[
1− exp(zT

i γ)
]}−

n∑

i=1

{zijzikv(zi)[1− v(zi)]}

where ψ(k) = ∂ log[Γ(k)]
∂k , ψ

′
(k) = ∂ψ(k)

∂k , g1(xi) = φ

φ+exp(xT
i β)

, g2(xi) = exp(xT
i β)

φ+exp(xT
i β)

,

h(zi,xi) = exp(zT
i γ) +

[
φ

φ+exp(xT
i β)

]φ

, v(zi) = exp(zT
i γ)

1+exp(zT
i γ)

and j = k = 1, 2, . . . , p.
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Appendix B: Case-weight perturbation scheme

Here we provide the elements considering the case-weight perturbation scheme. The elements of the
matrix ∆ = (∆φ,∆β,∆γ)T are expressed as

∆i =





[ĝ1(xi)]
φ̂{log[ĝ1(xi)]+ĝ2(xi)}

ĥ(zi,xi)
if yi = 0,

ψ(φ̂ + yi)− ψ(φ̂)−
[

yi

φ̂+exp(xT
i

ˆβ)

]
+ log[ĝ1(xi)] + ĝ2(xi) if yi > 0.

For j = 1, . . . , p.

∆ji =

{
− φ̂xij [ĝ1(xi)]

φ̂ĝ2(xi)

ĥ(zi,xi)
if yi = 0,

yixij ĝ1(xi)− φ̂xij ĝ2(xi) if yi > 0.

For j = 1, . . . , p.

∆ji =

{
−zij v̂(zi) + zij exp(zT

i γ̂)

ĥ(zi,xi)
if yi = 0,

−zij v̂(zi) if yi > 0.

Appendix C: Explanatory variable perturbation (zero-in�ation portions)

Here we provide the elements considering the explanatory variable perturbation scheme (zero-in�ation
portion). The elements of the matrix ∆ = (∆φ,∆β ,∆γ)T are expressed as

∆i =

{
− [ĝ1(xi)]

φ̂{log[ĝ1(xi)]+ĝ2(xi)}γ̂tSz exp(zT
i γ̂)

[ĥ(zi,xi)]2
if yi = 0,

0 if yi > 0.

For j = 1, . . . , p.

∆ji =

{
xij φ̂γ̂tSz exp(zT

i γ̂)[ĝ1(xi)]
φ̂ĝ2(xi)

[ĥ(zi,xi)]2
if yi = 0,

0 if yi > 0.

For t = j.

∆ti =

{
−Sz

[
v̂(zi)− exp(zT

i γ̂)

ĥ(zi,xi)

]
+ zitγ̂tSz v̂(zi)[v̂(zi)− 1] + zitγ̂tSz exp(zT

i γ̂)

ĥ(zi,xi)

[
1− exp(zT

i γ̂)

ĥ(zi,xi)

]
if yi = 0,

−v̂(zi){Sz − zitγ̂t[v̂(zi)− 1]} if yi > 0.

For t 6= j and j = 1, . . . , p.

∆ji =

{
zij γ̂tSz v̂(zi)[v̂(zi)− 1] + zij γ̂tSz exp(zT

i γ̂)

ĥ(zi,xi)

[
1− exp(zT

i γ̂)

ĥ(zi,xi)

]
if yi = 0,

zij γ̂tSz v̂(zi)[v̂(zi)− 1] if yi > 0.

Appendix D: Explanatory variable perturbation (NB portion)

Here we provide the elements considering the explanatory variable perturbation scheme (NB portion).
The elements of the matrix ∆ = (∆φ,∆β ,∆γ)T are expressed as

∆i =





φ̂q̂(zi,xi){log[ ˆg1(xi) + ĝ2(xi)]}
[

ĝ1(xi)

ĥ(zi,xi)

]
+ q̂(zi,xi){2[ĝ1(xi)− 1] + ĝ2(xi)} if yi = 0,

β̂tSxĝ2(xi)
{

ĝ2(xi) + yi

φ̂+exp(xT
i

ˆβ)
+ 2[ĝ1(xi)− 1]

}
if yi > 0.

For t = j.

∆ti =





φ̂Sx[ĝ1(xi)]
φ̂ĝ2(xi)

ĥ(zi,xi)

{
xitφ̂β̂tĝ2(xi)

[
1− [ĝ1(xi)]

φ̂

ĥ(zi,xi)

]
+ β̂t[ĝ2(xi)− xit]− 1

}
if yi = 0,

xitβ̂tSxĝ2(xi)ûi − yixitβ̂tSx[ĝ2(xi)− 1]− Sx[ĝ2(xi)(φ̂ + yi)− yi] if yi > 0.
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For t 6= j and j = 1, . . . , p.

∆ji =





xij φ̂β̂tSx[ĝ1(xi)]
φ̂ĝ2(xi)

ĥ(zi,xi)

{
ĝ2(xi)

[
φ̂ + 1− φ̂[ĝ1(xi)]

φ̂

ĥ(zi,xi)

]
− 1

}
if yi = 0,

yixij β̂tSx {1− ĝ2(xi)[3− 2ĝ2(xi)]}+ [ĝ2(xi)− 1][yixij β̂tSxĝ1(xi) + xij φ̂β̂tSxĝ2(xi)] if yi > 0.

For j = 1, . . . , p.

∆ji =

{
zij φ̂β̂tSx exp(zT

i γ̂)[ĝ1(xi)]
φ̂ĝ2(xi)

ĥ(zi,xi)
if yi = 0,

0 if yi > 0.

Appendix E:Simultaneous explanatory variable perturbation (Zero-in�ation and NB
portion)

Here we provide the elements considering the simultaneous explanatory variable perturbation scheme
(Zero-in�ation and NB portion). The elements of the matrix ∆ = (∆φ,∆β ,∆γ)T are expressed as

∆i =




−φ̂q̂i{log[ĝ1(xi)] + ĝ2(xi)}+ q̂i{2[ĝ1(xi)− 1] + ĝ2(xi)} − [ĝ1(xi)]

φ̂{log[ĝ1(xi)]+ĝ2(xi)}
[ĥ(zi,xi)]2

b̂i if yi = 0,

β̂tSxĝ2(xi)
{

yi

φ̂+exp(xT
i

ˆβ)
+ ĝ2(xi) + 2[ĝ1(xi)− 1]

}
if yi > 0.

For t = j.

∆ti =

{
xitφ̂β̂tSx[ĝ1(xi)]

φ̂ĝ2(xi)

ĥ(zi,xi)

{
ĝ2(xi)[φ̂ + 1]− 1

}
+ φ̂[ĝ1(xi)]

φ̂ĝ2(xi)

ĥ(zi,xi)

[
xit

ĥ(zi,xi)
− Sx

]
if yi = 0,

xitβ̂tSxĝ2(xi)âi − xitβ̂tSx{yi[ĝ2(xi)− 1]− φ̂ĝ2(xi)} − Sx[ĝ2(xi)(yi + φ̂)− yi] if yi > 0.

For t 6= j and j = 1, . . . , p.

∆ji =

{
xij φ̂q̂i[ĝ2(xi)(φ̂ + 1)− 1] + xij φ̂[ĝ1(xi)]

φ̂ĝ2(xi)

[ĥ(zi,xi)]2
b̂i if yi = 0,

yixij β̂tSx{1 + ĝ2(xi)[2ĝ2(xi)− 3]}+ [ĝ2(xi)− 1]{xij β̂tSx[yiĝ1(xi) + φ̂ĝ2(xi)]} if yi > 0.

For t = j.

∆ti =

{
−Sz v̂(zi){1− zitγ̂t[v̂(zi)− 1]}+ Sz exp(zT

i γ̂)

ĥ(zi,xi)
[1 + zitγ̂t]− zit exp(zT

i γ̂)

[ĥ(zi,xi)]2
b̂i if yi = 0,

Sz v̂(zi){zitγ̂t[v̂(zi)− 1]− 1} if yi > 0.

For t 6= j and j = 1, . . . , p.

∆ji =

{
zij γ̂tSz v̂(zi)[v̂(zi)− 1] + zij exp(zt

iγ̂)

ĥ(zi,xi)

[
γ̂tSz − b̂i

ĥ(zi,xi)

]
if yi = 0,

zij γ̂tSz v̂(zi)[v̂(zi)− 1] if yi > 0,

where ĝ1(xi) = φ̂

φ̂+exp(xT
i

ˆβ)
, ĝ2(xi) = exp(xT

i
ˆβ)

φ̂+exp(xT
i

ˆβ)
, ĥ(zi,xi) = exp(zT

i γ̂) +
[

φ̂

φ̂+exp(xT
i

ˆβ)

]φ̂

, v̂(zi) =

exp(zT
i γ̂)

1+exp(zT
i γ̂)

, q̂i = β̂tSx[ĝ1(xi)]
φ̂

ĥ(zi,xi)
, ûi = ĝ1(xi) + φ̂[ĝ2(xi)− 1] + yi[2ĝ2(xi)− 3],

b̂i = γ̂tSz exp(zT
i γ̂)− φ̂β̂tSx[ĝ1(xi)]φ̂ĝ2(xi) and âi = ĝ2(xi)(2yi + φ̂) + yi[ĝ1(xi)− 3].
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