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1. Introduction

Normal nonlinear regression models (N-NLM) are usually applied in the sciences and engineering to
model symmetrical data for which mathematical nonlinear functions of unknown parameter are postulated
with the aim of explaining or describing the phenomena under study. But N-NLM su�ers from the same
lack of robustness against departures from distributional assumptions as other statistical models based
on the Gaussian distribution and may be too restrictive to provide an accurate representation of the
structure that is present in the data (Azzalini and Capitanio, 1999). To overcome the aforementioned
de�ciency, some proposals have been made in the literature by replacing the normality assumption by for
more �exible classes of distributions. For instance, Cysneiros and Vanegas (2008) study the symmetrical
nonlinear regression model and performed an analytical and empirical study to describe the behavior of
the standardized residuals. Vanegas and Cysneiros (2010) propose diagnostic procedures based on case-
deletion model for symmetrical nonlinear regression models. Cancho et al. (2009) introduce the skew-
normal nonlinear regression models (SN-NLM) and they present a complete likelihood based analysis,
including an e�cient EM algorithm to maximum likelihood estimation. Xie et al. (2009a) and Xie et al.
(2009b) develop score test statistics for testing homogeneity in the SN-NLM proposed by Cancho et al.
(2009). A common feature of these classes of NLM is that the N-NLM is also a member of the same class.

However, it is known that the parameter estimates of a skew-normal based model are also sensitive
to atypical observations (Montenegro et al., 2009). A solution to the problem of atypical data in a
asymmetrical context was postulated by Branco and Dey (2001), who proposed to use scale mixtures
of skew-normal distributions (SMSN) in order to deal simultaneously with skewness and heavy-tails.
Interestingly, this rich class contains the entire family of scale mixtures of normal distributions (Lange
and Sinsheimer, 1993) and some skewed versions of classical symmetric distributions such as the skew-t
(ST), skew-slash (SSL) and the skew contaminated normal (SCN) distributions. In this article, we extend
the SN-NLM by assuming that the model errors follows SMSN distributions, so that the SMSN-NLM is
de�ned. The hierarchical representation of the proposed model makes possible the implementation of an
EM�type algorithm, which yields computationally attractive expressions for the E and M�steps.

The assessment of robustness aspects of the parameter estimates in statistical models has been an
important concern of various researchers in recent decades. The deletion methodology (CDM), which
consists of studying the impact on the parameter estimates after dropping individual observations, is
probably the most employed technique to detect in�uential observations (Cook and Weisberg, 1982).
Nevertheless, research on the in�uence of small perturbations in the model/data on the parameter es-
timates has received increasing attention in recent years. This can be achieved performing the local
in�uence analysis (Cook, 1986), a general statistical technique used to assess the stability of the estima-
tion outputs with respect to the model inputs. Several authors have applied these methods to nonlinear
regression models di�erent to normal case; see for instance, Galea et al. (2005), Cysneiros and Vanegas
(2008) and Lin et al. (2009). However, to the best of our knowledge, there are neither studies on the
SMSN family and nor on in�uence diagnostics related this topic. Thus, we believe that the research to
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develop statistical tools with nonstandard assumptions in NLM is a signi�cant contribution to this �eld.
Another interesting problem is that in NLM a standard assumption is that all the observations have

equal variances and failure to comply with this assumption will a�ect the e�ciency of the estimators, so
it is important to develop tests that allow us to determine the presence or absence of such homogeneity.
In recent years several authors have proposed tests for heterogeneity of variance in di�erent models. Cook
and Weisberg (1983) provided a score test for heteroscedasticity in regression models. Lin and Wei (2003)
considered heteroscedasticity tests in nonlinear models. Cysneiros et al. (2007) developed diagnostic
tests for detecting heteroscedasticity in symmetrical linear regression models and more recently Lin et al.
(2009) developed a score test for testing the homogeneity of the scalar parameter in the ST-normal-NLM,
introduced by Gómez et al. (2007). Following these ideas, in this paper we propose a score test for testing
homogeneity of the scale parameter in the SMSN-NLM.

The paper is organized as follows. In Section 2 we present the asymmetric model as well as some
inferential results, additionally an EM-type algorithm for maximum likelihood estimation is developed.
In Section 3, we discuss the score test for testing homogeneity of scale parameter in SMSN-NLM. The
properties of score test statistics are investigated through Monte Carlo simulations. In Section 4, we
derive global in�uence measures for SMSN-NLM and we study the local in�uence of two perturbation
schemes. Finally, in Section 5 we illustrate the methodology considering an application with a real data
set.

2. The model and maximum likelihood estimation

In order to introduce some notations, we start with the de�nition of SMSM distributions. Details of
the next subsection are provided in Basso et al. (2009).

2.1. SMSN distributions and main notation

A random variable Y is in the SMSN family if it can be written as

Y = µ + κ1/2(U)Z, (1)

where µ is a location parameter, Z is skew-normal random variable with location 0, scale σ2, skewness
λ (Z ∼ SN(0, σ2, λ)), κ(u) is a positive function of u, U is a random variable with distribution function
H(·; ν) and density h(·; ν) and ν is a scalar or vector parameter indexing the distribution of U . Although
we can deal with any κ function, in this paper we restrict our attention to the case in that κ(u) = 1/u,
since it leads to good mathematical properties. Given U = u, we have that Y |U = u ∼ SN(µ, u−1σ2, λ).
Thus, the density of Y is given by

f(y) = 2
∫ ∞

0

φ(y; µ, u−1σ2)Φ
(

u1/2λ(y − µ)
σ

)
dH(u;ν), (2)

where φ(·; µ, σ2) denotes the density of the univariate normal distribution with mean µ and variance
σ2 > 0 and Φ(·) is the distribution function of the standard univariate normal distribution. The notation
Y ∼ SMSN(µ, σ2, λ; H) will be used when Y has pdf (2). When H is degenerate, with u = 1, we obtain
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the SN(µ, σ2, λ) distribution. When λ = 0, the SMSN distributions reduces to the class of scale�mixtures
of the normal (SMN) distribution represented by the pdf f0(y) =

∫∞
0

φp(y; µ, u−1Σ)dH(u; ν).
For a random variable Y ∼ SMSN(µ, σ2, λ; H), we have that the mean and the variance are given,

respectively, by

E[Y ] = µ +

√
2
π

k1∆, V ar[Y ] = σ2k2 − 2
π

k2
1∆

2,

where ∆ = σδ, δ =
λ√

1 + λ2
and km = E[U−m/2]. The distributions in the SMSN class that will be

considered in this work are:

• The skew�t distribution with ν degrees of freedom. In this case we consider U ∼ Gamma(ν/2, ν/2),
ν > 0, in de�nition (2) � where Gamma(a, b) denotes the gamma distribution with mean a/b. The
density of Y takes the form

f(y) =
Γ(ν+1

2 )
Γ( ν

2 )
√

πνσ

(
1 +

d

ν

)− ν+1
2

T

(√
ν + 1
d + ν

A; ν + 1

)
, y ∈ R, (3)

where d = (y − µ)2/σ2 and T (·; ν) denotes the distribution function of the standard Student�t
distribution, with location zero, scale one and ν degrees of freedom, namely t(0, 1, ν). We use
the notation Y ∼ ST (µ, σ2, λ; ν). A particular case of the skew-t distribution is the skew�Cauchy
distribution, when ν = 1. Also, when ν →∞, we get the skew-normal distribution as the limiting
case. Applications of the skew�t distribution in robust estimation can be found in Lin et al. (2007)
and Azzalini and Genton (2008).

• The skew�slash distribution. In this case we have U ∼ Beta(ν, 1) with positive shape parameter ν,
where Beta(a, b) denotes the beta distribution with parameters a and b, and we use the notation
Y ∼ SSL(µ, σ2, λ; ν). The density of Y is given by

f(y) = 2ν

∫ 1

0

uν−1φ(y; µ, u−1σ2)Φ(u1/2A)du, y ∈ R. (4)

The skew-slash is a heavy-tailed distribution having as limiting distribution the skew-normal one
(when ν →∞). Applications can be found in Wang and Genton (2006).

• The skew contaminated normal distribution. Here U is a discrete random variable taking one of two
states. The probability function of U is given by

h(u; ν) = νI(u=γ) + (1− ν)I(u=1), 0 < ν < 1, 0 < γ ≤ 1,

where ν = (ν, γ)>. We denote it by Y ∼ SCN(µ, σ2, λ; ν, γ). It follows immediately that

f(y) = 2{νφ(y; µ, γ−1σ2)Φ(γ1/2A) + (1− ν)φ(y; µ, σ2)Φ(A)}.

The parameters ν and γ can be interpreted as the proportion of outliers and a scale factor, respec-
tively. The skew contaminated normal distribution reduces to the skew-normal distribution when
γ = 1.
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2.2. The SMSN nonlinear regression model
The nonlinear regression model based on SMSN distributions (hereafter SMSN-NLM) is de�ned as

Yi = η(β,xi) + εi, i = 1, . . . , n, (5)

where the Yi are responses, η(.) is an injective and twice continuously di�erentiable function with respect
to the parameter vector β = (β1, . . . , βp)>, xi is a vector of explanatory variable values and the random
errors εi ∼ SMSN(−

√
2
π k1∆, σ2, λ; H), which corresponds to the regression model where the error

distribution has mean zero and hence the regression parameters are all comparable. From Lemma 2
given in Basso et al. (2009) we have that

E[Yi] = η(β,xi), V ar[Yi] = k2σ
2 − b2∆2,

where b = −
√

2
π k1, k1 and k2 are as de�ned in Subsection 2.1 and hence Yi ∼ SMSN(η(β,xi) +

b∆, σ2, λ;H), for i = 1, . . . , n. As recommended by Lange et al. (1989) and Berkane et al. (1994), who
pointed out di�culties in estimating ν due to problems of unbounded and local maximum in the likelihood
function, we taken the value of ν to be known. Thus, the log-likelihood function for θ = (β>, σ2, λ)>

given the observed sample y = (y1, . . . , yn)> is given by `(θ) =
n∑

i=1

`i(θ), where

`i(θ) = log 2− 1
2

log 2π − 1
2

log σ2 + log Ki, (6)

with Ki =
∫∞
0

u
1/2
i exp{− 1

2uidi}Φ(u1/2
i Ai)dH(ui), di = (yi − η(β,xi) − b∆)2/σ2 is the Mahalanobish

distance, and Ai = λ(yi − η(β,xi) − b∆)/σ. The score function U = ∂`(θ)/∂θ and the observed
information matrix J = −∂2`(θ)/∂θ∂θ> can be obtained easily as a byproduct from the results given in
Section 3.

Since one has a closed-form expression for the observed information matrix for θ, the Newton-Raphson
method can be easily applied to get the ML estimates. Starting from an initial point θ̂

(0), the NR
procedure proceeds according to

θ̂
(k+1)

= θ̂
(k)

+ Ĵ(k)−1Û(k), (7)

where Û(k) and Ĵ(k) are the score vector and the observed information matrix evaluated at θ̂
(k), respec-

tively. An oft-voiced complaint of the NR algorithm is that it may not converge unless good starting
values are used. In the next section we discuss a technique more elaborate to �nd the ML estimates of the
parameters vector θ, based on the Expectation-Maximization (EM) algorithm (Dempster et al., 1977)

2.3. Parameter estimation via the EM-algorithm
In this subsection we develop an EM-type algorithm to get the ML estimates. In order to do this, we

�rst represent the SMSN-NLM in an incomplete data framework by using the Lemma 2 given in Basso
et al. (2009). We consider the following hierarchical representation for Yi

Yi|Ti = ti ∼ N1(η(β,xi) + ∆ti, U
−1
i Γ), (8)

Ti|Ui ∼ TN1(b, u−1
i )I(b,∞), (9)

Ui ∼ H(.;ν) (10)
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where Γ = (1− δ2)σ2, ∆ = σδ and TN1(r, s)I(b,∞) denotes the truncated univariate normal distri-
bution on (b,∞) with mean r and variance s before truncation. An useful straightforward result is that
the conditional distribution of Ti given yi and ui is TN1(µTi + b, u−1

i M2
T )I(b,∞), with

M2
T =

Γ
∆2 + Γ

, µTi
=

∆
∆2 + Γ

(yi − η(β,xi)−∆b).

Now we proceed for the E-step of the algorithm. To represent the estimator of the parameter ξ = g(θ),
we will use the general notation ξ̂ = g(θ̂), where g(·) is a generic function of θ = (β>, σ2, λ)>. Thus, let
y = (y1, . . . , yn)>, t = (t1, . . . , tn)> and u = (u1, . . . , un)>. It follows that the complete log-likelihood
function associated with (y, t,u) is given by

`c(θ|y, t,u) = c− n

2
log Γ− 1

2Γ

n∑

i=1

ui(yi − η(β,xi)−∆ti)2, (11)

where c is a constant that is independent of θ. Letting ûi = E[Ui|θ = θ̂, yi], ûti = E[Uiti|θ = θ̂, yi],
ût2i = E[Uit

2
i |θ = θ̂, yi] and using known properties of conditional expectation we obtain

ûti = ûi(µ̂Ti + b) + M̂T τ̂1i , ût2i = ûi(µ̂Ti + b)2 + M̂2
T + M̂T (µ̂Ti + 2b)τ̂1i , (12)

where
τ̂1i = E

[
U

1/2
i WΦ(

U
1/2
i µ̂Ti

M̂T

)|θ̂, yi

]
.

In each step, the conditional expectations ûi = û1i and τ̂1i can be easily derived from the results given
in Basso et al. (2009). For the skew�t, skew-slash and skew contaminated normal distribution we have
computationally attractive expressions that can be easily implemented.

These expressions are quite useful in implementing the M-step, which consists in maximizing the
expected complete data function or the Q−function over θ, given by

Q(θ|θ̂(k)
) = E[`c(θ)|y, θ̂

(k)
] = c− n

2
log(Γ)− 1

2Γ

n∑

i=1

[
û

(k)
i (yi − η(β,xi))

2

− 2∆(yi − η(β,xi))ût
(k)

i + ∆2ût2i
(k)

]
]

,

where θ̂
(k) is an updated value of θ̂.

When the M-step turns out to be analytically intractable, it can be replaced with a sequence of
conditional maximization (CM) steps. The resulting procedure is known as ECM algorithm (Meng and
Rubin, 1993). Next, we describe this EM-type algorithm (ECM) for maximum likelihood estimation of
the parameters of the SMSN-NLM de�ned in (5).
E-step: Given a current estimate θ̂

(k), compute û
(k)
i ût

(k)

i , ût2i
(k)

, for i = 1, . . . , n.
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CM-step: Update θ̂
(k) by maximizing Q(θ|θ̂(k)

) over θ, which leads to the following nice expressions

β̂
(k+1)

= argminβ(z(k) − η(β,x))>Û(k)(z(k) − η(β,x)), (13)

∆̂(k+1) =
∑n

i=1 ût
(k)

i (yi − η(β(k+1),xi))
∑n

i=1 ût2i
(k)

, (14)

Γ̂(k+1) =
1
n

n∑

i=1

(
(yi − η(β(k+1),xi))2û

(k)
i − 2∆(k+1)(yi − η(β(k+1),xi))ût

(k)

i

+ (∆2)(k+1)ût2
(k)

i

)
, (15)

where Û(k) = diag(û(k)
1 , . . . , û

(k)
n ), z(k) is the corrected observed response given by z(k) = y − ∆̂(k)τ̂ (k),

with τ̂ (k) = (τ̂1
(k), . . . , τ̂n

(k))>, τ̂
(k)
i = ût

(k)

i /û
(k)
i and η(β,x) = (η(β,x1), . . . , η(β,xn))>. This process

is iterated until a suitable convergence rule is satis�ed, e.g. if ||θ̂(k+1) − θ̂
(k)|| is su�ciently small, or

until some distance involving two successive evaluations of the actual log-likelihood `(θ), like ||`(θ̂(k+1)
)−

`(θ̂
(k)

)|| or ||`(θ̂(k+1)
)/`(θ̂

(k)
) − 1||, is small enough. An interesting observation is that the M�step to

estimate β is equivalent to the weighted nonlinear least squares in the NLM, z = η(β,x) + ε, in which
reliable and e�cient implementation of algorithms are available in softwares as SAS, R, Ox and Matlab.
To recover σ2 and λ, we observe that

σ2 = ∆2 + Γ and λ = ∆/
√

Γ.

3. Score Test for Homogeneity of Variance

The model de�ned in (5) assumes that V ar(Yi) = σ2
[
k2 − bδ2

]
is constant, in which the scale pa-

rameter σ2 is constant. However, similar to the dispersion parameter mentioned by Lin et al. (2009), the
actual scalar parameter may be related to the ith observation. Then, one cannot make any inference for
the model without further assumptions, since there are too many unknown parameters involved. Hence,
it is necessary to test homogeneity of the scalar parameter. This section concentrates on this problem in
SMSN-NLM.

Following Lin et al. (2009), we generalized the scale parameter σ2 by σ2
i , where σ2

i is modeled by

σ2
i = σ2m(zi, ρ), (16)

where m(.) is an injective and twice continuously di�erentiable function with respect to the parameter
ρ = (ρ1, . . . , ρq1)

>, and zi is a vector of explanatory variable values, which constitute in general, although
not necessary, a subset of {x1,x2, . . . ,xn}. Now let mi = m(zi, ρ), we assume that exists a unique value
ρ0 of ρ such that m(zi, ρ0) = 1, for all i. Obviously, if ρ = ρ0 then σ2

i = σ2 and Yi have constant
variance. With this consideration, the test for homogeneity of scalar parameter in model de�ned in (5),
under the above assumptions, can be expressed by

H0 : ρ = ρ0 vs H0 : ρ 6= ρ0. (17)
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In the remainder of the this section, let θ1 = ρ be the parameter of interest and the parameter θ =

(β>, σ2, λ)> is considered a nuisance parameter, then of (5) and (16), the log-likelihood function for
θ2 = (θ>1 , θ>)> given the observed sample y = (y1, . . . , yn)> can be written as

`(θ2) =
n∑

i=1

`i(θ2) =
n∑

i=1

[
log 2− 1

2
log 2π − 1

2
log σ2 − 1

2
log mi + log Ki

]
, (18)

where Ki =
∫∞
0

u1/2 exp{− 1
2udi}Φ(u1/2Ai)dH(u), di = (yi − η(β,xi) − b∆m

1/2
i )2/(miσ

2) is the Ma-
halanobish distance, Ai = λ(yi − η(β,xi) − b∆m

1/2
i )/(miσ

2). The score function is given by U(θ2) =
∂`(θ2)
∂θ2

=
n∑

i=1

Ui(θ2) where

Ui(θ2) =
∂`i(θ2)

∂θ2
= −1

2
∂logσ2

∂θ2
− 1

2
∂logmi

∂θ2
+

1
Ki

∂Ki

∂θ2
, (19)

with
∂Ki

∂θ2
= Iφ

i (1)
∂Ai

∂θ2
− 1

2
IΦ
i

(
3
2

)
∂di

∂θ2

and

IΦ
i (w) =

∫ ∞

0

uwe(−udi/2)Φ1(u1/2Ai)dH(u) and Iφ
i (w) =

1√
2π

∫ ∞

0

uwe(−u(di+A2
i )/2)dH(u).

The observed information matrix is given by

J(θ2) =


 Jρρ Jρθ

Jρθ J(θ)


 = −

n∑

i=1

∂2`i(θ2)
∂θ2∂θ>2

, (20)

where

∂2`i(θ2)
∂θ2∂θ>2

= −1
2

∂2 log σ2

∂θ2∂θ>2
− 1

2
∂2 log mi

∂θ2∂θ>2
− 1

(Ki)2
∂Ki

∂θ2

∂Ki

∂θ>2
+

1
Ki

∂2Ki

∂θ2∂θ>2
,

with

∂2Ki

∂θ2∂θ>2
=

1
4
IΦ
i

(
5
2

)
∂di

∂θ2

∂di

∂θ>2
− 1

2
IΦ
i

(
3
2

)
∂2di

∂θ2∂θ>2
− 1

2
Iφ
i (2)

(
∂Ai

∂θ2

∂di

∂θ>2
+

∂di

∂θ2

∂Ai

∂θ>2

)

−Iφ
i (2) Ai

∂Ai

∂θ2

∂Ai

∂θ>2
+ IΦ

i (1)
∂2Ai

∂θ2∂θ>2
.

The derivatives of di and Ai involve standard algebraic manipulations and are given in the Appendix A.
It is important to note when ρ = ρ0, the submatrix J(θ) in (20) represents the observed information
matrix for the model with constant variance.

From Basso et al. (2009), we have the following results related with Iφ
i (w) and IΦ

i (w) for each element
of the SMSN class that we are considering:

• Skew�t: Letting νw = 2w + ν, we have

IΦ
i (w) =

2wνν/2Γ(νw/2)
Γ(ν/2)(ν + di)νw/2

T

(√
νw

di + ν
Ai; νw

)
and

Iφ
i (w) =

2wνν/2Γ(νw/2)√
2πΓ(ν/2)(di + A2

i + ν)νw/2
;

8



• Skew�slash: Letting νw = w + ν, we have

IΦ
i (w) =

22+wΓ(νw)
dνw

i

P1 (νw, di/2) E{Φ(S1/2
i Ai)} and

Iφ
i (w) =

ν2νwΓ(νw)√
2π(di + A2

i )νw
P1

(
νw,

di + A2
i

2
)
, Si ∼ Gamma(νw,

di

2
)I(0,1),

where Px(a, b) denotes the distribution function of the Gamma(a, b) distribution evaluated at x.

• Skew contaminated normal:

IΦ
i (w) =

√
2π{νγw−1/2φ1

(√
di; 0,

1
γ

)
Φ(γ1/2Ai) + (1− ν)φ1(

√
di; 0, 1)Φ(Ai)} and

Iφ
i (w) = νγw−1/2φ1

(√
di + A2

i ; 0,
1
γ

)
+ (1− ν)φ1

(√
di + A2

i ; 0, 1
)

.

Furthermore, the score test statistic for H0 is of the form (Cox and Hinkley, 1974)

SR = U(θ̂
0

2)
>Jρρ

θ (θ̂
0

2)U(θ̂
0

2),

where U(θ̂
0

2) =
∂`(θ2)

∂ρ
|
θ̂2=θ̂0

2

, Jρρ
θ (θ̂2

0
) is the upper left corner block of J−1(θ2)|θ2=θ̂0

2

corresponding to

ρ, and θ̂
0

2 = (ρ0, β̂
>

, σ̂2, λ̂)> is the ML estimate of θ2 under the null hypothesis H0. When H0 is true,
the statistic SR is asymptotically distributed as χ2

q1
.

3.1. Simulation Studies

In this subsection, we study the performance of the asymptotic distribution and power of the score
test statistic.

3.1.1. The empirical distributions of the score statistics

The performance of the asymptotic distribution of the score statistic SR is examined in order to
compare the empirical distribution with the theoretical distribution via Monte Carlo simulations. As in
Xie et al. (2009b), the model used for the simulation study is

Yi = exp (βxi) + εi, i = 1, . . . , n, (21)

where εi ∼ SMSN(−
√

2
π k1σiδ, σ

2
i , λ; H), with σ2

i = σ2m(xi, ρ) = σ2 exp(ρxi). The simulation is per-
formed for test the homogeneity of scalar parameter as discussed above. The true values of the parameters
are set as β = 2, σ2 = 0.5, λ = 1. In our analysis we use SN, ST with ν = 3 and the SSL distribution with
ν = 3. The explanatory variable x, was generated following uniform distribution in the interval (0.2, 2)
and their values were held �xed throughout the simulations. To get values of Yi, a random variable is
drawn from the model (21) with the true values of parameters, the values de xi and ρ = 0 (H0), repeating
this procedure 2,000 times. Then the empirical distribution functions of the score statistic are obtained
and recorded. For n = 30, 50, 70, 90, and 150 the comparisons between the empirical distribution func-
tions of the score statistics an the distribution function of χ2

(1) are depicted in Figure 1. These �gures
shows that the empirical distributions functions of the score statistic are very close to the theoretical
distribution χ2

(1) for all the SMSN models considered in our study.
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Figure 1: Simulated comparisons between the empirical distribution functions of the score statistic and χ2
(1)

, using SN in
the �rst row, ST in the second row and SSL in the last row.

3.1.2. Power of score test

The design considered in this simulation study is the same as in the previous subsection and the
simulation was performed for di�erent values of n and ρ to get the simulated sizes and powers for the
test statistic. We take ρ = 0, 0.2, 0.4, 0.6, 0.8 and 1, and n = 30, 50, 70, 90 and 150. Each simulated case
was replied 2,000 times, then the proportion of times which rejected the null hypothesis was just the
simulated valued of power. Here all the statistics are compared with the χ2

1 critical value at α = 0.05

level.
Table 1 present the simulated sizes and powers for the score test statistic SC. From this table, we

can see that for n = 30 the sizes of the test statistics SR are 0.082 for the SN , 0.0875 for the ST and
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0.0945 for the SSL distribution at the 0.05 level and hence this test statistic is very conservative in all
cases. However, when n ≥ 50, the actual size of the test is close to 0.05. As ρ and n increase, the power
of this test statistic SR approach 1 quickly as depicted in Figure 2. This �gure shows that if the sample
size is moderate or large, the proposed score test statistic SR can detect heteroscedasticity of the scalar
parameter and consequently of the variance very well.
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Figure 2: Power of the analysis to detect signi�cant heteroscedasticity over a range of possible ρ0 values, sample
sizes (n), and for three errors distributions in the model (21).

Table 1: Rejection rates of the hypothesis H0 : ρ = 0 at nominal level of 5% from the statistic test SR for three errors
distributions in the model (21).

SN-NLM
n ρ = 0.0 ρ = 0.2 ρ = 0.4 ρ = 0.6 ρ = 0.8 ρ = 1.0
30 0.0820 0.0610 0.1130 0.1740 0.2735 0.4000
50 0.0690 0.0755 0.1570 0.2680 0.4220 0.6180
70 0.0670 0.0860 0.1970 0.3955 0.6285 0.8160
90 0.0625 0.0920 0.2450 0.4865 0.7455 0.8920
150 0.0630 0.1345 0.3565 0.7055 0.9030 0.9875

ST-NLM
n ρ = 0.0 ρ = 0.2 ρ = 0.4 ρ = 0.6 ρ = 0.8 ρ = 1.0
30 0.0875 0.0995 0.1320 0.2115 0.2930 0.3715
50 0.0730 0.0980 0.1435 0.2395 0.3665 0.5135
70 0.0650 0.0945 0.1805 0.3025 0.4410 0.6275
90 0.0735 0.1345 0.2305 0.3900 0.5955 0.7740
150 0.0650 0.1435 0.3425 0.5725 0.7730 0.9255

SSL-NLM
n ρ = 0.0 ρ = 0.2 ρ = 0.4 ρ = 0.6 ρ = 0.8 ρ = 1.0
30 0.0945 0.0915 0.0980 0.1665 0.2475 0.3330
50 0.0740 0.0815 0.1150 0.1860 0.2990 0.4350
70 0.0620 0.0935 0.1840 0.3015 0.4900 0.6645
90 0.0605 0.0990 0.2205 0.4280 0.6280 0.8165
150 0.0595 0.1270 0.3375 0.6240 0.8570 0.9690
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4. In�uence diagnostics

There are basically two approaches to detecting observations that seriously in�uence the results of
a statistical analysis. One approach is the case-deletion approach, in which the impact of deleting an
observation on the estimates is directly assessed by measures such as the likelihood distance and Cook's
distance (see, Cook, 1977). The second approach is one in which the stability of the estimated outputs
with respect to the model inputs is studied via various minor model perturbation schemes such as the local
in�uence approach developed in Cook (1986). In the following subsections we describe the background
and details of the classical diagnostics methods to the detection of in�uential observations, as well as two
types of perturbation schemes.

4.1. Case deletion model

The identi�cation of observations with a disproportionate in�uence in the estimates of the parameters
is a fundamental component of the process of model validation. The presence of these types of observations
can become inadequate inference. An important approach for the identi�cation of in�uential observations
can be based on the methodology known as case-deletion model (CDM), proposed by Cook (1977) for the
normal linear regression models. To study the in�uence of i-th observation in the maximum likelihood
estimate of θ = (β>, σ2, λ)>, it is usual to compare the estimate with all observations, θ̂, and the
maximum likelihood estimate θ̂(i) obtained when the i-th observation has been excluded from the data
set. This approach corresponds to the case-deletion model, which can be expressed as

Yj = η(β,xj) + εj , j 6= i,

where the log-likelihood function of θ is denoted by `(i)(θ) =
∑

j 6=i `j(θ). However, to compute θ̂(i) =

(β>(i), σ2
(i), λ(i))> for all i and to compare them with θ̂ would be very time-consuming when the total

sample size n is large. Fortunately, the following result due to Cook and Weisberg (1982) gives an
updating formulae under case deletion to avoid direct model estimation for each of the n cases. This
result is essential for our case-deletion diagnostics.

θ̂(i) = θ̂ + {J(θ̂)}−1 ˙̀
(i)(θ̂), (22)

where ˙̀
(i)(θ̂) = ∂`(i)(θ)/∂θ|

θ=θ̂
= −∂`i(θ)/∂θ|

θ=θ̂
. From this result, we can see the di�erence between

the estimates with and without a case deleted and can obtain the case-deletion measures for assessing
the in�uential observations in SMSN-NLM.
• Generalized Cook's distance

The generalized Cook's distance is de�ned as a standardized norm of θ̂(i) − θ̂, i.e.,

GDi = (θ̂(i) − θ̂)>M(θ̂(i) − θ̂) (23)

where M is a non-negative de�nite matrix, which measures the weighted combination of the elements for
the di�erence θ̂(i) − θ̂. Cook and Weisberg (1982) considered several choices for M. A commonly used
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choice is the observed Fisher information matrix M = J(θ). Substituting Equation (22) into Equation
(23), we obtain the following approximation:

GDl
i = ˙̀

(i)(θ̂)>{J(θ̂)}−1 ˙̀
(i)(θ̂), i = 1, . . . , n.

• Likelihood distance
The likelihood distance (Cook and Weisberg, 1982) is de�ned as

LDi(θ) = 2{`(θ)− `(θ(i))}, (24)

Substituting (22) into (24), we obtain the following approximation:

LDl
i = 2{`(θ)− `(θ̂ + {J(θ̂)}−1 ˙̀

(i)(θ))}, i = 1, . . . , n.

4.2. Local in�uence

Case deletion is a common way to assess the e�ect of an observation on the estimation process. This is
a global in�uence analysis, since the e�ect of the observation is evaluated by eliminating it from the data
set. The work of Cook (1986), laid the foundation for assessing local in�uence of a group of observations
when a minor perturbation is made in the statistical model or in the data set. Based on his proposal
many papers have been written on the subject. In his seminal paper, Cook (1986) shows that the normal
curvature for θ ∈ Rp+2 in the direction of d ∈ Rq, ||d|| = 1 is given by Cd(θ) = 2|d>∆∗>J−1∆∗d|, where
J is the observed information matrix and ∆∗ is the (p+2)×q matrix with elements ∆∗

rs = ∂2`(θ)/∂θr∂ωs,
for r = 1, . . . , (p + 2) and r = 1, . . . , q, both evaluated at θ = θ̂ and ω = ωo (postulated model). The
suggestion here to examine the elements of the eigenvector associated with the largest eigenvalue of the
matrix T̈ = ∆∗>{J}−1∆∗. Alternatively, one may also examine the total local in�uence Ci = Cdi(θ),
where di is an q × 1 vector of zeros with one at the ith position.

Since Cd(θ) is not invariant under uniform change of scale, Poon and Poon (1999) proposed the
conformal normal curvature Bd(θ) = Cd(θ)/tr(2T̈). An interesting property of the conformal normal
curvature is that for any unitary direction d one has 0 ≤ Bd(θ) ≤ 1, which allows comparison of
curvatures among di�erent scale mixtures of normal models. In order to determine if the ith observation
is possible in�uential, Poon and Poon (1999) proposed classify the ith observation as possible in�uential
if M(0)i = Bdi , where di is an q × 1 vector of zeros with one at the ith position, is greater than the
benchmark

¯M(0) + c∗SM(0),

where ¯M(0) = 1/q and SM(0) is the sample standard error of {M(0)k, k = 1 . . . , q} and c∗ is a selected
constant. Depending on the real application, c∗ may be taken to be any value. We will evaluate in the
sequel the matrix ∆∗ under two perturbation schemes for the SMSN-NLM given in (5).

• Case weight perturbation
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First, consider the following arbitrary attribution of weights for the experimental units in the log-
likelihood function, which can be de�ned by

`(θ|ω) =
n∑

i=1

ωi

[
log 2− 1

2
log 2π − 1

2
log σ2 + log Ki

]
,

where and Ki is de�ned in equation (6). Note that, ω = (ω1, . . . , ωn)> is the vector of weights of the
contributions from each observation to the likelihood and ω0 = (1, . . . , 1)> is the non perturbation point,
that is, `(θ|ω0) = `(θ). This perturbation scheme is intended to evaluate whether the contribution of the
observations with di�ering weights a�ects the maximum likelihood estimator of θ. It follows after some
algebraic manipulation that the delta matrix is given by

∆∗ = (∆∗
1, . . . ,∆

∗
n),

where ∆∗
i =

∂`i(θ)
∂θ

is as given in (19) after dropping the element corresponding to ρ.

• Scale parameter perturbation
To study the e�ects from departures from the homogeneity assumption regarding the scale parameter

σ2, we consider the following perturbation σ2
ωi

= σ2/ωi. This perturbation corresponds to considering
that the distribution of Yi is heteroscedastic, once

V ar(Yi) = σ2
ωi

(
k2 − bδ2

)
,

where k2, δ and b as denoted in Subsection 2.2. Under this perturbation scheme, the non-perturbed
model is obtained when ωo = (1, . . . , 1)>. Moreover, the perturbed log-likelihood function has the form

`(θ|ω) =
n∑

i=1

[
log 2− 1

2
log 2π − 1

2
log σ2 +

1
2

log ωi + log Kωi,
]
,

where dωi = ω
1/2
i (yi − η(β,xi)− b∆ω

−1/2
i )2/σ2, Aωi = λω

1/2
i (yi − η(β,xi)− b∆ω

−1/2
i )/σ and Kωi is as

in Section 3, switching dωi and Aωi with di and Ai, respectively. The matrix ∆∗ = (∆∗>
β ,∆∗>

σ2 ,∆∗>
λ , )>

is given in Appendix B.

4.3. Residuals

Residual analysis aims at identifying atypical observations and/or model misspeci�cation once resid-
uals are measures of agreement between the data and the �tted model. Most residuals are based on the
di�erences between the observed responses and the �tted conditional mean. We de�ned the following
standardized ordinary residual (Pearson residuals):

ri =
yi − µ̂i√
V̂ ar(yi)

, i = 1, . . . , n,

where V̂ ar(yi) = k2σ̂
2− 2

π k2
1σ̂

2δ̂2. Here, µ̂i = η(β̂,xi), and β̂, σ̂2 and δ̂ denoting the maximum likelihood
estimators of β, σ2 and δ, respectively. We also generate envelopes, as suggested by Atkinson (1981), to
detect incorrect speci�cation of the error distribution and the systematic component η(β,xi) as well as
the presence of outlying observations.
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5. Application: Oil palm yield data.

The oil palm yield data data have been analyzed by Cancho et al. (2009) using the SN-NLM and
assuming a nonlinear growth-curve model - see Figure 7(b). We illustrate our methods, replacing the SN
assumption by the SMSN class of distributions as follows:

Yi =
β1

1 + β2 exp(−β3xi)
+ εi, εi

iid∼ SMSN(−
√

2
π

k1∆, σ2, λ;H), (25)

for i = 1, . . . , 19, where H denote the distribution function for the mixture variable U . In our analysis
we will assume the SN, ST and the SSL distributions from the SMSN class for comparative purposes.

5.1. Estimation models:

We choose the value of ν by maximizing the the likelihood function as illustrated in Figure 3; for
the ST model we found ν = 3 and for the SSL we found ν = 2. Actually, with ν = 3 and ν = 2

the variances of the slash and skew-t distributions are �nite. Table 2 contains the ML estimates of the
parameters from the three models, together with their corresponding standard errors calculated via the
observed information matrix. The AIC model selection criterion indicate that the ST distribution present
the best �t. Although the regression estimates parameters are similar in all the three �tted models (see
Table 2) the standard errors of the SMSN-NLM with heavy tails are smaller than those in the SN-NLM.
This suggests that the two models with longer tails than the SN model seem to produce more accurate
maximum likelihood estimates. The estimates for the variance components (σ2 and λ) are not comparable
since they are on di�erent scale.

5.2. In�uence diagnostic analysis:

• Case deletion model:

Here case-deletion measures GDl
i and LD1

i , as presented in Subsection 4.1, are computed. The
results are displayed in Figure 4. We observe that cases (]10, ]13, ]15, ]16 and ]18) are identi�ed as

2 4 6 8 10

−
54

2
−

54
0

−
53

8
−

53
6

−
53

4
−

53
2

ST

ν

lo
gl

ik

2 4 6 8 10

−
55

5
−

55
0

−
54

5
−

54
0

−
53

5

SSL

ν

lo
gl

ik

Figure 3: Plot of the pro�le log-likelihood of the parameter ν for �tting a ST-NLM and SSL-NLM for the oil palm yield
data.
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Table 2: ML estimation results for �tting various mixture models on the oil palm yield data set. SE are the asymptotic
standard errors based on the observed information matrix.

SN-NLM ST-NLM SSL-NLM
Parameter Estimate SE Estimate SE Estimate SE

β1 37.351 0.462 37.529 0.441 37.463 0.486
β2 44.576 17.039 43.483 10.364 43.373 14.982
β3 0.731 0.070 0.732 0.045 0.728 0.063
σ2 6.919 2.655 1.644 1.152 3.105 1.708
λ -4.453 3.125 -1.871 1.332 -3.489 2.481
ν - - 3 - 2 -

log-likelihood -35.037 -33.829 -34.781
AIC 80.074 79.659 81.562
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Figure 4: Index plots of a) Generalized Cook's distance GDl
i and b) Likelihood Distance LDl

i using SN-NLM, ST-NLM and
SSL-NLM, on the oil palm yield data.

the most in�uential in the estimation of the parameters under the SN and SSL cases. Meanwhile,
only cases (]10, ]13, ]15, and ]18) are in�uential under the ST-NLM.

Note however from Figure 5 that when we use distributions with tails heavier than the SN one, the
EM algorithm allows to accommodate such observations attributing to them small weights in the
estimation procedure. The estimated weights for the skew�normal distribution (ûi, i = 1, . . . , 19) are
indicated in Figure 5 as a continuous line. Therefore, this rich class of distributions may naturally
attribute di�erent weights to each observation and consequently control the in�uence of a single
observation on the parameter estimates. These results agree with similar considerations, presented
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in Osorio et al. (2007), in a symmetric context.

Next we conduct a local in�uence study with interest focussing on θ. The perturbation schemes
described in the Section 4.2 are considered and in all cases we consider the benchmark for M(0)
with c∗ = 1.96
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Figure 5: Estimated ui for the ST-NLM and the SSL-NLM, on the oil palm yield data.

• Case weight perturbation

Under this perturbation scheme, we obtain CdmaxSN = 3.55, CdmaxST = 2.28 and CdmaxSSL = 2.13,
as values of maximum curvature. From Figure 6 (�rst row), it is noted that under the ST-NLM
and SSL-NLM, the observation 13 is identi�ed as in�uential. In addition, the observation 18 is also
identi�ed as in�uential under the SN-NLM.

• Scale perturbation

In this case, the value of the maximum curvature are CdmaxSN
= 6.40, CdmaxST

= 2.10 and
CdmaxSSL = 4.82. The ML estimators are quite stable with respect to this perturbation scheme in
the ST case, as displayed in Figure 6 (second row). However, it is appreciated some in�uence of
the observation 13 under the SN-NLM and SSL-NLM.

It is important to note that as expected, the in�uence of the observations is reduced when we consider
distributions with heavier tails than the SN one. For this data set, the ST model accommodates slightly
better the in�uential observations.

5.3. Residuals Analysis:

We �rst perform residual analysis for the ST-NLM �t by plotting the Pearson residuals ri against the
explanatory variable xi (see Figure 7a). This plot also shows that the residuals of the observations ]13,
]15, ]16 and ]18 are possible outliers. These observations are the same as detected by the case deletion
analysis.
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Figure 6: Oil palm data. Index plot of M(0) using SN, ST and SSL models. In the �rst row case weights perturbation and
in the second row scale parameter perturbation.
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Figure 7: Oil palm yield data. (a) Index plot of residuals versus explanatory variable xi for the ST-NLM. (b)
Predicted values for the ST-NLM.

In order to detect incorrect speci�cation of the error distribution and the systematic component (25),
in Figure 8 we show the QQ-plots and simulated envelopes for the Pearson residuals. This Figure clearly
indicate that the ST-NLM is more suitable for modeling the current data than the SN-NLM and SSL-
NLM, since there are no observations falling outside the envelope. Moreover, there is evidence of lack of
�t for the SN-NLM.
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Figure 8: Oil palm yield data. Plots of the Pearson residuals against the order statistics of the normal distribution
to the SN-NLM, ST-NLM and SSL-NLM.

5.4. In�uence of a single outlier

The robustness of the ST-NLM and SSL-NLM can be also studied through the in�uence of a single
outlying observation on the ML estimate of β. In particular, we can asses how much the ML estimates
of θ in�uences by a change of ∇ units in a single observation Yk. We replace a single observation yk by
yk(∇) = yk − ∇, and record the relative change in the estimates

(
(θ̂(∇)− θ̂)/θ̂

)
, where θ̂ denotes the

original estimate and θ̂(∇) the estimate for the contaminated data. In this example, we contaminated
the observation on subject 5, and varied ∇ between 0 and 5 in increments of 0.4. In Figure 9, we have
presented the results of relative changes of the estimate β2 and, β3 for di�erent contaminations of ∇,
under SN-LMM, ST-LMM and SSL-NLM. As expected, the ST and SSL models are less adversely a�ected
by variations of ∇ than the SN model.
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Figure 9: Oil palm yield data set. Relative changes on the ML estimates of β2 and β3 when �tting a SN-NLM, ST-NLM
and SSL-NLM for di�erent contaminations of ∇ in the �fth observation on subject 5. Relative change=

(
(θ̂(∇)− θ̂)/θ̂

)
,

where θ̂ denotes the original estimate and θ̂(∇) the estimate for the contaminated data.
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5.5. Heteroscedasticity diagnostic

We now consider the test for heteroscedasticity for the oil palm data. In the previous analysis, we saw
that the ST-NLM is the most appropriate for these data, so our analysis will be based on this distribution.
As suggested by Cook and Weisberg (1982), we take the exponential function as the weight function, that
is, we consider mi = exp(ρxi). It is easily seen that when ρ = 0, then wi = 1 and σ2

i = σ2 for all i.
Hence, the test for the homogeneity of scalar parameter becomes the test of hypothesis H0 : ρ = 0.
Based on the statistic SR given in Section 3 and a little computation, we get SRST = 19.79010 and the
corresponding p-value is about 0. Thus, we should reject the hypothesis H0 and therefore the assumption
of homogeneity of variance is not suitable for the oil palm data.

We believe that the proposed score test is very sensitive to the presence of in�uential observation,
so we eliminate now these observations from the full data (15, 16 and 18) and by similar computation
we get SRST = 3.028285 (p-value = 0.0818), which indicates that when the in�uential observations are
deleted, we cannot reject the hypothesis H0. This result agrees with the graphical analysis depicted in
Figure 7(a), where we can see a clear constant pattern of the residuals on the interval (−1, 1). Table 3
shows the values of the SR statistics for the SN-NLM, SSL-NLM and the ST-NLM. We note that, for the
SN-NLM and SSL-NLM always should reject the hypothesis H0. As expected, the presence of in�uential
observations can a�ect signi�cantly our decision about the heteroscedasticity, and this decision can be
changed depending of the model we are used. Similar conclusions emerged when we chose mi(xi, ρ) = xi

ρ.
Finally, in Figure 7(b) we show the predicted values, where the full data and the data without the

in�uential observations are considered for the ST-NLM. We note that, when the in�uential observations
are deleted, a slight modi�cation on the curve can be seen related to consider the full data.

Table 3: Oil palm yield data set. Score statistics and the corresponding p-values for some SMSN-NLM.

Full data All - ]15, ]16 and ]18
Model SR p-value SR p-value

SN-NLM 38.87257 4.5239e-10 5.324405 0.02102
ST-NLM 19.79010 8.6429e-06 3.028285 0.08182
SSL-NLM 32.12216 1.4477e-08 3.910459 0.04798

6. Conclusions

In this paper, we have proposed the application of a new class of asymmetric distributions, called
SMSN distributions, to nonlinear regression models. An EM-type algorithm is developed by exploring
the statistical properties of the SMSN class that can be implemented e�ciently in softwares as SAS, R, Ox
and Matlab. The observed information matrix is derived analytically which allows direct implementation
of inference on this class of models. In order to examine the performance and properties of the score test
for heteroscedasticity of the scalar parameter in the framework of SMSN-NLM, some simulation studies
are carried out under di�erent situations. These simulation studies indicates that the test is e�ective
for all the models. Furthermore, in�uence diagnostics analyses are discussed for SMSN-NLM where it is
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noted that the in�uence of the observations is reduced when we consider distributions with heavier tails
than the SN one. For the Oil Palm data set, the ST model accommodates slightly better the in�uential
observations.

Due to recent advances in computational technology, it is worthwhile to carry out Bayesian treatments
via Markov chain Monte Carlo (MCMC) sampling methods in the context of SMSN-NLM. Bayesian in-
�uence diagnostics can be treated via the Kullback-Leibler divergence as proposed by Cho et al. (2009).
Other extensions of the current work include, for example, a generalization of SMSN-NLM to multivariate
settings and nonlinear mixed e�ects models.

Acknowledgment: This research work was supported in part by grants 2008/02159-9
from FAPESP-Brazil. Grants from CNPq-Brazil are also Acknowledged.

Appendix A: First and second order derivatives to the heteroscedastic model
In this Appendix the �rst and second order derivatives of di = B2

i and Ai = λBi are obtained, where
Bi = (yi − η(xi, β) − bσiδ)/σi = Ci − bδ, with Ci = (yi − η(xi, β))/σi and δ =

λ√
1 + λ2

. Here σ2
i =

σ2m(xi, ρ) = σ2mi and θ2 = (ρ>, β>, σ2, λ)>.

• di:
∂di

∂β
= −2

Bi

σi

∂ηi

∂β
,

∂di

∂σ2
= −Bi
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where δ′ and δ′′ are the �rst and second order derivatives of δ.
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• Ai:
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Appendix B: Elements of ∆∗

In order to asses the perturbation scheme σ2(ωi) = σ2/ωi, we go to present the elements of ∆∗ for this

the perturbation scheme. In this case the perturbed log-likelihood function given by `(θ|ω) =
n∑

i=1

`i(θ|ωi),

where
`i(θ|ωi) = log 2− 1

2
log 2π − 1

2
log σ2 +

1
2

log ωi + log Kωi ,

where Kωi is as in Section 2.2 with σ2(ωi) instead of σ2 and θ = (β>, σ2, λ)>. In this case dωi = B2(ωi)

and Aωi = λB(ωi), where B(wi) = ω
1/2
i (yi − η(β,xi))/σ − bδσ. So, under this perturbation scheme we

have ∆∗
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Next we present the derivatives of dωi and Aωi with respect to θ and ω. To simplify the notation let ηi = η(β,xi).
So evaluating at ωi = ωi0 = 1 we obtain
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