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Abstract

In this article we consider a spectral sequence (Er, dr) associated to a filtered Morse-Conley chain complex (C, ∆),

where ∆ is a connection matrix. The underlying motivation is to understand connection matrices under continuation.

We show how the spectral sequence is completely determined by a family of connection matrices. This family is obtained

by a sweeping algorithm for ∆ over fields F as well as over Z. This algorithm constructs a sequence of similar matrices

∆0 = ∆, ∆1, . . ., where each matrix is related to the others via a change-of-basis matrix. Each matrix ∆r over F (resp.,

over Z) determines the vector space (resp., Z-module) Er and the differential dr. We also prove the integrality of the

final matrix ∆R produced by the sweeping algorithm over Z which is quite surprising, mainly because the intermediate

matrices in the process may not have this property. Several other properties of the change-of-basis matrices as well as the

intermediate matrices ∆r are obtained. The sweeping algorithm and the computation of the spectral sequence (Er, dr) are

implemented in the software Mathematica R©.

Keywords: Connection matrix, spectral sequences, sweeping algorithm, Conley index, integer programming, computer

implementation.

2000 Mathematics Subject Classification: 55T05; 37B30; 90C10.

1 Introduction

In this article, we consider M an n-dimensional compact Riemannian manifold, D(M) = {Mp}mp=1 a Morse decomposition

of M and a filtered Conley chain complex C with finest filtration {Fp}1. A Morse decomposition of M is a collection

D(M) = {Mp}mp=1 of mutually disjoint compact invariant subsets of M such that that if γ ∈ M \ ∪mp=1Mp, then there exist

p′ < p with ω(γ) ∈ Mp′ and ω∗(γ) ∈ Mp. In other words, D(M) contains the recurrent behavior of the flow. A subset of

M which belongs to some Morse decomposition is called a Morse set. In our case, each Morse set, Mp, is a nondegenerate

singularity of the gradient flow ϕ of a Morse function f : M → R.
∗Partially supported by CNPq-PRONEX Optimization and FAPESP (Grant 2006/53768-0).
†Supported by CNPq under grants 300929/2007-2 and 479650/2007-1 and supported by FAPESP under grant 2007/06896-5 and 2008/57607-6.
‡Supported by FAPESP under grants 2008/00628-1, 2007/06896-5 and supported by CNPq under grant 479650/2007-1.
1A filtration F = {Fp} on a chain complex C is a sequence of subcomplexes FpC for all integers p such that FpC ⊂ Fp+1C.
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As in [CdRS] we consider a Morse chain complex with connection matrix ∆. Given a Morse decomposition D(M) with m

Morse sets, a connection matrix is a m×m matrix whose entries are homomorphisms between the homological Conley indices

associated to the Morse sets (see [Fr1], [Fr2] and [Mo]). The nonzero entries of a connection matrix register the existence of

connecting orbits in ϕ.

We make use of the algebraic-topological tool called spectral sequence in the setting described above. Our goal is to

explain how a connection matrix ∆ determines the spectral sequence, i.e, how it determines the spaces Er and how it induces

the differentials dr. By considering a connection matrix over a field F it is possible to obtain a sweeping algorithm which

characterizes the convergence process of the spectral sequence. To achieve this we use this algorithm to sweep the connection

matrix.

This process was first described in [CdRS] for connection matrices over Z. In this paper we prove that the sweeping

algorithm holds for a connection matrix over F. This algorithm consists of changing the basis of a connection matrix,

∆r = (Mr−1)−1∆r−1Mr−1, as the spectral sequence (Er, dr) associated to a Morse-Conley chain complex unfolds. The

sweeping algorithm preserves the upper triangular structure as well as the nilpotency of ∆r, throughout the process producing

a sequence of connection matrices over F. However, this is not necessarily true over Z. In fact, fractional entries show up

in several of the computational examples. It is therefore surprising that the final matrix ∆R in the sweeping algorithm

over Z is always integral, and, thus, a connection matrix. This is the subject of Section 4. Several other properties of the

change-of-basis matrices as well as of the intermediate matrices ∆r are obtained.

A major interest in the Conley index theory is to understand flows and connection matrices under continuation. Our

main motivation for characterizing properties of the intermediate matrices is to better understand the continuation behavior

associated to the initial matrix ∆.

Both versions of the sweeping algorithm are implemented using the program Mathematica R©.

In [CdRS], we treated the case where the chain complex C was a Z-module generated by the singularities and graded by

their indices, i.e.,

Ck =
⊕

x∈critkf

Z〈x〉

where critk(f) is the set of index k critical points of f . In this case, the connection matrix ∆ : C → C associated to D(M)

is defined as the differential of the graded Morse chain complex C = Z〈critf〉, i.e., determined by the maps ∆k : Ck → Ck−1

via

∆k(x) =
∑

y∈critk−1f

n(x, y)〈y〉,

where n(x, y) is the intersection number of x and y. The intersection number is defined for nondegenerate singularities x

and y of indices k and k − 1 respectively, since the set of connecting orbits is finite. By orienting the unstable and stable

manifolds respectively, the intersection number n(x, y) is the number of connecting orbits counted with orientation. In order

to count orbits with orientation, choose a regular value c of f with f(y) < c < f(x) and n(x, y) is the intersection number of

the spheres Sk−1 = Wu(x) ∩ f−1(c) and Sn−k = W s(y) ∩ f−1(c). For more details see [Sa1] and [R3].

When we have F = Z2, C is the Z2 vector space

C = Z2〈critf〉

and the connection matrix ∆ : C → C associated to D(M) is the differential of the graded Morse chain complex C, i.e., it is
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determined by the maps ∆k : Ck → Ck−1 via

∆k(x) =
∑

y∈critk−1f

a(x, y)〈y〉,

where a(x, y) is the number of connecting orbits counted mod 2 for nondegenerate singularities x and y of indices k and k−1

respectively. We recall that ∆ is an upper triangular nilpotent matrix.

Without loss of generality, we may assume that the columns of the matrix ∆ are ordered with respect to k. The property

we need to ensure is that the map ∆k is filtration preserving. Hence, the columns of ∆ may be partitioned into subsets J0,

J1, J2, . . . , such that Js are the columns associated with index-k critical points, for some k. This implies that the matrix

∆ is block upper triangular, as illustrated in Figure 1 below, that is, if ∆ij 6= 0 then i ∈ Js−1 and j ∈ Js, for some s. The

entries with row indices in Js−1 and column indices in Js constitute the s-th block Bs. The entries in Bs determine the map

∆k, for some k. There is however a subtlety regarding notation. We use ∆k ij as an “enhanced” synonym to ∆ij , in the sense

that it refers to the same entry, but carries the additional information that this entry belongs to the block in the column set

associated with index-k critical points. Notice however, that the subscript s of column set Js usually does not coincide with

the index of the critical points associated with the s-th block.

J0

J1︷ ︸︸ ︷ J2︷ ︸︸ ︷ J3︷︸︸︷ J4︷ ︸︸ ︷ J5︷ ︸︸ ︷J6

J0

J6

∆ =

B1

B2︷︸︸
︷

J1

B3

︷
︸︸

︷

J2

B4︷︸︸︷J3

B5

B6

︷︸︸
︷

J4

︷︸︸
︷

J5

Figure 1: Connection matrix with 6 blocks.

We denote this filtered graded Morse chain complex by

(C,∆) = (F〈critf〉,∆).

We will use the notation of the boundary operator ∂ and its matrix ∆ interchangeably.

Note that the r-th diagonal of ∆ has entries ∆p+1−r,p+1, which are related to the connections between unstable and stable

manifolds of Mp+1 and Mp+1−r, for p ∈ {r, . . . ,m − 1}. Clearly, if column (p + 1) intersects the submatrix ∆k, then Mp+1

and Mp+1−r are respectively singularities of Morse index k and k − 1, which we denote by hk and hk−1. These singularities

are in filtrations Fp \ Fp−1 and Fp−r \ Fp−r−1, respectively. In summary, the r-th diagonal, when intersected with ∆k, is

registering information of numerically consecutive singularities of Morse indices k and k − 1. We will use the same notation

to indicate an elementary chain of C, that is, the elementary chain hp+1
k is associated to the column (p + 1) ∈ Jk, which
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corresponds to the singularity of Morse index k in filtration Fp \ Fp−1
2.

The notation hsk indicates the elementary k-chain associated to the column s of ∆.

Given a chain complex (C, ∂) endowed with an increasing filtration F pC, such that ∂(F pC) ⊂ F pC (and we assume here

F−1C = 0), the associated spectral sequence is (a generally infinite) sequence of chain complexes (Er, dr) ( see [D] and [Sp]).

Roughly, each stage contains information about longer and longer parts of the differential: the differential d0 in the complex

at the first stage is the part of ∂ which does not decrease filtration, d1 concerns the part of ∂ which reduces filtration by no

more than 1, and so on. Moreover, H(Er, dr) = Er+1.

A bigraded module Er over a principal ideal domain R is an indexed collection of R-modules Erp,q, for every pair of

integers p and q. In this article, we work with R = F and hence the bigraded modules Er are actually vector spaces over F.

A differential dr of bidegree (−r, r − 1) is a collection of homomorphisms dr : Ep,q → Ep−r,q+r−1 for all p and q, such that

dr ◦ dr = 0. The homology module H(Er) is the bigraded module

Hp,q(Er) =
Kerdr : Erp,q → Erp−r,q+r−1

Imdr : Erp+r,q−r+1 → Erp,q
.

A spectral sequence {Er, dr}, r ≥ 0, is a sequence of chain complexes where each chain complex Er is the homology module

of the previous one, i.e.,

• Er is bigraded module, dr is a differential with bidegree (−r, r − 1) in Er;

• For r ≥ 0 there exists an isomorphism H(Er) ≈ Er+1.

In general, we will omit reference to q in this section since its role will be important only when considering more general

Morse sets of a Morse decomposition. In our case, when the Morse set is a singularity of index k, the only q such that Erp,q

is nonzero is q = k − p. Hence, it is understood that Erp is in fact Erp,k−p.

For a filtered graded chain complex (C, ∂) we can define a spectral sequence

Erp = Zrp/(Z
r−1
p−1 + ∂Zr−1

p+r−1)

where,

Zrp = {c ∈ FpC | ∂c ∈ Fp−rC}.

Hence, the module Zrp consists of chains in FpC with boundary in Fp−rC. This makes it natural to look at chains

associated to the columns of the connection matrix to the left of and including the column (p + 1). This guarantees that

any linear combination of chains respects the filtration. Furthermore, since the boundary of the chains must be in Fp−rC we

must consider columns or linear combinations that respect the filtration and that have the property that the entries in rows

i > (p− r + 1) are all zeroes. Hence, a significant entry in the connection matrix is the element on the r-th diagonal on the

row (p− r + 1) and the column (p+ 1).

However, as r increases, the F-modules Erp change generators. In practice, the generators of the complex C mentioned

above are very specific: singularities in the Morse case. The domain of dr, Er, is a certain quotient of a subgroup of

C. Elements in this domain are represented by elements of C whose appropriate classes are in the kernels of all previous

differentials ds, s < r. Finding a system that span Er in terms of the original basis of C is, in practice, a non-trivial matter

but it can be obtained as a product of the sweeping algorithm.
2Note that the numbering on the columns are shifted by one with respect to the subindex p of the filtration Fp.
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2 Sweeping Algorithm on Connection Matrices

The sweeping algorithm for constructing the spectral sequence (Er, dr) associated with a connection matrix ∆ was introduced

in [CdRS]. The spaces Er are bigraded modules over a principal ideal domain R, assumed, in that work, to be Z. The

algorithm developed therein is repeated below in condensed form, for completeness. The notation adopted regarding matrices

is introduced in Table 1.

Ai. i-th row of matrix A

A.j j-th column of matrix A

AI. submatrix of A with entries3 aij such that i ∈ I

AIJ submatrix of A with entries aij such that i ∈ I and j ∈ J ,

where I (resp., J) is a nonempty subset of the set of

row indices (resp., column indices)

A` `-th matrix in a sequence, nonnegative superscripts

do not denote exponents

(A`)−1 the inverse of matrix A`

Table 1: Notation adopted for (sub)matrices.

Given a m ×m connection matrix ∆, the sweeping algorithm constructs a family of matrices ∆r, for r = 0, . . . ,m − 2,

recursively, where ∆0 = ∆. At each iteration, the entries of ∆r are obtained from ∆0 by performing a change of basis over

R, that is, ∆r = (P r−1)−1∆0P r−1 and marking the r-th diagonal to the right of and parallel to the main diagonal, or r-th

diagonal for short. Thus, the main diagonal is the 0-th diagonal. The construction of ∆r is completed only after the markup

of the entries along the r-th diagonal. That is, each matrix ∆r comprises two kinds of information: numerical (the values of

the entries themselves) and qualitative (the marks assigned to specific entries). The change of basis is determined by certain

entries in ∆r which we will refer to as change-of-basis pivots. These, on the other hand, depend on the previous classification

of certain non-null entries of ∆r−1 as primary pivots. Primary pivot marks are permanent, i.e., matrix ∆r inherits all the

primary pivots of ∆r−1. On the other hand, if the non-null entry of ∆r is a change-of-basis pivot, then the corresponding

entry in ∆r+1 is zero and unmarked. In the illustrations of the algorithm, primary pivot entries will be encircled, whereas

change-of-basis pivots will be encased in boxes.

The sweeping algorithm is used to determine the Conley spectral sequence (Er, dr) associated to the Morse complex

(C,∆) and the finest filtration {Fp}. As previously stated, we will assume the singularities to be ordered with respect to

the filtration. It simplifies the notation and implies that the nilpotent upper triangular connection matrix ∆ has a block

structure. That is, the set of column indices {1, . . . , n} may be partitioned into consecutive nonempty subsets J0, J1, . . . , Jb

determined by the indices present in the chain complex as follows. Suppose the distinct indices present in the chain complex

C, in ascending order, are 0 = g0, g1,. . . , gb. Then |Js| is the number of critical points of index gs, for s = 0, . . . , b. If

gs = k, then the first and last column of Js are denoted by fk and `k, respectively. Thus the column partition implies a

block partition of ∆, with the s-th block constituted by entries ∆ij with (i, j) ∈ Js−1 × Js. The s-th block is non-null only

if the indices gs−1 and gs are consecutive integers. If gs = k, the columns in Js are associated with the elementary chains
3When there is no danger of ambiguity, the comma between row and column indices is omitted.
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{hfk

k , h
fk+1
k , . . . , h`kk }.

Figure 1 illustrates the block structure of a connection matrix ∆. This structure may correspond to several different sets

of indices. It is compatible with, for example, one index-0 critical point (g0 = 0), three index-2 critical points (g1 = 2),

six index-3 critical points (g2 = 3), two index-5 critical points (g3 = 5), four index-6 critical points (g4 = 6), three index-7

critical points (g5 = 7) and one index-9 critical point (g6 = 9). If that were the case, blocks B1, B3 and B6 must be null.

Furthermore, we would have f0 = `0 = 1, f2 = 2, `2 = 4, f3 = 5, `3 = 10, f5 = 11, `5 = 12, f6 = 13, `6 = 16, f7 = 17,

`7 = 19, f9 = `9 = 20.

Sweeping Algorithm over Z

Input: nilpotent m×m upper triangular matrix ∆ and column partition J0, J1, . . . , Jb.

Initialization Step:
r = 0

∆r = ∆

P r = I (m×m identity matrix)

Iterative Step: (Repeated until all diagonals parallel and to the right of the main diagonal have been swept)
Matrix ∆ update

r ← r + 1

∆r = (P r−1)−1∆0P r−1

Markup

Sweep entries of ∆r in the r-th diagonal:

If ∆r
i,i+r 6= 0 and ∆r

.,i+r does not contain a primary pivot

Then If ∆r
i. contains a primary pivot

Then mark ∆r
.,i+r as a change-of-basis pivot

Else mark ∆r
i,i+r as a primary pivot

Matrix P update

P r ← P r−1

For each change-of-basis pivot ∆r
k ij update the j-th column of P r as follows

Let I = {i, . . . , `k−1}, J = {fk, . . . , j}, A = ∆0
IJ , c = |J |

Let x∗ ∈ Zc be the optimal solution to

min xc

subject to Ax = 0

xc ≥ 1

x ∈ Zc

P rJj ← x∗

Final Step:
Matrix ∆ update

r ← r + 1

∆r = (P r−1)−1∆0P r−1
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The construction of P r is designed to guarantee that all entries below and including a change-of-basis entry are zeroed

out in ∆r+1. This and other properties of the algorithm over Z will be further explored in Section 4. It turns out that this

step can be considerably simplified when one works with fields, using the fact that field elements have multiplicative inverses.

In this case, one does not need to work with the original matrix ∆, or ∆0, but can consider ∆r−1 directly. Since the basis

change will be from ∆r−1 to ∆r, we assign a different notation to the change-of-basis matrix. The algorithm is thus altered.

Sweeping Algorithm over F

Input: nilpotent m×m upper triangular matrix ∆ and column partition J0, J1, . . . , Jb.

Initialization Step:
r = 0

∆r = ∆

Mr = I (m×m identity matrix)

Iterative Step: (Repeated until all diagonals parallel and to the right of the main diagonal have been swept)
Matrix ∆ update

r ← r + 1

∆r = (Mr−1)−1∆r−1Mr−1

Markup

Sweep entries of ∆r in the r-th diagonal:

If ∆r
i,i+r 6= 0 and ∆r

.,i+r does not contain a primary pivot

Then If ∆r
i. contains a primary pivot

Then mark ∆r
.,i+r as a change-of-basis pivot

Else mark ∆r
i,i+r as a primary pivot

Matrix M construction

Mr ← I

For each change-of-basis pivot ∆r
ij change the j-th column of Mr as follows

Let p be such that ∆r
ip is a primary pivot

Mr
pj ← −∆r

ij/∆
r
ip

Final Step:
Matrix ∆ update

r ← r + 1

∆r = (Mr−1)−1∆r−1Mr−1

The following proposition embodies the main properties of the family {∆0,∆1,∆2, . . .} regarding the pattern of certain

zero entries therein. Loosely speaking, it establishes that entries marked as primary pivots in an iteration remain non-null

as the algorithm progresses and that entries below primary pivots and change-of-basis pivots are always null. It is necessary

to show that the algorithm is well defined, that is, the division operation in the matrix M construction step is valid.

Proposition 2.1 Let {∆0,∆1, . . .} be the sequence of matrices produced by the sweeping algorithm over F. Then
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(i) all matrices inherit the block structure of ∆0;

(ii) the non-null entries of ∆r strictly below the r-th diagonal are either primary pivots or are above a primary pivot;

(iii) primary pivot entries of ∆r are non-null.

Proof: The statements are trivially true for ∆0. Assume by induction that they are true for ∆r. Consider the sweeping

of the r-th diagonal of ∆r. By the markup rules, if an entry on the r-th diagonal is marked as a primary pivot, then it must

be non-null. Furthermore, there are no primary pivots below it. But since these entries lie strictly below the r-th diagonal,

by the induction hypothesis, they must be null. Now suppose ∆r
i,i+r is a change-of-basis pivot. Then, by the markup rules,

∆r
i,i+r 6= 0 and there is a primary pivot on the same row, say ∆r

ip. Due to the order in which the entries are swept, this

primary pivot, marked at an earlier iteration, must lie on a lower diagonal, and thus to the left of the change-of-basis pivot,

so p < i+ r. By the induction hypothesis, ∆r
ip 6= 0. We conclude that the change-of-basis matrix Mr is well defined.

The matrix Mr has unit diagonal and, for each column j such that ∆r
.j has a change-of-basis pivot, has precisely another

(off-diagonal) non-null entry. In particular, if ∆r
ij = ∆r

i,i+r is a change-of-basis pivot and ∆r
i,p is the primary pivot on row

i, then Mr
pj = −∆r

ij/∆
r
pj 6= 0 is in the upper triangular part of the matrix, since p < j. Furthermore, this entry is in the

triangular region above the diagonal and below the block containing the change-of-basis pivot. Figure 2 gives a close-up

of this region of Mr, showing in gray the position of the relevant change-of-basis pivot, the primary pivot and the block

containing them in ∆r.

Bk

r-th diagonal

change-of-basis pivot position

primary pivot position

column
j = i+ r

column
p

row i

row p

row j

∗

Mr
jp

1
1

1
1

1
1

1
1

1
1

1 . . .

. . .

main diagonal

Figure 2: Relative position of non-null entries of Mr.

Thus the post- multiplication of ∆r by Mr zeroes out the change-of-basis pivots, since the appropriate multiple of the

column containing the primary pivot is added to the column containing the change-of-basis pivot:

(∆rMr).j =

 ∆r
.j , if column j of ∆r does not contain a change-of-basis pivot,

∆r
.j −

∆r
j−r,j

∆r
j−r,p

∆r
.p, otherwise, and ∆r

j−r,p is a primary pivot.

Furthermore, by the induction hypothesis, the entries below primary pivots strictly below the r-th diagonal are null, so this

addition does not introduce non-null entries below the r-th diagonal of ∆rMr on the column containing the change-of-basis

pivot. Additionally, it does not affect the block structure, since both columns ∆r
.p and ∆r

.j belong to the same block. Finally,

if an entry on the r-th diagonal is marked as a primary pivot, then, by the markup rules, it is non-null and has no primary

pivots below it. Hence, by the induction hypothesis, the entries below the primary pivot positions on the r-th diagonal are
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null, and the entries in the primary pivot positions are non-null. This means that the non-null entries of ∆rMr strictly below

the (r+ 1)-th diagonal lie either on or above primary pivot positions and this matrix also inherits the block structure of ∆0.

It remains to see what happens with the pre-multiplication by (Mr)−1. It is easy to see that this inverse is obtained from

Mr by reversing the sign of the off-diagonal entries, so it has the same nonzero pattern as Mr. Since we’re performing a

pre-multiplication, it is more convenient to think in terms of the rows of (Mr)−1. If ∆r
ij is a change-of-basis pivot, and the

primary pivot on row i is located on column p, then (Mr)−1
pj = ∆r

ij/∆
r
ip, where i < p < j, and p and j belong to the same

subset of the column partition, say Jk. Thus, if row p of (Mr)−1 has two nonzero entries, then column p of ∆r contains a

primary pivot. Pre-multiplication of ∆rMr by (Mr)−1 will add to row p of ∆rMr a multiple of row j > p. Because we’re

adding to row p a multiple of a row below it, in the same block, this operation won’t disrupt the zero patterns nor the block

structure already established for ∆rMr. Hence the non-null entries of ∆r+1 strictly below the (r + 1)-th diagonal are either

primary pivots or lie above a primary pivot, and, by induction, the statement is true for all matrices in the sequence.

Given a non-null entry ∆r
ij such that j ∈ Js, with gs = k, then the i-th row is associated to a (k − 1)-chain, whereas the

j-th column is associated to a k-chain. This association is made explicit by the notation ∆r
k ij . Notice, however, that these

might not be elementary chains any longer. The elementary chain associated to column j of ∆k may have been replaced by

a linear combination of the elementary chains hfk

k , . . . , hjk at some previous iteration.

If ∆r
k ij is a change-of-basis pivot, then there is a column, namely, the p-th column, associated to a k-chain such that ∆r

k ip

is a primary pivot. Then we have to perform a change of basis on ∆r by adding to the j-th column of ∆r the p-th column

of ∆r multiplied by (−∆r
k ip)

−1∆r
k ij , in order to zero out the entry ∆r

k ij , without introducing nonzero entries in ∆r
k sj for

s > i. Once this is done, we obtain a k-chain associated to the j-th column of ∆r+1. It is a linear combination over F of the

p-th column and the j-th column of ∆r such that ∆r+1
k ij = 0. It is also a linear combination of hk columns of ∆ on and to

the left of the j-th column. Hence, the j-th column of ∆r is an hk column and it corresponds to a linear combination over F

σj,rk =
j∑

s=fk

cj,rs hsk

of hk columns of ∆, recall that fk-th column is the first column in ∆ associated to a k-chain. The notation of σj,rk indicates

the Morse index k and the j-th column of ∆r. Note that cj,rj = 1.

It follows that the j-th column of ∆r+1 is an hk column given by

σj,r+1
k =

j∑
s=fk

cj,rs hsk︸ ︷︷ ︸
σj,r

k

+qp
t∑

s=fk

cp,rs hsk︸ ︷︷ ︸
σp,r

k

= cj,r+1
fk

hfk

k + cj,r+1
fk+1 h

fk+1
k + · · ·+ cj,r+1

j−1 hj−1
k + cj,r+1

j hjk, (1)

where qp = (−∆r
k ip)−1∆r

k ij and cj,r+1
j = 1.

Figure 3 illustrates the markup process at the r-th iteration. Primary pivots are encircled and change-of-basis pivots are

encased in boxes. The figure shows part of the block associated with index k, as the r-th diagonal is swept.

It is clear that the first column of any ∆k cannot undergo any change of basis since there is no column, and thus no

primary pivots, to its left.

Once the above procedure is done for all change-of-basis pivots of the r-th diagonal of ∆r we can define a change-of-basis

matrix Mr, and let ∆r+1 = (Mr)−1∆rMr. Equivalently, ∆r+1 = (P r)−1∆0P r where P r = M0M1 . . .Mr.

Therefore, the matrix ∆r+1 has numerical values determined by the change of basis over F of ∆r. In particular, all the

change-of-basis pivots on the r-th diagonal ∆r are zero in ∆r+1. See Figure 3.
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
0 0 0 0 0 0

0 0 0 0

0 0

0 0

1

1

1

1

1

1

1

1

1

1

r + 1

r

σs+1,r
k−1

σs+2,r
k−1

σs+3,r
k−1

σs+4,r
k−1

σs,rk−1

σs+1,r
k σs+2,r

k σs+3,r
k σs+4,r

k σs+5,r
kσs,rk

Figure 3: Diagonals r and r + 1.

Remark 2.2 Note that the change of bases we perform when we consider the connection matrix with entries in Z are more

complicated, see [CdRS]. We add a linear combination over Q of all the hk columns s of ∆r with fk ≤ s < j, where fk is the

first column associated with index k, to the positive integer multiple of the j-th column of ∆r, in order to zero out the entry

∆r
k ij without introducing nonzero entries in ∆r

k sj for s > i. Moreover, this integer multiple of the j-th column of ∆r, which

we will denote by u, has to be the minimal positive integer with this property. The resulting linear combination should be of

the form βfkhfk

k + · · ·+ βj−1hj−1
k + βjhjk where βs are integers for s = fk, . . . , j.

The integer u is called leading coefficient of the change of basis. Note that it is the minimal leading coefficient of a change

of basis. Once this is done, we obtain a k-chain associated to the j-th column of ∆r+1. It is a linear combination over Q of

the s-th hk columns fk ≤ s < j of ∆r plus an integer multiple u of the j-th column of ∆r such that ∆r+1
k ij = 0. It is also an

integer linear combination of hk columns of ∆ on and to the left of the j-th column. In this case, the j-th column of ∆r+1 is

σj,r+1
k = u

j∑
s=fk

cj,rs hsk︸ ︷︷ ︸
σj,r

k

+qj−1

j−1∑
s=fk

cj−1,r
s hsk︸ ︷︷ ︸

σj−1,r
k

+ · · ·+ qfk+1 (cfk+1,r
fk

hfk

k + cfk+1,r
fk+1 hfk+1

k )︸ ︷︷ ︸
σ

fk+1,r

k

+qfk
cfk,r
fk

hfk

k︸ ︷︷ ︸
σ

fk,r

k

, (2)

or, equivalently,

(ucj,rfk
+ qj−1c

j−1,r
fk

+ · · ·+ qfk
cfk,r
fk

)hfk

k + (ucj,rfk+1 + qj−1c
j−1,r
fk+1 + · · ·+ qfk+1c

fk+1,r
fk+1 )hfk+1

k + · · ·

· · ·+ (ucj,rj−1 + qj−1c
j−1,r
j−1 )hj−1

k + ucj,rj hjk (3)

with cfk,r
fk

= 1 and

cj,r+1
fk

= ucj,rfk
+ qj−1c

j−1,r
fk

+ · · ·+ qfk
cfk,r
fk
∈ Z (4)

cj,r+1
fk+1 = ucj,rfk+1 + qj−1c

j−1,r
fk+1 + · · ·+ qfk+1c

fk+1,r
fk+1 ∈ Z (5)

...

cj,r+1
j−1 = ucj,rj−1 + qj−1c

j−1,r
j−1 ∈ Z (6)
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cj,r+1
j = ucj,rj ∈ Z. (7)

Note that if the primary pivot of the i-th row is on the t-th column then the rational number qt is nonzero in qt

t∑
s=fk

ct,rs hsk

and such that

∆r+1
k ij = u∆r

k ij + qt∆r
k it = 0.

Since u ≥ 1 is unique, the coefficient qt is uniquely defined.

3 Conley Spectral sequence

In this section we present some results which indicate how the sweeping algorithm produces Conley’s spectral sequence. Those

were established in [CdRS] for connection matrices over Z. In what follows we present a version for connection matrices over

F.

We will start describing basic properties of the ∆r’s produced by the sweeping algorithm which are to be used in the proof

of the main theorems. More specifically our attention will be directed towards characterizing properties associated with the

primary and change-of-basis pivots which are essential in determining the spectral sequence.

It is easy to see that all ∆r’s are upper triangular and nilpotent since they are recursively obtained from the initial

connection matrix ∆ by change of bases over F.

Note that, as in [CdRS], if the entry ∆r
k p−r+1,p+1 has been identified by the sweeping algorithm as a primary pivot or a

change-of-basis pivot then ∆r
k s,p+1 = 0 for all s > p− r + 1.

Proposition 3.1 asserts that we cannot have more than one primary pivot in a fixed row or column. Moreover, if there is

a primary pivot in row i then there is no primary pivot in column i.

Proposition 3.1 Let {∆r} be the resulting family of matrices produced by the sweeping algorithm applied to a connection

matrix ∆. Given any two primary pivots ∆r
k ij and ∆r

k ms
we have that {i, j} ∩ {m, s} = ∅.

The proof is completely analogous to the proof for connection matrices over Z given in [CdRS]. Note that this proposition

is also a particular case of Proposition 4.3.

In order to simplify notation, reference to the index k in the matrix ∆r
k will be omitted whenever it is not necessary.

3.1 The Spaces Er
p of the Spectral Sequence

The spaces Erp are determined when we apply the sweeping algorithm to the matrix ∆. The primary and change-of-basis

pivots of ∆r produced by the sweeping algorithm play an important role in determining the generators of Zrp .

Recall that

Erp = Zrp/(Z
r−1
p−1 + ∂Zr−1

p+r−1)

where,

Zrp = {c ∈ FpC | ∂c ∈ Fp−rC}.

Each hk column of the connection matrix ∆ represents connections of an elementary chain hk of Ck to an elementary

chain hk−1 of Ck−1.
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The space Zrp,k−p = {c ∈ FpCk; ∂c ∈ Fp−rCk−1} is generated by k-chains contained in Fp with boundaries in Fp−r. This

corresponds in the matrix ∆ to all the hk columns to the left of the column (p+1) or linear combinations of these hk columns,

such that their boundaries (nonzero entries) are above the row (p− r + 1) 4.

The index k singularity in Fp \ Fp−1 corresponds to the k chain associated to the column (p+ 1) of ∆. Hence we denote

this singularity by hp+1
k .

Proposition 3.2 is an important result since it establishes a formula for Zrp,k−p using the chains σp,rk determined in the

sweeping algorithm.

Proposition 3.2 Zrp,k−p = F[µp+1,rσp+1,r
k , µp,r−1σp,r−1

k , . . . , µfk,r−p−1+fkσfk,r−p−1+fk

k ] where fk is the first column in ∆

associated to a k-chain and µj,ζ = 0 whenever the primary pivot of the j-th column is below the row (p− r+ 1) and µj,ζ = 1

otherwise.

Proof: Note that the σp+1−ξ,r−ξ
k is associated to column (p+ 1− ξ) of the matrix ∆ξ. By definition, µp+1−ξ,r−ξ = 1 if

and only if the primary pivot on column (p+ 1− ξ) is above row (p+ 1− ξ)− (r − ξ) = p− r + 1. It is easy to verify that

chains associated to columns with primary pivots below row (p− r+ 1) do not correspond to generators of Zrp,k−p. Consider

a k-chain σp+1−ξ,r−ξ
k , with ξ ∈ {0, . . . , p + 1 − κ}, associated to column (p + 1 − ξ) of ∆r−ξ such that the primary pivot of

column (p+ 1− ξ) of ∆r−ξ is above row (p− r+ 1). For the latter primary pivots we show that σp+1−ξ,r−ξ
k is a k-chain which

corresponds to a generator of Zrp . It is easy to see that σp+1−ξ,r−ξ
k is in FpCk for ξ ≥ 0. Furthermore, the step (r − ξ) in

the sweeping method has zeroed out all change-of-basis pivots below the diagonal (r− ξ). In other words, all nonzero entries

of column (p + 1 − ξ) of ∆r−ξ are above row (p + 1 − ξ) − (r − ξ) = (p − r + 1). Hence, the boundary of σp+1−ξ,r−ξ
k is in

Fp−rCk−1.

We now show that any element in Zrp is a linear integer combination of µp+1−ξ,r−ξσp+1−ξ,r−ξ
k for ξ = 0, . . . , p + 1 − κ.

This is done by multiple induction in p and r.

• Consider Ffk−1, where fk is the first column of ∆ associated to a k-chain. Let ξ be such that the boundary of hfk

k is

in Ffk−1−ξCk−1.

1. Zrfk−1 is generated by k-chain in Ffk−1Ck with boundaries in Ffk−1−rCk−1. Note that there exists only one chain

hfk

k in Ffk−1Ck. Hence

(a) If ξ < r then ∂hfk

k /∈ Ffk−1−rCk−1. Thus, Zrfk−1 = 0

(b) If ξ > r than ∂hfk

k ∈ Ffk−1−rCk−1. Thus, Zrfk−1 = F[hfk

k ]

2. On the other hand, σfk,r
k is a k-chain associated to column fk of ∆r. Since there is no change of basis caused by

the sweeping method that affects the first column of ∆k, σfk,r
k = hfk

k . Furthermore, µfk,r = 1 if and only if the

boundary of hfk

k = σfk,r
k is above the r-th diagonal. Hence

(a) If ξ < r then µfk,r = 0. Thus F[µfk,rσfk,r
k ] = 0

(b) If ξ > r then µfk,r = 1. Thus F[µfk,rσfk,r
k ] = F[σfk,r

k ] = F[hfk

k ].

Hence Zrfk−1 = F[µfk,rσfk,r
k ].

4The expressions ”above the row” and ”to the left of the column” shall include the row or column in question, whereas the expressions ”below

the row” and ”to the right of the column” shall not include the row or column in question.
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• Let diagonal ξ1 be the first in ∆ that intersects ∆k. All the columns of ∆ corresponding to the chains hp+1
k , . . . , hfk

k

have nonzero entries above the diagonal ξ1, thus, above row (p− ξ1 + 1) of ∆.

1. By definition Zξ1p is generated by k-chains contained in FpCk with boundary in Fp−ξ1Ck−1. Since the columns

of ∆ associated to the chains hp+1
k , . . . , hfk

k have nonzero entries above row (p − ξ1 + 1), this implies that the

boundaries are in Fp−ξ1Ck−1, i.e.,

Zξ1p = F[hp+1
k , . . . , hfk

k ].

2. Since nonzero entries in the columns of ∆ associated to the chains hp+1
k , . . . , hfk

k are all above the diagonal ξ1,

then σj,ξ1k = hjk, j = fk, . . . , p+ 1 and µj,ξ1 = 1, j = fk, . . . , p+ 1. Hence,

F[µp+1,ξ1σp+1,ξ1
k , . . . , µfk,ξ1−p−1+fkσfk,ξ1−p−1+fk

k ] = F[hp+1
k , . . . , hfk

k ].

Therefore, Zξ1p = F[µp+1,ξ1σp+1,ξ1
k , . . . , µfk,ξ1−p−1+fkσfk,ξ1−p−1+fk

k ].

• We assume that the generators of Zr−1
p−1 correspond to k-chains associated to σp+1−ξ,r−ξ

k , ξ = 1, . . . , p+ 1−fk whenever

the primary pivot of column (p+ 1− ξ) is above row (p− r + 1). If the primary pivot of column (p+ 1) is below row

(p− r+ 1) then Zrp = Zr−1
p−1 and it is the case when µp+1,r = 0. Suppose now that the primary pivot of column (p+ 1)

is above row (p − r + 1). Let bfk
, . . . , bp+1 ∈ F and hk = bp+1hp+1

k + · · · + bfkhfk

k be a k-chain corresponding to an

element of Zrp,k−p. We know that hk is in Fp and its boundary is above row (p − r + 1). If bp+1 = 0 then hk ∈ Zr−1
p−1

and the result follows by the induction hypothesis. Suppose bp+1 6= 0.

Thus we can rewrite hk as

hk = bp+1σp+1,r
k + (bp − bp+1cp+1,r

p )hpk + · · ·+ (bfk − bp+1cp+1,r
fk

)hfk

k .

Note that hk − bp+1σ
p+1,r
k = (bp − bp+1cp+1,r

p )hpk + · · · + (bfk − bp+1cp+1,r
fk

)hfk

k ∈ Fp−1. Moreover, since hk and

σp+1,r
k have their boundaries above row (p − r + 1), then the boundary of hk − bp+1σp+1,r

k is above row (p − r + 1).

Hence hk − bp+1σp+1,r
k ∈ Zr−1

p−1 . By the induction hypothesis we have that hk − bp+1σp+1,r
k = apµ

p,r−1σp,r−1
k + · · · +

afk
µfk,r−p−1+fkσfk,r−p−1+fk

k i.e,

hk = bp+1σp+1,r
k + apµ

p,r−1σp,r−1
k + · · ·+ afk

µfk,r−p−1+fkσfk,r−p−1+fk

k .

Note that sometimes the index j in ∆j is negative and in this case we adopt the following convention: when j < 0 we

have ∆j = ∆.

The next lemma establishes a formula which is used in Theorem 3.4.

Lemma 3.3 Suppose that ∂Zr−1
p+r−1,(k+1)−(p+r−1) * Zr−1

p−1,k−(p−1). Then

Zr−1
p−1,k−(p−1) + ∂Zr−1

p+r−1,(k+1)−(p+r−1) = Zrp

Proof: Since ∂Zr−1
p+r−1,(k+1)−(p+r−1) * Zr−1

p−1,k−(p−1) then Zr−1
p−1,k−(p−1) + ∂Zr−1

p+r−1,(k+1)−(p+r−1) is a subspace of

Zrp,k−p = F[µp+1,rσp+1,r
k , µp,r−1σp,r−1

k , . . . , µfk,r−p−1+fkσfk,r−p−1+fk

k ]
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but it is not a subspace of

Zr−1
p−1,k−(p−1) = F[µp,r−1σp,r−1

k , µp−1,r−2σp−1,r−2
k , . . . , µfk,r−p−1+fkσfk,r−p−1+fk

k ].

Then µp+1,r = 1 and Zr−1
p−1 + ∂Zr−1

p+r−1,(k+1)−(p+r−1) = Zrp .

When we have a chain complex and a connection matrix over Z this formula is harder to be obtained since it detects

torsion in the spectral sequence. In this case, when ∂Zr−1
p+r−1,(k+1)−(p+r−1) * Zr−1

p−1,k−(p−1) then

Zr−1
p−1,k−(p−1) + ∂Zr−1

p+r−1,(k+1)−(p+r−1) = Z[`σp+1,r
k , µp,r−1σp,r−1

k , . . . , µfk,r−p−1+fkσfk,r−p−1+fk

k ]

where

` = gcd{µr+p,r−1cp+1,r−1
p+1 ∆r−1

p+1,r+p, . . . , µ
fk+1,fk+1−p−1c

p+1,fk+1−p−1
p+1 ∆fk+1−p−1

p+1,fk+1
}/cp+1,r

p+1

fk is the first column associated to a k-chain and fk+1 is the first column associated to a (k+ 1)-chain as it can be seen with

more detail in [CdRS].

Theorem 3.4 The matrix ∆r obtained from the sweeping algorithm applied to ∆ determines Erp.

Proof: We have to prove that

Erp,k−p =
Zrp,k−p

Zr−1
p−1,k−(p−1) + ∂Zr−1

p+r−1,(k+1)−(p+r−1)

is either zero or a finitely generated space whose generator corresponds to a k-chain associated to column (p+ 1) of ∆r. The

entry ∆r
p−r+1,p+1 is on the r-th diagonal and plays a crucial role in determining the generators of Erp,k−p. Since ∆r

p−r+1,p+1

is a nonzero entry on the r-th diagonal, it can be either a primary pivot, a change-of-basis pivot or it is in a column above

a primary pivot. A zero entry can be in a column above a primary pivot or all entries below it are also zero. The proof is a

consequence of formulas obtained in Proposition 3.2 and Lemma 3.3 considering each one of the possibilities for ∆r
p−r+1,p+1.

1. Suppose the entry ∆r
p−r+1,p+1 has been identified by the sweeping method as a primary pivot. Then ∆r

s,p+1 = 0 for all

s > p − r + 1. Therefore, the chain associated to column (p + 1) in ∆r corresponds to a generator of Zrp,k−p. By the

sweeping method this chain is a linear combination over F of the hk columns of ∆ to the left of column (p + 1) such

that the coefficient of column (p + 1) is 1. This chain is σp+1,r
k and since the coefficient of column (p + 1) is nonzero,

σp+1,r
k is not contained in the generators of Zr−1

p−1,k−(p−1).

Claim 1: If ∆r
p−r+1,p+1 has been identified by the sweeping method as a primary pivot then ∂Zr−1

p+r−1,(k+1)−(p+r−1) ⊆

Zr−1
p−1,k−(p−1).

The generators of Zr−1
p+r−1,(k+1)−(p+r−1) must correspond to (k + 1)-chains associated to hk+1 columns with the

property that their boundaries are above row (p+1) and consequently all entries below row (p+1) are zero. Hence

the entries of these hk+1 columns on row (p + 1) must, by the sweeping method, either be a primary pivot or a

zero entry. See figure 4.

By Proposition 3.1, row (p + 1) cannot contain a primary pivot since we have assumed that column (p + 1) has

a primary pivot. Therefore, the entries of these hk+1 columns in row (p + 1) must be zeroes. It follows that

∂Zr−1
p+r−1,(k+1)−(p+r−1) does not contain in its set of generators the generator σp+1,r

k . The claim follows.
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r

r − 1

0 0 0 0∗

0 0 ∗ ∆r
p+1,p+r+1

0 ∗ ∗ ∗

...
...

...
...

...
...

...
...

...
...

...
...

0
...

∆r
p−r+1,p+1σp−r+1,r

k−1

σp+r+1,r
k+1

σp+r,rk+1

σp+r−1,r
k+1

σp+r−2,r
k+1

σp+1,r
k

...

σp+1,r
k

σp+r−2,r
k+1 σp+r−1,r

k+1 σp+r,rk+1 σp+r+1,r
k+1σp−r+1,r

k−1

Figure 4: ∂Zr−1
p+r−1,(k+1)−(p+r−1) ⊆ Z

r−1
p−1,k−(p−1).
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

r

r − 1

0 0 0 0∗

∆r
p+1,p+r−2 0 ∗ ∆r

p+1,p+r+1

∗ ∗ ∗ ∗

...
...

...
...

...
...

...
...

...
...

...
...

0
...

∆r
p−r+1,p+1σp−r+1,r

k−1

σp+r+1,r
k+1

σp+r,rk+1

σp+r−1,r
k+1

σp+r−2,r
k+1

σp+1,r
k

...

σp+1,r
k

σp+r−2,r
k+1 σp+r−1,r

k+1 σp+r,rk+1 σp+r+1,r
k+1σp−r+1,r

k−1

Figure 5: ∂Zr−1
p+r−1,(k+1)−(p+r−1) * Zr−1

p−1,k−(p−1).

By Proposition 3.2 we have that Erp,k−p = F[σp+1,r
k ].

2. If the entry ∆r
p−r+1,p+1 is identified by the sweeping method as a change-of-basis pivot then the sweeping method

guarantees that ∆r+1
p−r+1,p+1 = 0. Furthermore, ∆r

s,p+1 = 0 for all s > p − r + 1 and, like in the previous case, the

generator σp+1,r
k corresponding to the k-chain associated to column (p+ 1) in ∆r is a generator of Zrp,k−p.

Thus we have to analyze row (p+ 1). There are two possibilities:

(a) ∂Zr−1
p+r−1,(k+1)−(p+r−1) ⊆ Zr−1

p−1,k−(p−1), i.e, all the boundaries of the elements in Zr−1
p+r−1,(k+1)−(p+r−1) are above

row p.

In this case, as before, by Proposition 3.2 Erp,k−p = F[σp+1,r
k ].

(b) ∂Zr−1
p+r−1,(k+1)−(p+r−1) * Zr−1

p−1,k−(p−1), i.e, there exist elements in Zr−1
p+r−1,(k+1)−(p+r−1) whose boundary has a

nonzero entry in row (p+ 1) which is necessarily a primary pivot. See figure 5.

By Lemma 3.3 and Proposition 3.2 Erp,k−p = 0.

3. If the entry ∆r
p−r+1,p+1 is nonzero, but is not a primary pivot nor a change-of-basis pivot then it must be an entry

above a primary pivot. In other words, there exists s > p− r + 1 such that ∆r
s,p+1 is a primary pivot. It follows that

σp+1,r
k is not in Zrp,k−p. Thus, Zr−1

p−1,k−(p−1) = Zrp,k−p and hence Erp,k−p = 0.
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4. If the entry ∆r
p−r+1,p+1 is a zero entry we have the following possibilities:

(a) There is a primary pivot below ∆r
p−r+1,p+1 i.e, there exists s > p− r + 1 such that ∆r

s,p+1 is a primary pivot. In

this case the generator σp+1,r
k corresponding to the k-chain associated to column (p+ 1) is not a generator of Zrp

and hence Zr−1
p−1,k−(p−1) = Zrp,k−p. It follows that Erp,k−p = 0.

(b) ∆r
s,p+1 = 0 for all s > p−r+1. In this case, the generator σp+1,r

k corresponding to the k-chain associated to column

(p+ 1) in ∆r is a generator of Zrp,k−p. Thus we must analyze row (p+ 1). We have the following possibilities:

i. ∂Zr−1
p+r−1,(k+1)−(p+r−1) ⊆ Zr−1

p−1,k−(p−1), i.e, all the boundaries of the elements in Zr−1
p+r−1,(k+1)−(p+r−1) are

above row p.

In this case, as before, by Proposition 3.2 Erp,k−p = F[σp+1,r
k ].

ii. ∂Zr−1
p+r−1,(k+1)−(p+r−1) * Zr−1

p−1,k−(p−1), i.e, there exist elements in Zr−1
p+r−1,(k+1)−(p+r−1) whose boundary has

a nonzero entry in row (p+ 1). By Proposition 3.2 and Lemma 3.3 Erp,k−p = 0.

5. The entry ∆r
p−r+1,p+1 is not in ∆r

k. This includes the case where p − r + 1 < 0, i.e, ∆r
p−r+1,p+1 is not on the matrix

∆r.

The analyzes of Erp is very similar to the previous one, i.e, we have two possibilities:

(a) There is a primary pivot in column (p + 1) in a diagonal r < r. In this case the generator corresponding to

the k-chain associated to column (p + 1), σp+1,r
k is not a generator of Zrp,k−p. Hence Zr−1

p−1,k−(p−1) = Zrp,k−p and

Erp,k−p = 0.

(b) All the entries in ∆r in column (p+ 1) in diagonals lower than r are zero, i.e, the generator corresponding to the

k-chain associated to column (p+ 1), σp+1,r
k in ∆r is a generator of Zrp,k−p. Then we have to analyze row (p+ 1).

i. If ∂Zr−1
p+r−1,(k+1)−(p+r−1) ⊆ Z

r−1
p−1,k−(p−1) then, by Proposition 3.2, Erp,k−p = F[σp+1,r

k ].

ii. If ∂Zr−1
p+r−1,(k+1)−(p+r−1) * Zr−1

p−1,k−(p−1) then, by Proposition 3.2 and Lemma 3.3, Erp,k−p = 0.

3.2 The Differentials of the Spectral Sequence

We will describe how the sweeping algorithm applied to ∆ induces the differentials drp : Erp → Erp−r in the spectral sequence.

The results obtained in the case of a complex and a connection matrix over Z can be seen in [CdRS]. We will denote by fk

the first column of a connection matrix associated to a k-chain and by fk+1 the first column associated to a (k + 1)-chain.

Lemma 3.5 Let Erp = F[σp+1,r
k ] and suppose that ∆r

p−r+1,p+1 is a zero entry with a column of zeroes below it. Then

1. If ∆r
p+1,p+r+1 is a primary pivot, Er+1

p,k−p = 0.

2. If ∆r
p+1,p+r+1 is a zero entry with a column of zeroes below it, Er+1

p,k−p = F[σp+1,r+1
k ].

Proof: Since ∆r
p−r+1,p+1 is zero with a column of zero entries below it then σp+1,r+1

k ∈ Zr+1
p,k−p and hence Zrp−1,k−(p−1)  

Zr+1
p,k−p. Moreover, since Erp = F[σp+1,r

k ] then ∂Zr−1
p+r−1,(k+1)−(p+r−1) ⊆ Z

r−1
p−1,k−(p−1). But the difference between ∂Zr−1

p+r−1,(k+1)−(p+r−1)
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and ∂Zrp+r,(k+1)−(p+r) is that the last one includes the boundary of column (p + r + 1). The element in column (p + r + 1)

and row (p+ 1) is ∆r
p+1,p+r+1.

If ∆r
p+1,p+r+1 is a primary pivot then ∂Zrp+r,(k+1)−(p+r) * Zrp−1,k−(p−1) and Er+1

p,k−p = 0.

If ∆r
p+1,p+r+1 = 0 then ∂Zrp+r,(k+1)−(p+r) ⊆ Z

r
p−1,k−(p−1) and, Er+1

p = F[σp+1,r
k ].

Theorem 3.6 If Erp and Erp−r are both nonzero, then the map drp : Erp → Erp−r is induced by δrp, i.e, multiplication by the

entry ∆r
p−r+1,p+1 whenever it is either a primary pivot or a zero with a column of zero entries below it.

Proof: Suppose that Erp and Erp−r are both nonzero. We must show in each of the following cases that

Ker δrp
Im δrp+r

= Er+1
p .

Since we want Erp nonzero, it follows from Theorem 3.4, that we must consider three cases for the entry ∆r
p−r+1,p+1: primary

pivot, change-of-basis pivot and zero with a column of zeroes below it. However, if ∆r
p−r+1,p+1 is a change-of-basis pivot then

there exists a primary pivot in row (p− r + 1) on a diagonal below the r-th diagonal and hence Erp−r = 0. Hence, whenever

Erp and Erp−r are both nonzero, the entry ∆r
p−r+1,p+1 in ∆r is either a primary pivot or a zero with a column of zero entries

below it.

1. Suppose ∆r
p−r+1,p+1 is a primary pivot.

In this case Erp = F[σp+1,r
k ] and Erp−r = F[σp−r+1,r

k−1 ]. We have the following sequence:

... F[σp−r+1,r
k−1 ]oo F[σp+1,r

k ]
δr

poo Erp+r
δr

p+roo ...oo (8)

Since δrp : F[σp+1,r
k ]→ F[σp−r+1,r

k−1 ] is multiplication by ∆r
p−r+1,p+1 6= 0 then Ker δrp = 0. Hence

Ker δrp
Im δrp+r

= 0.

On the other hand, since ∆r
p−r+1,p+1 is a primary pivot then σp+1,r+1

k = σp+1,r
k /∈ Zr+1

p . Thus Zr+1
p = Zrp−1 and

Er+1
p = 0.

2. Suppose ∆r
p−r+1,p+1 = 0 with a column of zeroes below it. In this case Ker δrp = Erp and σp+1,r

k = σp+1,r+1
k .

(a) If ∆r
p+1,p+r+1 is an entry above a primary pivot then we have Erp+r = 0 and hence Im δrp+r = 0. Thus,

Ker δrp
Im δrp+r

= Erp .

On the other hand, since µp+r+1,r = 0 then Er+1
p = Erp .

(b) If ∆r
p+1,p+r+1 = 0 with a column of zero entries below it then Im δrp+r = 0 and

Ker δrp
Im δrp+r

= Erp .

On the other hand, it follows from Lemma 3.5 that Er+1
p = Erp .

(c) If ∆r
p+1,p+r+1 is a primary pivot then Erp = F[σp+1,r

k ] and Erp+r = F[σp+r+1,r
k ].

... Erp−roo F[σp+1,r
k ]

δr
poo F[σp+r+1,r

k+1 ]
δr

p+roo ...oo (9)
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Therefore,
Ker δrp

Im δrp+r
=
F[σp+1,r

k ]
F[σp+1,r

k ]
= 0.

On the other hand, since ∆r
p+1,p+r+1 is a primary pivot, by Lemma 3.5 Er+1

p,k−p = 0.

We have seen that in all cases
Ker drp

Im drp+r
= Er+1

p,k−p =
Ker δrp

Im δrp+r
.

These results are also true for connection matrices over Z, see [CdRS], however the proofs are intrinsically more difficult

due to the presence of torsion in the homology.

4 Properties of the sweeping algorithm over Z

Computational experiments with the sweeping algorithm over Z, significantly expanded with the aid of its computer imple-

mentation and of the random generator of matrices ∆, described in Section 5.4, led to the conjecture that the final matrix

produced by the sweeping algorithm over Z is integral. The very nature of the sweeping algorithm made it reasonable to

expect the occurrence of fractional numbers in the ∆r matrices, which was quickly confirmed. On the other hand, it was

somewhat puzzling to witness the consistent disappearance of these fractional numbers at the end of the algorithm. Beyond

its immediate relevance, there is the fact that this result opens up the door to interpretations of the final matrix, and in-

stigates investigation into the information it might carry. In this section, we conduct an algebraic study of the sequence of

matrices produced by the algorithm, establishing properties that eventually lead to the desired result.

The algorithm included in Section 2 is in an equivalent, albeit slightly different, format from the one described in [CdRS].

The difference lies in the matrix P update step. We begin by establishing that the algorithm is well defined. This is a

consequence of the following proposition, analogous to the one presented for the sweeping algorithm over F.

Proposition 4.1 Let {∆0,∆1, . . .} and {P 0, P 1, . . .} be the sequence of connection and change-of-basis matrices, respectively,

produced by the sweeping algorithm over Z. Then the following are true regarding these matrices:

(i) All matrices {∆0,∆1, . . .} inherit the block structure of ∆0.

(ii) The non-null entries of ∆0P r−1 strictly below the r-th diagonal are located on or above a primary pivot position.

(iii) The non-null entries of ∆r strictly below the r-th diagonal are either primary pivots (always non-null) or are above a

primary pivot.

(iv) The change-of-basis matrices P r have the following block upper triangular structure: it is block diagonal, block k has

entries with indices in Jk × Jk, for k = 1, . . . , b− 1, and each block is upper triangular and invertible.

Proof: The matrices ∆0 and P 0 = I trivially satisfy the proposition. The proof is by induction.

Suppose by induction that (i)–(iv) are true for ∆r and P r−1. Given a change-of-basis pivot ∆r
k i,i+r = ∆r

k ij with j ∈ Js
such that gs = k, let A = ∆0

IJ , where I = {i, . . . , `k−1} and J = {fk, . . . , j}, see illustration in Figure 6. Let c = |J |.

Consider the corresponding entries in ∆r:

∆r
IJ = (P r−1)−1

I. ∆0P r−1
.J .
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Given that the inverse of an upper triangular matrix is also upper triangular, the inverse of P r−1 shares its block upper

triangular structure. Thus, we may rewrite the previous equality as

∆r
IJ = (P r−1)−1

II ∆0
IJP

r−1
JJ .

Bs

A

j-th column

i-th row

Js︷ ︸︸ ︷
J︷ ︸︸ ︷

︷
︸︸

︷
Js−1

I ︷︸
︸︷

Figure 6: Submatrix A determined by a change-of-basis pivot in position (i, j).

By the markup rules, there is p ∈ Js such that ∆r
ip is a primary pivot. Then, by the induction hypothesis, ∆r

i′p = 0, for

i′ > i. Thus, the c× 1 column vector y given by

yj′ =


∆r
ip, if j′ + `k−1 = j,

−∆r
ij , if j′ + `k−1 = p,

0, otherwise,

is a rational solution to the linear system

∆r
IJ y = 0,

since P r−1 and ∆0 are integral. This implies that the rational vector x̄ = P r−1
JJ y satisfies

Ax̄ = 0.

Furthermore, since P r−1 is block upper triangular and invertible, x̄c = P r−1
jj yc 6= 0. Therefore, an appropriate multiple of x̄

solves the integer linear program of the change-of-basis update step:

min xc

s.t. Ax = 0

xc ≥ 1

x ∈ Zc.

The above integer program is thus feasible, bounded by construction (since xc ≥ 1) and the data defining it is integral. It

is a well known consequence, see [NW], that it has an optimal solution x∗. Hence the matrix P update step is well defined.

Notice that x∗c = u, the leading coefficient associated with the change-of-basis pivot ∆r
ij .

The components of the optimal solution x∗ will replace entries of P r−1 in positions (fk, j), . . . , (j, j). Thus the change-

of-basis matrix P r is integral, has the same block upper triangular structure, and is invertible, since the diagonal entries that

may have changed (one for each change-of-basis pivot) were replaced with positive (since x∗c ≥ 1) entries. Condition (iv) is

verified for P r. The matrix update rule implies that condition (i) is satisfied.
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By construction of P r, only columns containing change-of-basis pivots detected on the r-th diagonal change from ∆0P r−1

to ∆0P r. In particular, the construction of P r implies that entries in positions (i, j), . . . , (`k−1, j) are zeroed out, for j ∈ Jk
such that ∆r

i,i+r = ∆r
ij is a change-of-basis pivot. Thus, columns containing primary pivots, either on or below the r-th

diagonal, do not change. Hence, by induction and the markup rules, ∆0P r satisfies (ii).

Matrix ∆r+1 is obtained pre-multiplying ∆0P r by (P r)−1. The fact that (P r)−1 has the same structure as P r implies

that, in the pre-multiplication, a row i ∈ Js of ∆0P r will be replaced by a linear combination of rows i, i + 1, . . . , `k,

with the coefficient of row i being non-null. Thus, since we have already established that ∆0P r satisfies (ii), it follows that

(P r)−1∆0P r satisfies (iii).

The following corollary is a consequence of Proposition 4.1 and the sweeping algorithm over Z. The markup rules imply

the uniqueness of the primary pivot below a nonzero entry, since each column may have at most one primary pivot. The

relative positions of the rectangular blocks of ∆R, the last matrix produced by the sweeping algorithm over Z, and the

triangular blocks of PR−1 are illustrated in Figure 7. Notice that, since the columns j, for j ∈ J1, are null, block T r1 is an

identity matrix of order J1, for all r.

Corollary 4.2 Let ∆R be the last matrix produced by the sweeping algorithm over Z. Then

(i) The primary pivot entries are non-null and each non-null entry is located above a unique primary pivot.

(ii) The s-th block of ∆R is given by

BRs = (TR−1
s−1 )−1BsT

R−1
s , for 1 ≤ k ≤ b, (10)

where Bs = ∆Js−1Js
.

J0

J1︷ ︸︸ ︷ J2︷ ︸︸ ︷ J3︷︸︸︷ J4︷ ︸︸ ︷ J5︷ ︸︸ ︷

J6

∆R =

BR
1

BR
2

BR
3

BR
4

BR
5

BR
6

PR−1 =

T R−1
0

T R−1
1

T R−1
2

T R−1
3

T R−1
4

T R−1
5

T R−1
6

1
1

1
1

1

Figure 7: Block structures of ∆R and PR−1.

The sweeping algorithm leads to a complementary relation between a column j ∈ Js of ∆R containing a primary pivot

and its j-th row, established in the following proposition and illustrated in Figure 8. Notice that this proposition is valid for

both versions of the algorithm, over F and over Z, since it follows from the zero pattern established in Proposition 2.1 for F

and in Proposition 4.1 for Z.
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null rows

non-null columns

*
*

*

0· · ·0
0· · ·0

0· · ·0

BR
s

BR
s+1

* primary pivot

Figure 8: Complementarity relation between columns of BRs and rows of BRs+1.

Proposition 4.3 Let ∆R be the last matrix produced by the sweeping algorithm over Z. If the j-th column of ∆R is non-null,

then its j-th row is null, or, equivalently,

∆R
.j ∆R

j. = 0, for all j. (11)

Proof: Equation (11) is trivial when ∆R
.j is a zero column. So suppose ∆R

.j 6= 0. By the inherited block structure

established in Proposition 4.1, there exists s such that j ∈ Js. By Proposition 4.1, the non-null columns of ∆R are precisely

the columns containing primary pivots. Label the primary pivots of block s in increasing order of row index: if ∆R
i1j1

, . . . ,

∆R
iaja

are the primary pivots in block s, then i1 < i2 < · · · < ia. Thus, j1, j2, . . . , ja are the non-null columns of the s-th

block of ∆R. Furthermore, ∆R
iaja

is the unique nonzero entry of row ∆R
ia., row ia−1 has a nonzero entry in column ja−1 and

may have another one in column ja, and so on.

The fact that ∆R is nilpotent implies that

0 = ∆R
ia.∆

R
.j′ = ∆R

iaja∆R
jaj′ ,

for fixed arbitrary j′. Using the fact that the primary pivot entry is non-null, we conclude that ∆R
jaj′

= 0, for all j′. Repeating

the argument for ia−1 and using the fact that the ja-th row of ∆R is null, we establish that its ja−1-th row is null. The

nullity of rows ja−2, . . . , j1 of ∆R follow analogously.

In the proof of the main result, we need the following modified version of Proposition 4.3.

Corollary 4.4 Let ∆R be the last matrix produced by the sweeping algorithm over Z. Let k = gs. Then

Bs(TR−1
s ).j((TR−1

s )−1Bs+1)j. = 0, (12)

for j + `k−1 ∈ Js, and s ∈ {1, . . . , b}.

Proof: Let ̄ = j + `k−1 ∈ Js, for s ∈ {1, . . . , b}. Then, equations (10) and (11) imply

0 = ∆R
Js−1 ̄ ∆R

̄ Js+1

= ((TR−1
s−1 )−1BsT

R−1
s ).j ((TR−1

s )−1Bs+1T
R−1
s+1 )j.

= (TR−1
s−1 )−1Bs(TR−1

s ).j ((TR−1
s )−1)j.Bs+1T

R−1
s+1 . (13)

Pre-multiplying (13) by TR−1
s−1 and post-multiplying by (TR−1

s+1 )−1 gives (12).

We may now prove the integrality result.
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Theorem 4.5 The last matrix ∆R produced by the sweeping algorithm over Z is integral.

Proof: By Corollary 4.2, it suffices to show that the rectangular blocks BRs are integral. By the integrality of PR−1 and

(10), it is sufficient to show that (TR−1
s )−1v = α is integral, where v is a fixed arbitrary column of Bs+1, for s ∈ {0, . . . , b−1}.

Or, equivalently, we need to show that the unique solution of the linear system

TR−1
s α = v (14)

is integral. Notice that we need only consider s ∈ {1, . . . , b− 1}, since T r0 = I, for all r.

Now TR−1
s is upper triangular, which means that system (14) is ready to be solved by back substitution. This is the basic

tool behind the constructive proof that follows. The values of the components of α are calculated in reverse order, from the

last to the first one. As soon as a component is calculated, its value is inserted in the system, producing a system with one

less variable. Of course we need induction to ascertain that this iterative procedure will work with arbitrarily sized systems.

Let q = |Js|, the order of TR−1
s . Let p = |Js−1|, so block Bs is p× q. Notice that row and column indices of a block are

shifted with respect to the indices in the whole matrix. If, for instance, gs = k, then (Bs)ij = ∆i+`k−2,j+`k−1 . Integrality

of αq, the last component of α, will result from the rules for the construction of the change-of-basis matrix and the fact

that BsBs+1 = 0, a consequence of the nilpotency of ∆. Replacing the value obtained for αq in the system (14) amounts to

removing the last column of the coefficient matrix and updating the right-hand-side. In order to proceed we need to show

how to “update” the other matrices involved in the integrality argument.

We introduce some notation to simplify the induction argument. Let A1 = Bs = ∆Js−1Js
, v1 = v = (Bs+1).a be a fixed

arbitrary column of block s+ 1, and U1 = TR−1
s . In the new notation, system (14) becomes

U1α = v1. (15)

Instead of working with a sequence of shrinking systems, we construe the back substitution procedure as generating a sequence

of equally sized linear systems equivalent to (15), but increasingly easy to solve. As the i-th system U iα = vi is considered,

the last i− 1 components of α have already been computed. The relevant matrices have the following characteristics:

(a) The first q − i+ 1 columns of U i coincide with the first q − i+ 1 columns of U1, while the last i− 1 columns of U i are

equal to the last i− 1 columns of a q × q identity matrix. Notice that this makes U i upper triangular and invertible.

(b) The last i − 1 columns of matrix Ai, the update of matrix A1 = Bk, coincide with the last i − 1 columns of matrix

BsT
R−1
s , while the first q − i+ 1 columns of Ai retain the original values.

(c) The last i−1 components of vi contain the (integral) values already obtained for the last i−1 components of α, that is

(TR−1
s )−1

q. v, . . . , (TR−1
s )−1

q−i+2,.v. The first q − i+ 1 components of vi have been updated to take into account the fact

that the variables αq, . . . , αq−i+2 have been eliminated from the first q − i+ 1 equations. They are integral, as well.

(d) Aivi = Ai.,{1,...,q−i+1}v
i
{1,...,q−i+1} = 0.

At the end of the back substitution, Uq+1 = I, Aq+1 = BsT
R−1
s and α = vq+1 = (TR−1

s )−1v. Matrix equations will be

presented that produce sequences of matrices with the prescribed characteristics.

We start the induction proof by calculating αq. Since U1 is upper triangular, we have

αq =
v1
q

U1
qq

. (16)
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There are two possibilities for the last column of the k-th block: at some point of the sweeping algorihtm it contained a

change-of-basis pivot or not. In the latter case, this last column was not altered during the sweeping algorithm and, since

the change-of-basis matrix is initialized with the identity matrix, U1
.q = eq, so that αq = v1

q/1 and thus clearly integral, since

v, a fixed arbitrary column of Bs+1, is integral.

Now suppose the last column of the s-th block contained at least one change-of-basis pivot during the sweeping algorithm.

By the rules for the change-of-basis matrix update, each time a change-of-basis pivot is marked in a column of a block, say

block s, the corresponding column in the triangular block of the change-of-basis matrix, located just below block s, is updated.

The old column is superseded by the vector obtained in the solution of the minimization problem constructed in the update

step. Thus only the last change-of-basis pivot occuring in that column need be considered. Letting gs = k, the position of this

last change-of-basis pivot in the connection matrix is (̃ı, `k). The corresponding position in A1 is (i, q) = (̃ı− `k−2, `k− `k−1).

Then x = U1
.q is the optimal solution to the optimization problem

min xq

subject to A1
I.x = 0

xq ≥ 1

x ∈ Zq,

(17)

where I = {i, . . . , p}. If U1
qq is a divisor of v1

q , then (16) implies αq is integral. Suppose not. The nilpotency of ∆ implies that

v1 belongs to the null space of A1, which means ±v1 are integral solutions to the system A1
I.x = 0. Therefore, if U1

qq is not a

divisor of v1
q , the optimality of U1

.q implies U1
qq < |v1

q |. Consider the following linear combination, with integral coefficients,

of v1 and U1
.q:

w = sgn(v1
q ) v1 −

⌊
|v1
q |

U1
qq

⌋
U1
.q.

By construction, w satisfies the constraints of (17), and wq < U1
qq, contradicting the optimality of U1

.q. Thus U1
qq is indeed a

divisor of v1
q and αq is integral.

Now let

D1 =


1

. . .

1
U1
.q

0 · · · 0

 .

The fact that U1 is upper triangular and invertible implies that D1 satisfies these same properties. Letting U2 = (D1)−1U1,

a straightforward calculation gives

U2 = (D1)−1U1 =


0
...

U1
.1 · · · U1

.,q−1 0

1

 ,

so U2 satisfies (a). Letting

A2 = A1D1,
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we see that A2 satisfies (b). Pre-multiplying (15) by (D1)−1, we obtain the equivalent system

U2α = (D1)−1U1α = (D1)−1v1 = v2. (18)

Notice that, by construction, v2 belongs to the null space of A2, since

A2v2 = A1D1(D1)−1v1 = 0. (19)

Since U2
.q = eq, we conclude that

v2
q =

v1
q

U1
qq

and v2
j = v1

j − v2
q U

1
jq, for j = 1, . . . , q − 1,

which implies that v2 is integral and satisfies (c).

Finally, (12) implies

A2
.qv

2
q = Bs(TR−1

s ).q ((TR−1
s )−1Bs+1)qa = 0. (20)

Therefore, using (19) and (20), we have

0 = A2v2 = A2
.,{1,...,q−1}v

2
{1,...,q−1} +A2

.qv
2
q = A2

.,{1,...,q−1}v
2
{1,...,q−1},

which means (d) is also satisfied.

Now assume by induction that the linear system U iα = vi is equivalent to (15), that Ai, vi and U i satisfy (a), (b), (c)

and (d).

Again there are two possibilities for column `k − i + 1 of the s-th block: it contained a change-of-basis pivot or not.

The latter is the simplest case, as before, since then U i.,q−i+1 = U1
.,q−i+1 = eq−i+1 and αq−i+1 = viq−i+1/U

i
q−i+1,q−i+1 =

viq−i+1/U
1
q−i+1,q−i+1 = viq−i+1/1 ∈ Z, by the induction hypotheses. On the other hand, assuming there was a change-of-basis

pivot in column `k−1 − i+ 1, the column vector x = U i{1,...,q−i+1},q−i+1 = U1
{1,...,q−i+1},q−i+1 is the optimal solution to

min xq−i+1

s.t. AiI,{1,...,q−i+1}x = 0

xq−i+1 ≥ 1

x ∈ Zq−i+1,

(21)

where I is some nonempty subset of the rows of Ai. Then, if U iq−i+1,q−i+1 is not a divisor of viq−i+1, optimality of

U i{1,...,q−i+1},q−i+1 implies U iq−i+1,q−i+1 < |viq−i+1|, since vi{1,...,q−i+1} is feasible for (21).

But then, the linear combination with integral coefficients

w = sgn(viq−i+1) vi{1,...,q−i+1} −

⌊
|viq−i+1|

U iq−i+1,q−i+1

⌋
U i{1,...,q−i+1},q−i+1

is also feasible for (21) and satisfies wq−i+1 < U iq−i+1,q−i+1, contradicting optimality of the latter.

Therefore U iq−i+1,q−i+1 must divide viq−i+1 and

αq−i+1 =
viq−i+1

U iq−i+1,q−i+1

∈ Z.
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It remains to show how to update the matrices and vector such that the new set satisfies (a) through (d). Let

Di =



1 0 · · · 0

. . . . . .

1 U i.,q−i+1

(q − i + 1)-th

column

0 · · · 0

0 · · · 0 1
. . . . . .

0 · · · 0 1


, U i+1 = (Di)−1U i, Ai+1 = AiDi,

and

vi+1 = (Di)−1vi.

Induction hypotheses and direct computation show that U i+1, Ai+1 and vi+1 satisfy (a) through (d). Therefore, these

properties also hold for Uq+1, Aq+1 and vq+1, which implies the desired integrality result.

5 Comments on the Implementation of the Sweeping Algorithm

5.1 Sweeping Algorithm over Z

The computer implementations of the sweeping algorithms over Z and Z2 are available for download at [Me]. Also available

is a set of numerical experiments with the algorithms. The algorithms were implemented in Mathematica R© 6.0.0.

The implementation of the sweeping algorithm over Z offers the choice of two methods for the matrix P update step.

The first method invokes Mathematica’s built-in Minimize command to solve the integer linear program constructed in the

update step. In the second method, the solution of this optimization program is coded from scratch, using the concept of

the integer normal form of a matrix. This choice is indicated via the optional Boolean parameter Nf. The other optional

parameter is Erp. It should be set to True if one wants the computation of the sequence of differentials (Er, dr). Thus, for

instance, after defining a matrix A and a column partition partition, the command

SpectralSequenceConstruction[A, partition]

calculates the sequence {∆0 = A,∆1, . . . , } using the built-in Mathematica command to solve the minimization in the matrix

P update step. On the other hand,

SpectralSequenceConstruction[A, partition, Nf -> True]

indicates the choice of the second method for the matrix P update step. To obtain the computation of the sequence (Er, dr)

one should use

SpectralSequenceConstruction[A, partition, Erp -> True]

or

SpectralSequenceConstruction[A, partition, Nf -> True, Erp -> True].

The definition of the input matrix can be done entry by entry, but since it usually has a great number of null entries, it

is easier to construct a null matrix of the desired order and then assign the non-null entries separetely. The matrix shown in

Figure 9 (a), for instance, was built using the commands
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A = Table[0, {10}, {10}];

A[[2,6]] = 7;

A[[2,7]] = -5;

A[[3,4]] = 5;

A[[3,5]] = 3;

A[[3,6]] = 2;

A[[4,8]] = 1;

A[[4,9]] = -3;

A[[5,8]] = -5;

A[[5,9]] = 5;

A[[6,8]] = 5;

A[[7,8]] = 7;

Its column partition is defined with

partition = {1, 0, 2, 4, 2, 0, 1};

meaning there is one critical point of index 0, none of index 1, two of index 2, four of index 3, 2 of index 4, none of index 5

and one of index 6.

The execution of the function SpectralSequenceConstruction causes the printout of the sequence of ∆’s, as well as the

expressions of the k-chains σk’s associated with the columns thereof, as illustrated in Figures 9 (a) and (b). Primary pivot

entries are indicated by means of a yellow background and darker edge. The change-of-basis pivots have blue background

and dashed edges. Null entries are left blank. Only blocks with non-null entries are highlighted. The diagonal being swept

is indicated with a thin gray line.
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(a) Initial matrix (b) Matrix after 3-rd diagonal is swept

Figure 9: Sample output of the routine SpectralSequenceConstruction.

The function SpectralSequenceConstruction returns the number of diagonals that are swept. Hence the command

n = SpectralSequenceConstruction[A, partition, Nf -> True]
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executes the function SpectralSequenceConstruction assigns to n the number of diagonals. This is useful if one wishes to

examine the several change-of-basis matrices constructed during the algorithm, which can be done with the command

Table[changeofbasismatrix[i] // MatrixForm, i, 1, n]

since the function SpectralSequenceConstruction assigns to changeofbasismatrix[i] the value of P i.

The choice of methods for the matrix P update step highlights the fact that, although the optimum value of the min-

imization problem in this step is unique, the optimal solution is not. Figure 10 shows the matrices ∆4 obtained from ∆3

shown in Figure 9 (b), using both choices. Notice that using Mathematica’s built-in Minimize function σ6,4
2 = −h4

2 +h5
2 +h6

2,

whereas using the routine based on the normal form σ6,4
2 = 2h4

2 − 4h5
2 + h6

2. Although the entries in ∆4
2 are the same in both

cases, notice that entries in ∆4
3 are not.
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(a) ∆4 obtained using built-in Minimize (b) ∆4 obtained using code based on normal form

Figure 10: Continuation of instance illustrated in Figure 9.

The computation of the differential (Er, dr) involves a similar optimization problem. Proposition 4.1 and Theorem 4.4 of

[CdRS] imply that

Erp,k−p =
Zrp,k−p

Zr−1
p−1,k−(p−1) + ∂Zr−1

p+r−1,(k+1)−(p+r−1)

, (22)

where

Zrp,k−p = Z[µp+1,rσp+1,r
k , µp,r−1σp,r−1

k , . . . , µfk,r−p−1+fkσfk,r−p−1+fk

k ]

and the remaining terms have analogous expressions.

As the sweeping algorithm proceeds, we may express the various σ’s as integer linear combinations of the elementary h’s.

Figures 11 and 12 shows a typical situation involving the computation of E4
5 and E4

6 . By construction of (22), the matrix

containing the coefficients of the generators in Zrp,k−p has one column more than the matrix containing the coefficients of the

generators of Zr−1
p−1,k−(p−1). Let A be the matrix containing the coefficients of the generators in Zr−1

p−1,k−(p−1) followed by the

coefficients of the generators in ∂Zr−1
p+r−1,(k+1)−(p+r−1). Let v be the vector containing the coefficients in the expression of
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µp+1,rσp+1,r
k as a linear combination of h’s. Consider the minimization problem

min α

subject to Ax = αv

α ≥ 1

xi, α ∈ Z, ∀ i.

(23)

The the quotient space is: (i) Z[µp+1,rσp+1,r
k ] if problem (23) is infeasible, that is, it is not possible to express a positive

integer multiple of v as an integer linear combination of the columns of A, (ii) {0} if the optimum value of (23) is 1, and

(iii) Zα∗ [µp+1,rσp+1,r
k ] if the optimal value of (23) is α∗ > 1. In the example shown in Figure 11, it is easy to conclude that

E4
5 = Z[µ6,4σ6,4

3 ] = Z[−h4
3 + h5

3 + h6
3] and E4

6 = Z7[h7
3], since 7µ7,4σ7,4

3 = ∂µ8,1σ8,1
4 + ∂µ9,2σ9,2

4 + 2µ4,1σ4,1
3 − 5µ6,3σ6,3

3 , and

this is clearly the smallest possible multiple of µ7,4σ7,4
3 that can be expressed as an integer linear combination of the other

generators in the denominator.

E5
4

Numerator:

Μ4,2 Σ3
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Figure 11: Matrices involved in the computation of E4
5 , for ∆ shown in Figure 9.
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E6
4
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Μ6,3 Σ3
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Μ7,4 Σ3
7,4
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h3
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h3
6 0 0 1 0

h3
7 0 0 0 1
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Μ4,1 Σ3
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Μ5,2 Σ3
5,2

Μ6,3 Σ3
6,3

h3
4 1 0 0

h3
5 0 1 0

h3
6 0 0 1

h3
7 0 0 0

2nd term of denominador:
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8,1

 Σ4
8,1

¶Μ
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 Σ4
9,2

h3
4 1 -3

h3
5

-5 5

h3
6 5 0

h3
7 7 0

Figure 12: Matrices involved in the computation of E4
6 , for ∆ shown in Figure 9.

5.2 Sweeping Algorithm over Z2

The implementation of the sweeping over Z2 is considerably simpler. The pertinent command in this case is

BinarySpectralSequenceConstruction[A, partition]

where A and partition have the same meaning as before. Examples may be easily constructed by noting that, if A is a

integer nilpotent matrix, then A mod 2 is a (binary) nilpotent matrix with respect to the field Z2. Figure 13 illustrates the

program’s output in this case.

5.3 Numerical Experiments

Several numerical experiments are available for download at [Me]. There are two versions of the notebook with the numerical

experiments:

SweepingAlgorithm ExecutedNumericalExperiments.nb

and

SweepingAlgorithm NumericalExperiments.nb

Both contain the commands for generating 15 integral connection matrices and 8 binary connection matrices and the com-

mands for running the appropriate version of the sweeping algorithm, but only the former contains the corresponding output

as well. Any notebook may be perused with the freely available Mathematica player from Wolfram, see description at

http://www.wolfram.com/products/player/. The full Mathematica program is needed to execute the commands in a

notebook.
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(a) ∆0 (b) ∆11 (final matrix)

Figure 13: Example of the sweeping algorithm over Z2.

5.4 Random Connection Matrix Generator

The routine for generating random integral connection matrices is invoked with the command

RandomConnectionMatrixGenerator[n];

where n is the desired order of the matrix. It accepts three optional parameters:

(i) seed: the integral number to be used as a seed for Mathematica’s built-in pseudorandom number generator. Although

it is not necessary to supply a value for this option, it is a good policy to do so, in order to be able to replicate the

outcome.

(ii) numberofblocks: the desired number of blocks of ∆.

(iii) range: an integer value used to regulate the amplitude of the entries in the resulting connection matrix ∆.

The matrix shown in Figure 13 (a) is, modulo 2, the matrix obtained with the command

RandomConnectionMatrixGenerator[14, seed -> 15, numberofblocks -> 2, range -> 4]

6 Conclusion

The importance of having a computational tool such as the one presented here cannot be overly emphasized. It opens

possibilities of investigating problems which relate topology and dynamics via experiments on a large class of connection

matrices.

For instance, there are many questions which have yet to be answered, such as the ones presented in [CdRS], concerning

the existence of minimal paths, where time reversal occurs only for connecting orbits associated to primary pivots in the

sweeping algorithm.
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With this computational tool at hand, we will also be able to investigate the appearance of torsion in the spectral sequence.

Our goal is to search for properties in the connection matrix which either make this torsion disappear, or permit it to remain

in the stabilization of the unfolding of the spectral sequence.

Also, one of our main results in this paper, namely the integrality of the last matrix in the sweeping algorithm over Z,

raises the question of whether this procedure can be related to a continuation as in [Fr3] of a flow associated to the initial

connection matrix. Some examples indicate this might be true.
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